Assignment 2
Building A Barcode-enabled Android App for
Displaying Product Information

Objectives

In a department store, a barcode label affixed to a product's packaging or container serves various
purposes for users, such as inventory checking, payment, and product information inquiry. To support
these functionalities, product information associated with a specific barcode must be created and
managed using an information system that incorporates a database. Subsequently, users can
conveniently utilize a computer application, such as a web or mobile app, to scan the barcode label and
access the relevant product information.

This assignment aims to provide students with a hands-on experience in designing and building a mobile
app for displaying food product information by scanning the barcode label on the food packaging.

Upon completion of this individual assignment, students are expected to develop the following skills:
1. Designing and building an Android app using the Microsoft NET MAUL
2. Scanning the barcode label attached to the food packaging.
3. Retrieving product information from a public Web API within the Android app. The Web API
"https://world.openfoodfacts.org/api/v0/product/<barcode>.json" will be utilized.
4. Generating an APK file for the Android app.

Major Tasks
Each student is required to design and develop an Android mobile app with the following features:

1. A user interface (UI) that allows users to enter a barcode using an on-screen keyboard.

2. A UI that enables users to scan food packaging’s barcodes, such as 1D EAN barcode and 2D
QR CODE, and then the app can retrieve related food product information by making a request
to the Web API "https://world.openfoodfacts.org/api/v0/product/<barcode>.json".

3. The UI should display common product information, such as the brand name, product name,
product images, ingredients, and more.

Additionally, students are expected to prepare a comprehensive user manual with clear instructions for
guiding users how to use the mobile app.

Items for Submission
Each student is required to submit the following:
1. A mobile app APK file and its corresponding source code.
2. A comprehensive user manual with detailed instructions guides users how to operate the mobile
app.
3. A short video demonstrating the step-by-step process of operating the mobile app.

Information about barcode labels and web API

Barcode labels attached to products offer valuable assistance to users across various applications,
including inventory management, supply chain tracking, product identification, and point-of-sale
aut(:imation. The provided figures showcase examples of barcode labels affixed to the packaging of food
products.

Qe ooy 10 33447
ey o s0pn
sy o

Barcode

et o

!

EAN-13 and UPC-A are two widely used barcode formats commonly found on food product packaging.
The EAN-13 barcode format is designed to encode 13-digit numbers, while the UPC-A barcode format
encodes 12-digit numbers. These formats are primarily utilized in specific regions, with UPC-A being
predominantly used in the United States and Canada, while EAN-13 is adopted globally. Barcode data
is typically stored as textual information in databases and serves as a key for product identification.

The table below presents several examples of barcodes:

Product Format Barcode Barcode
(Numbers stored (Printed on a label)
in a database)

Nutella Ferrero EAN-13 3017620421006

37017620 " 421006 ">
Coca Cola EAN-13 5449000267412

57449000 " 000439 D

Spam, 25% less UPC-A 037600115445

sodium 336g “”
0

37600 " 11544

The Android mobile app will integrate a free Web API service offered by "Open Food Facts." This
platform operates as a collaborative, free, and open database for food products worldwide. To fetch
product data, students will utilize the Web API using the following URL format:
https://world.openfoodfacts.org/api/v0/product/[barcode].json. When using this URL, students should
replace the placeholder [barcode] with either an EAN-13 or a UPC-A barcode. The Web API will
respond with the requested data in JSON format.

The table below presents an example of using this Web API:

An HTTP Request | https://world.openfoodfacts.org/api/v0/product/0037600115445.json
sent to the Web
API

An HTTP JSON data of the product would be found in the response.
Response received
from the Web API 8 hiy 1 /product/0037600115445 json
if the product is =
found

Raw Data Headers

The above image is a screenshot captured from the Firefox browser. Notably,
Firefox incorporates a built-in JSON data browser, which facilitates the display
of JSON data in a format that is both easy to read and comprehend.

JSON RawData Headers

Save Copy Collapse All Expand All 7 Filter JSON

code: 937600115445

» product: £}
status: 1
status_verbose: "product found™

The JSON data contains an element named 'status' that serves as an indicator
of the web API's status. When the value of 'status' is equal to 1, it signifies that
a product has been located in the database. In such cases, the product details
can be accessed within the 'product' element.

JSON RawData Headers

| Save Copy Collapse All Expand All 7 image_url 0

w product:

w image_url: "https://images.openfoodfacts.org/images/products

/8e3/768/011/5445/front_en.11.488.jpg"

Within the 'product' element, there is an element called 'image_url' that
specifically stores the URL of the product photo.

JSON RawData Headers

Save Copy Collapse All Expand All 7 ingredients_text 0

>

v product:

v ingredients_text: "pork with ham, mechanically separated
chicken, water, salt, modified potato
starch, sugar, sodium phosphates,
potassium chloride, sodium ascorbate,
sodium nitrite,"

The 'product' element contains an element called 'ingredients_text' that stores
a list of ingredients.

An HTTP
Response received
from the Web API
if the product is
not found

JSON RawData Headers

Save Copy Collapse All Expand All 7 Filter J
code: "@e91112223334"
status: e
status_verbose: "product not found"

