update,
This commit is contained in:
31
.gitattributes
vendored
Normal file
31
.gitattributes
vendored
Normal file
@@ -0,0 +1,31 @@
|
||||
*.mp4 filter=lfs diff=lfs merge=lfs
|
||||
*.zip filter=lfs diff=lfs merge=lfs
|
||||
*.7z filter=lfs diff=lfs merge=lfs
|
||||
*.tar.gz filter=lfs diff=lfs merge=lfs
|
||||
*.jpg filter=lfs diff=lfs merge=lfs
|
||||
*.png filter=lfs diff=lfs merge=lfs
|
||||
*.avif filter=lfs diff=lfs merge=lfs
|
||||
*.webm filter=lfs diff=lfs merge=lfs
|
||||
*.mkv filter=lfs diff=lfs merge=lfs
|
||||
|
||||
# Documents
|
||||
*.doc diff=astextplain
|
||||
*.DOC diff=astextplain
|
||||
*.docx diff=astextplain
|
||||
*.DOCX diff=astextplain
|
||||
*.dot diff=astextplain
|
||||
*.DOT diff=astextplain
|
||||
*.pdf diff=astextplain
|
||||
*.PDF diff=astextplain
|
||||
*.rtf diff=astextplain
|
||||
*.RTF diff=astextplain
|
||||
|
||||
*.gif filter=lfs diff=lfs merge=lfs
|
||||
*.GIF filter=lfs diff=lfs merge=lfs
|
||||
*.bmp filter=lfs diff=lfs merge=lfs
|
||||
*.BMP filter=lfs diff=lfs merge=lfs
|
||||
*.tiff filter=lfs diff=lfs merge=lfs
|
||||
*.TIFF filter=lfs diff=lfs merge=lfs
|
||||
*.wav filter=lfs diff=lfs merge=lfs
|
||||
*.WAV filter=lfs diff=lfs merge=lfs
|
||||
*.log filter=lfs diff=lfs merge=lfs
|
1
.gitignore
vendored
Normal file
1
.gitignore
vendored
Normal file
@@ -0,0 +1 @@
|
||||
**/~*.*
|
7
gitUpdate.bat
Normal file
7
gitUpdate.bat
Normal file
@@ -0,0 +1,7 @@
|
||||
git status .
|
||||
|
||||
@pause
|
||||
|
||||
git add .
|
||||
git commit -m"update anit961,"
|
||||
start git push
|
16
gitUpdate.sh
Executable file
16
gitUpdate.sh
Executable file
@@ -0,0 +1,16 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -ex
|
||||
|
||||
git config --global http.version HTTP/1.1
|
||||
git config --global lfs.allowincompletepush true
|
||||
git config --global lfs.locksverify true
|
||||
git config --global http.postBuffer 5368709120
|
||||
|
||||
git add .
|
||||
|
||||
git commit -m 'update,'
|
||||
|
||||
git push
|
||||
|
||||
echo "done"
|
BIN
task1/Assignment2-1.docx
Normal file
BIN
task1/Assignment2-1.docx
Normal file
Binary file not shown.
467
task1/Assignment2_template.ipynb
Normal file
467
task1/Assignment2_template.ipynb
Normal file
@@ -0,0 +1,467 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "c9eac7d0-4f4c-49e7-a335-b8ca8de34f20",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Assignment 2:\n",
|
||||
"In this assignment, you are given a dataset about bodyfat measure collected from a clinic. As a nutritionist, you want to use regression model to check whether your patients are in danger of high bodyfat.\n",
|
||||
"The data contains physical measurements of patients:\n",
|
||||
"- explantory variables: Age (in year), Weight (in pounds), Height (in inches), and BMI (Body Mass Index).\n",
|
||||
"- response variable: bodyfat (in %)\n",
|
||||
"\n",
|
||||
"Complete the given tasks below. (Notice each of the missing code to be filled is a single line command, more than one command line will be downgraded)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "0f79e7b9-1fff-4bef-9fe8-8e3eb54c68cb",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
"<h1 style=\"color:purple\">Author</h1>\n",
|
||||
"\n",
|
||||
" \n",
|
||||
"- Name: \n",
|
||||
"- Student ID: "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "d4725f61-cb83-4e3c-bc31-1a3992dadd28",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Pre-loaded packages and functions"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "d7e90f45",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#### Pandas is for using data structures\n",
|
||||
"import pandas as pd\n",
|
||||
"# statsmodels contain modules for regression and time series analysis\n",
|
||||
"import statsmodels.api as sm\n",
|
||||
"# numpy is for numerical computing of array and matrix\n",
|
||||
"import numpy as np\n",
|
||||
"# Matplotlib, Seaborn: plotting package\n",
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
"import seaborn as sns \n",
|
||||
"# matplotlib Showing the plot right after the current code \n",
|
||||
"%matplotlib inline\n",
|
||||
"import warnings\n",
|
||||
"warnings.filterwarnings('ignore')\n",
|
||||
"# basic statistics package\n",
|
||||
"import scipy.stats as stats\n",
|
||||
"from statsmodels.stats.outliers_influence import variance_inflation_factor\n",
|
||||
"import datetime"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "d8983cbf-0937-443f-ba43-d18956ad4a3e",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def outlier(dataframe,model,Type='all'):\n",
|
||||
" A = dataframe.copy()\n",
|
||||
" A = A.dropna()\n",
|
||||
" A.index = range(1,A.shape[0]+1)\n",
|
||||
" #A.index = range(0,A.shape[0])\n",
|
||||
" studentized_residuals = model.get_influence().resid_studentized_internal\n",
|
||||
" if Type == 'neg':\n",
|
||||
" return(A[studentized_residuals<-2])\n",
|
||||
" elif Type == 'posi':\n",
|
||||
" return(A[studentized_residuals>2])\n",
|
||||
" else:\n",
|
||||
" return(A[np.abs(studentized_residuals)>2])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "b47cb1ec-efe7-4124-a653-a9e942ae5e54",
|
||||
"metadata": {
|
||||
"id": "7NIZKrveWDbd"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from statsmodels.stats.outliers_influence import variance_inflation_factor\n",
|
||||
"def getvif(X):\n",
|
||||
" X = sm.add_constant(X)\n",
|
||||
" vif = pd.DataFrame()\n",
|
||||
" vif[\"VIF\"] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]\n",
|
||||
" vif[\"Predictors\"] = X.columns\n",
|
||||
" return(vif.drop(index = 0).round(2)) "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "5bd86624-4cc8-4790-85d5-826a91ef02aa",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "760c8202-fcaa-4e5f-bbb1-35f972fb4fd6",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Getting the data"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "16326102",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"data = pd.read_csv(\"https://drive.google.com/uc?export=download&id=1r6Za0azxHvJpjUA6lgMJyBqYIWRljmz8\")\n",
|
||||
"data.head()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "7fd1d118",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"data.shape"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "9496e740-2f7c-45cc-9409-a029d242a732",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Preliminary study"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "52d51f09-1993-47c5-83c8-4d874d0ddaf1",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# scatter plot matrix of the whole data\n",
|
||||
"sns_plot = sns.pairplot(data)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "931e81f6-e2f6-4f07-ab1c-485f598f8a93",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Task 1: Compute the correlation matrix; which variable has the strongest correlation with bodyfat? [5pts]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "6fe53540-95ce-4286-a0b4-0c35437dbe0c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"$$$Code_Here$$$"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "7d5d3504-6a3c-486f-afa2-639a4f85e015",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "5a155616-4e5b-4992-8a04-467c85ae2977",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Answer:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "7688f2a9-8c5e-4fae-83f3-8b4b1ef7a799",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Task 2: Split the data into train and test set by random (use 25 as the random seed/state) [5pts]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "4ae78c9d-deaa-4998-8928-5437c437e285",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"train = $$$Code_Here$$$\n",
|
||||
"test = $$$Code_Here$$$\n",
|
||||
"train.shape, test.shape"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "1d82fae0-ce3c-4e4b-92f8-69657b421f74",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Model Building"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "e5d20382-fd4c-4030-9d43-677f267b447b",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Task 3: Using the train set, fit a simple regression model for bodyfat by the variable from Task1 (with max correlation) [5pts]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "4994daf5-b40b-41b3-93fd-ab3f90568c91",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"Y = train[\"bodyfat\"]\n",
|
||||
"X = $$$Code_Here$$$\n",
|
||||
"SLR = $$$Code_Here$$$\n",
|
||||
"print(SLR.summary())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "8ba21618-7c3a-4baf-861f-cbdbb7cc7f05",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Task 4: Using the trian set, fit a multiple regression model for bodyfat by all of the explanatory variables (i.e. age, weight, height and bmi) [5pts]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "500ee96e-c8db-4053-ad0b-4097ae291696",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"Y = train[\"bodyfat\"]\n",
|
||||
"X = $$$Code_Here$$$\n",
|
||||
"MLR_all = $$$Code_Here$$$\n",
|
||||
"print(MLR_all.summary())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "af58180f-45a0-4cc9-b042-3845996d683e",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# VIF of all predictors\n",
|
||||
"getvif(X)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "c2cebb64-f6e0-41b6-96be-09f218ba05a3",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Task 5: Multicollinearity is reflected from above. Does bmi cause the problem? Briefly explain using your understanding about bmi.[5pts]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "87def1eb-ba5c-49a9-bfdf-48b3af5e1a81",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Answer: "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "dc60e40f-72b8-43a5-8b70-40fec8cc4f4d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Task 6: Using the train set, fit a multiple regression model for bodyfat by all of the explanatory variables except bmi [5pts]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "73499ab4-b937-4b30-a647-aeedc20d929e",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"Y = train[\"bodyfat\"]\n",
|
||||
"X = $$$Code_Here$$$\n",
|
||||
"MLR = $$$Code_Here$$$\n",
|
||||
"print(MLR.summary())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "883671ff-79ce-4c80-941c-957b0c8bcde2",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"getvif(X)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "742ef24b-3b03-439d-9d18-47c1626efe05",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Compare the predictive power between SLR and MLR using the test set. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "708e9eed-0b88-49d1-93a1-fba94254b597",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Task 7: Compute the RMSE for MLR [5pts]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "469672cd-2db3-49eb-b137-c6d63033a55f",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"Test_X_SLR = test['bmi']\n",
|
||||
"Test_X_MLR = $$$Code_Here$$$\n",
|
||||
"\n",
|
||||
"Test_Y_SLR = SLR.predict(sm.add_constant(Test_X_SLR))\n",
|
||||
"Test_Y_MLR = $$$Code_Here$$$"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "f077e2cf-4cad-4578-90bb-a63c32ddda18",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"Test_Y = test[\"bodyfat\"]\n",
|
||||
"\n",
|
||||
"from sklearn.metrics import mean_squared_error\n",
|
||||
"rmse_SLR = np.sqrt(mean_squared_error(Test_Y, Test_Y_SLR))\n",
|
||||
"rmse_MLR = $$$Code_Here$$$\n",
|
||||
"print(\"RMSE for test set (SLR): \", rmse_SLR)\n",
|
||||
"print(\"RMSE for test set (MLR): \", rmse_MLR)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "1659a34e-8080-4e92-be34-717acf81c82c",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Final Model and application"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "89256526-a134-4e7d-9a84-1f7dc331bfc2",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Task 8: Refit the better model from Task7 using the full dataset. [5pts]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "84da494e-36bf-4f96-9376-3fb43e8df704",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"Y = data[\"bodyfat\"]\n",
|
||||
"X = $$$Code_Here$$$\n",
|
||||
"Final = $$$Code_Here$$$\n",
|
||||
"print(Final.summary())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "539487cb-0e72-4a2b-85cd-6dbac1d2e321",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
"### Task 9: Predict the body fat for a new patient using the final model from Task 8: age=35, weight=170 pounds. Height=72 inches, BMI=23 [5pts]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "71aacafa-0cf1-40ed-8ee9-d5d09ebf26ab",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"$$$Code_Here$$$"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "37f640ce-dfd6-42c9-90d5-13b05769448f",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
"### Task 10: by using residuals (from final model) outlier analysis, report those patients are in danger (i.e. % of fat is much higher than what we expected from the final model) [5pts]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "f06aa2bd-9836-46c2-8e8d-4a876c9ae253",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"$$$Code_Here$$$"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "149424ee-f928-479b-8b07-19c3ae88f751",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
250
task1/google_drive.csv
Normal file
250
task1/google_drive.csv
Normal file
@@ -0,0 +1,250 @@
|
||||
bodyfat,age,weight,height,bmi
|
||||
11.8,27,168,71.25,23.2645614
|
||||
22.2,69,177.75,68.5,26.63077415
|
||||
10.6,57,147.75,65.75,24.02654368
|
||||
47.5,51,219,64,37.58715821
|
||||
24.2,40,202.25,70,29.01668367
|
||||
23.3,52,167,67.75,25.57721164
|
||||
26,54,230,72.25,30.97472492
|
||||
9,47,184.25,74.5,23.3372821
|
||||
4,47,127.5,66.75,20.1169886
|
||||
22.1,43,150,69.25,21.98907845
|
||||
9.4,26,152.25,69,22.48093888
|
||||
16.7,40,158,69.25,23.1618293
|
||||
29.9,65,189.75,65.75,30.85642412
|
||||
11.7,23,198.25,73.5,25.79846361
|
||||
25.8,61,178,67,27.87569615
|
||||
21.5,81,161.25,70.25,22.97007384
|
||||
15.1,34,140,70.5,19.80182083
|
||||
25.2,26,223,70.25,31.76636567
|
||||
18.7,50,194.75,70.75,27.35142154
|
||||
17.5,46,167,67,26.15304076
|
||||
23.6,41,232.75,74.25,29.67919373
|
||||
8.8,55,146.75,68.75,21.82669752
|
||||
9.4,23,159.75,72.25,21.51396655
|
||||
21,27,200.25,73.5,26.05872553
|
||||
15.9,42,193.5,70.5,27.36894523
|
||||
8.6,40,167.5,71.5,23.03340017
|
||||
26.7,58,161.75,67.25,25.14288084
|
||||
15.6,31,140.25,68.25,21.16668679
|
||||
13.1,37,151,67,23.64736021
|
||||
34.3,35,228.25,69.5,33.21976088
|
||||
30.2,69,215.5,70.5,30.48065993
|
||||
18,43,165.5,68.5,24.7954606
|
||||
5.7,29,160.25,71.25,22.19134503
|
||||
26.6,67,167,67.5,25.76702332
|
||||
3.9,42,136.25,67.5,21.02249657
|
||||
22.9,32,209.25,71,29.18126364
|
||||
19.7,43,170.75,68.5,25.58202355
|
||||
6.3,54,155.25,69.25,22.75869619
|
||||
29.9,37,241.25,71.5,33.17497188
|
||||
21.4,40,168.5,69.25,24.70106479
|
||||
9.4,31,151.25,72.25,20.36924846
|
||||
25.2,55,198.5,74.25,25.31179358
|
||||
16,28,183.75,67.75,28.14259065
|
||||
31.5,54,202.5,70.75,28.43986066
|
||||
29.8,56,178.75,68.5,26.78059566
|
||||
10,28,182.5,72.25,24.57777086
|
||||
12.5,55,126.5,66.75,19.9592083
|
||||
3.7,27,133.25,64.75,22.34307777
|
||||
18.2,44,179.75,69.5,26.16101651
|
||||
38.1,42,244.25,76,29.72779605
|
||||
11.3,50,162.5,66.5,25.83243824
|
||||
5.3,25,143.75,72.5,19.22592152
|
||||
28.7,43,200.5,71.5,27.57132378
|
||||
11.8,61,143,65.75,23.25411673
|
||||
20.5,35,177.25,71,24.71865701
|
||||
24.9,40,176.75,71,24.64892878
|
||||
21.2,30,205.25,71.25,28.42292398
|
||||
20.5,41,202.25,72.5,27.05003567
|
||||
27.9,52,206.5,74.5,26.15548849
|
||||
24.9,46,192.5,71.75,26.28707402
|
||||
12.3,23,154.25,67.75,23.62446045
|
||||
26.1,50,157,66.75,24.77150753
|
||||
13.6,45,135.75,68.5,20.33827055
|
||||
27.2,49,216.25,74.5,27.39043286
|
||||
17.5,40,170.5,74.25,21.74136426
|
||||
32.3,57,205.5,70,29.48295918
|
||||
20.8,32,180.5,69.5,26.27017235
|
||||
22.1,35,187.75,69.5,27.32534548
|
||||
6,44,184,74,23.62162162
|
||||
21.8,35,166.25,68,25.27546496
|
||||
33.6,72,201,69.75,29.04443674
|
||||
12.5,30,136.5,68.75,20.3021752
|
||||
20.4,41,210.5,72,28.54581405
|
||||
27,70,170.75,70,24.49739796
|
||||
18.4,64,190.25,72.75,25.27050933
|
||||
14.1,48,176,73,23.21786451
|
||||
3.7,27,159.25,71.5,21.89891926
|
||||
18.5,61,148.25,67.5,22.87401921
|
||||
19.2,35,217,73.75,28.04729675
|
||||
34.5,45,262.75,68.75,39.0798281
|
||||
6.1,22,173.25,72.25,23.33204823
|
||||
20.9,24,210.25,74.75,26.45263476
|
||||
13.9,43,164.25,73.25,21.52015749
|
||||
20.4,49,212.75,75,26.58902222
|
||||
22.3,49,196.75,73.75,25.42997989
|
||||
21.5,54,151.5,70.75,21.27722908
|
||||
13.5,55,125,64,21.45385743
|
||||
14.6,33,196,73,25.85625821
|
||||
5.2,55,142.25,67.25,22.11174528
|
||||
32.8,47,195,72.5,26.0803805
|
||||
11.9,32,182,73.75,23.52353921
|
||||
9.6,38,188.75,73.25,24.73016575
|
||||
10.2,47,158.25,72.25,21.31195747
|
||||
22.2,47,197,72,26.71508488
|
||||
17.3,28,171.5,75.25,21.29150893
|
||||
19.5,49,168.25,71.75,22.97558548
|
||||
12.4,54,153.25,70.5,21.67592173
|
||||
16.9,39,234.75,74.5,29.73366065
|
||||
28,43,183.25,70,26.2907653
|
||||
29.4,43,187.75,74,24.10304054
|
||||
15.2,68,155.5,69.25,22.79534465
|
||||
25.8,40,191,74,24.52027027
|
||||
22.5,38,187.25,69.25,27.4496996
|
||||
10.9,55,179.75,68.75,26.73491571
|
||||
27.3,34,218.75,72,29.66459298
|
||||
25.3,44,185.25,71.5,25.47425302
|
||||
31.6,48,217,70,31.13285715
|
||||
25.3,22,154,66.25,24.66631541
|
||||
9.6,47,160.5,70.25,22.86323628
|
||||
24.7,42,224.75,74.75,28.2769544
|
||||
15,53,154.5,69.25,22.6487508
|
||||
25.3,36,226.75,71.75,30.96412485
|
||||
17.4,43,152.25,67.75,23.31814654
|
||||
18.3,52,203.25,74.25,25.91749141
|
||||
35,65,224.5,68.25,33.88179098
|
||||
17.4,53,224.5,77.75,26.10783594
|
||||
8.5,56,160.75,73.75,20.77697213
|
||||
24.6,61,179.75,65.75,29.23026211
|
||||
8.3,46,176.75,72.5,23.63952438
|
||||
27.2,42,177.5,68.75,26.40026446
|
||||
22.6,54,198,72,26.85069444
|
||||
20.3,35,224.75,72.25,30.26769316
|
||||
8.8,29,160.75,69,23.73603234
|
||||
16.5,35,172.75,69.5,25.14222866
|
||||
14.8,55,169.5,68.25,25.5811295
|
||||
26.1,62,216,73.25,28.30048108
|
||||
13.9,51,179,72,24.27411266
|
||||
29.6,25,206.5,69.75,29.839185
|
||||
21.3,42,163,70.25,23.21936146
|
||||
30,55,183.5,67.5,28.31286694
|
||||
22.5,31,177.25,71.5,24.37415032
|
||||
7.9,34,131.5,67.5,20.2896022
|
||||
22.4,40,168.25,71.25,23.29918129
|
||||
32,41,212,71.5,29.1527214
|
||||
21.3,41,218.5,71,30.47123587
|
||||
23.1,64,160,65.75,26.01859215
|
||||
18.6,62,168.75,67.5,26.03703704
|
||||
40.1,49,191.75,65,31.90538461
|
||||
11,70,134.25,67,21.02422589
|
||||
19.2,26,181,69.75,26.15444303
|
||||
30.7,54,193.25,70.25,27.52847608
|
||||
32.3,41,247.25,73.5,32.17488084
|
||||
22,42,156.25,69,23.0715711
|
||||
26.8,64,150.25,67.25,23.35528807
|
||||
10.8,40,133.5,67.5,20.5981893
|
||||
13.6,51,149.25,69.75,21.56657803
|
||||
7.5,51,154.5,70,22.1660204
|
||||
0.7,35,125.75,65.5,20.6053843
|
||||
29.3,72,186.75,66,30.13894628
|
||||
17.3,43,194,75.5,23.9256173
|
||||
22.9,31,148,67.5,22.83544581
|
||||
8.5,47,165.25,70.5,23.37322067
|
||||
32.6,50,203,67,31.79082201
|
||||
30.4,66,234.25,72,31.76654128
|
||||
13.8,55,154.75,71.5,21.2801115
|
||||
18.3,40,173.25,69.5,25.21499922
|
||||
19.5,50,172.75,73,22.78912554
|
||||
12.4,64,155.25,69.5,22.59525904
|
||||
19.3,43,200.25,73.5,26.05872553
|
||||
12.1,40,159.25,69.75,23.01157488
|
||||
20.4,58,181.5,68,27.59396626
|
||||
25.4,43,177,69.25,25.94711256
|
||||
21.2,49,198.5,73.5,25.83099634
|
||||
12.2,43,178.25,70.25,25.39172503
|
||||
28.7,24,184.25,71.25,25.5148538
|
||||
14.9,56,174.5,69.5,25.39692563
|
||||
6.6,40,139.25,69,20.56138416
|
||||
28.4,50,196.75,68.25,29.69372996
|
||||
6.3,49,152.75,73.5,19.87750474
|
||||
18.1,44,187.5,72.25,25.25113444
|
||||
16.5,33,211.75,73.5,27.55523161
|
||||
7.7,39,125.25,68,19.04211722
|
||||
14.9,72,157.75,67.25,24.52110944
|
||||
22.7,40,171.25,70.5,24.22187012
|
||||
16.6,44,208.75,73,27.53823419
|
||||
29,67,199.5,68.5,29.88939208
|
||||
7.8,27,216,76,26.28947368
|
||||
14.7,40,160.25,68.75,23.83460496
|
||||
16.5,27,156.75,67.25,24.36566659
|
||||
28,62,201.25,69.5,29.29015061
|
||||
24.5,52,199.25,71.75,27.20882856
|
||||
10.8,47,159.75,70.75,22.43589007
|
||||
27,72,168,69.25,24.62776786
|
||||
26.6,39,219.25,74.25,27.95773674
|
||||
32.6,67,227.75,72.75,30.25155584
|
||||
34.8,44,223,69.75,32.22342981
|
||||
12.9,55,156.75,71.5,21.55513717
|
||||
5.6,39,148.5,71.25,20.56421052
|
||||
20.1,41,172.75,71.25,23.92233918
|
||||
22.8,42,162.75,72.75,21.61774188
|
||||
20.5,46,177,70,25.39408163
|
||||
13,33,184.25,68.75,27.40421818
|
||||
4.1,25,191,74,24.52027027
|
||||
22.1,47,178.25,70,25.57341837
|
||||
21.8,39,166.75,70.75,23.41899636
|
||||
11.5,54,161.75,67.5,24.95698217
|
||||
16.1,57,182.25,71.75,24.88737267
|
||||
11.5,40,145.75,67.25,22.65579525
|
||||
14.9,42,165.25,69.75,23.87857299
|
||||
16,47,151.5,66.75,23.90371586
|
||||
11.4,41,153,69.25,22.42886001
|
||||
7.1,26,186.25,74.5,23.59060403
|
||||
18.1,49,171.75,71.5,23.61782972
|
||||
24.4,41,185,68.25,27.92040682
|
||||
17.7,32,148.75,70,21.34107143
|
||||
8,51,137.25,67.75,21.0207922
|
||||
9.9,37,145.25,69.25,21.29275763
|
||||
24.4,41,168.25,69.5,24.48729362
|
||||
20.4,48,173.75,72,23.56216243
|
||||
27.3,63,219.15,69.5,31.89533668
|
||||
24.8,62,191.5,72.25,25.78982531
|
||||
15.4,58,175.5,71.5,24.13350286
|
||||
13.8,50,161,66.5,25.59398496
|
||||
31.4,67,163.75,67.75,25.07945153
|
||||
27.1,44,186,69.75,26.87694146
|
||||
14.2,24,156,70.75,21.90922598
|
||||
10.4,26,184.75,72.25,24.88078447
|
||||
20.1,48,177.25,72.75,23.54374653
|
||||
29,34,195.75,71,27.29860147
|
||||
16.9,36,176.25,71.5,24.23663749
|
||||
19.1,28,179,68,27.21388408
|
||||
26,72,190.75,70.5,26.97998089
|
||||
32.9,44,166,65.5,27.20074587
|
||||
7.1,49,140.5,68,21.36061851
|
||||
3,35,152.25,67.75,23.31814654
|
||||
17,65,127.5,65.75,20.73356561
|
||||
19.2,24,208.5,72.75,27.69461863
|
||||
10.1,27,146,72.25,19.66221669
|
||||
15.2,28,200.5,69.75,28.97218689
|
||||
25.5,42,180,68.25,27.16580124
|
||||
23.6,47,197,73.25,25.81108691
|
||||
31.2,28,205.75,69,30.38064483
|
||||
6.6,42,167.25,72.75,22.21546746
|
||||
25.8,60,157.75,67.5,24.33980796
|
||||
24.3,62,167.5,71.5,23.03340017
|
||||
10.3,23,188.15,77.5,22.02196878
|
||||
26.7,48,175.25,71.75,23.93147907
|
||||
19.6,26,241.75,74.5,30.62028737
|
||||
12.4,25,176,72.5,23.53921522
|
||||
17.8,46,156.5,68.25,23.61915496
|
||||
14,28,151.25,67.75,23.16498958
|
||||
20.8,40,192.25,73.25,25.18873836
|
||||
18.8,66,171.25,69.25,25.10419789
|
||||
8.8,57,162.5,69.5,23.65043217
|
||||
31.9,74,207.5,70,29.76989796
|
||||
23.6,43,170.75,67.5,26.34562414
|
||||
20.9,35,162.75,66,26.26566804
|
||||
17,56,167.75,68.5,25.132559
|
||||
17.7,42,168,71.5,23.10215658
|
|
Reference in New Issue
Block a user