{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Evaluation\n", "> Python module: **sklearn.metrics**. \n", "> Method: **accuracy_score**. \n", "> **accuracy_score(ytest, y_model)** where ```ytest``` is the actual testing data; ```y_model`` is the model fitted values. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## IRIS data set\n", "> - **label**: species \n", "> - **features**: sepal_length, sepal_width, petal_length, petal_width" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | sepal_length | \n", "sepal_width | \n", "petal_length | \n", "petal_width | \n", "species | \n", "
---|---|---|---|---|---|
0 | \n", "5.1 | \n", "3.5 | \n", "1.4 | \n", "0.2 | \n", "setosa | \n", "
1 | \n", "4.9 | \n", "3.0 | \n", "1.4 | \n", "0.2 | \n", "setosa | \n", "
2 | \n", "4.7 | \n", "3.2 | \n", "1.3 | \n", "0.2 | \n", "setosa | \n", "
3 | \n", "4.6 | \n", "3.1 | \n", "1.5 | \n", "0.2 | \n", "setosa | \n", "
4 | \n", "5.0 | \n", "3.6 | \n", "1.4 | \n", "0.2 | \n", "setosa | \n", "