
SCC. 203 Computer Networks 1

Practical 1 – Network Application Development
 Coursework Weight: 60%

In this practical, you will develop a number of small networking-based applications. These
are designed to increase your competency in developing socket-based applications, as well
as increasing your familiarity with a number of key technologies and measures. These are in
widespread use, and commonly deployed to evaluate networks and to provide services over
them.

During this practical, you will become familiar with the concept of network sockets and begin
to understand how they are used. Sockets are a programming abstraction designed to assist
us in building applications that use the network. We can treat these the same as any other
resource; writing to a socket sends a packet into the network, whilst reading from a socket
provides us with the contents of the packet. We can do this in much the same way as we
would read and write to any file found on the local filesystem.

 Practical Lab Structure

Practical 1 is split into a number of smaller tasks: ICMP Ping Client, Traceroute, and Paris-
Traceroute Client, Web Server and Web Proxy. Importantly, the tasks build upon each other;
the work you do in Task 1.1 will be fundamental to Task 1.2, and Task 1.2 will be fundamental
to Task 1.3. Similarly, the work completed in Task 2.1 will greatly assist you in Task 2.2.

For assessment purposes, only Task 1.3 and Task 2.2 will be marked.

Although Task 1.1, 1.2 and Task 2.1 will not be assessed, it is still vital that you
complete them, as they will provide the foundation for the later tasks.

For those tasks that are assessed, you will be awarded for meeting certain criteria. These
are outlined in more detail within each task description. You are encouraged to progress as
far as possible with each task. However, note that Task 1 and Task 2 are independent;
attempting both is advised, even if you do not fully complete each.

This course uses a dedicated virtual machine image for the purposes of these labs. In previous
years, this would have been accessible via the PCs in the physical labs.

 Running the Code Locally

It is also possible to run the code locally on your machine (directly and without a VM). To

do so, you will need a regular install of Python 3 (version 3.11 is recommended). As this task
does not use any external libraries (see ‘Python Library Usage’ section below), this should be
relatively easy to achieve.

Practical 1 Network Application Development Lent Term, 2022-2023

SCC. 203 Computer Networks 2

Details on how to install Python can be found here: https://www.python.org/downloads/

Please note that you will still need the virtual machine (as described in the sections above
and below) for the next coursework, starting in Week 17.

There are some caveats with this approach though (hence why we provide the virtual
machine). Although the same Python code will run regardless of the environment, the
underlying implementation (and therefore) behavior can be different, including for many of the
network-related libraries used in this practical. Particularly on the Windows platform
(rather than MacOS or Linux), the results may be different.

Given the multitude of potential discrepancies and variance that may occur when running
code locally, we will not provide direct support for the method; only the virtual machine-
based approaches will be supported by the teaching team.

If you do take this approach, also note that for the purposes of demonstration and marking,
the provided virtual machine will (and must) be used. It is not an acceptable excuse to claim
that it worked on your own machine, so at the very least, please ensure that it runs on the
provided virtual machine image (using one of the methods described in the sections below
or above) before submitting.

 Using a Remote Instance of the Virtual Machine

If the above options are not suitable, we have provided a remote instance of the virtual
machine, running on infrastructure hosted at Lancaster University. This provides an identical
experience and allows access to the environment without having to meet the hardware
resource requirements of running the virtual machine or code locally. To access this, please
use the following link and select the ‘SCC 203’:

https://mylab.lancaster.ac.uk/

These virtual instances can be accessed via a browser or a downloadable client; it is
recommended that the client is used, as it offers a more stable experience. You may have to
reload your browser once the client is installed for this to function correctly.

 Provided/Skeleton Code

To help you structure your code and get started with each task, we have provided you with
some skeleton code, which should be available on the SCC.203 Moodle page. This file will
eventually contain all the code you have developed in this lab and will be the one submitted
at the end of your work. It contains a structure for the code, including some helper functions
and empty classes. The skeleton code also contains some pseudocode for some of the tasks
to get you started.

Firstly, there is a function included to parse command line arguments given to the script
(setupArgumentParser). This includes determining which function is called (ping,

https://www.python.org/downloads/
https://mylab.lancaster.ac.uk/

Practical 1 Network Application Development Lent Term, 2022-2023

SCC. 203 Computer Networks 3

traceroute, web, proxy), as well as additional parameters used for each task. Some of

these may be optional, particularly if they are part of the additional features associated with
each task.

The code also includes the NetworkApplication class, which will be a parent to the

classes that you will develop in the coursework. It contains some useful methods that are
common across tasks. This includes the checksum function, which calculates a checksum

to be used in an ICMP packet (see T1.1 and T1.2). Furthermore, it also includes two
methods which should be used to print out the results generated in T1.1 and T1.2:
printOneResult and printAdditionalDetails.

Finally, it also includes five empty child classes (ICMPPing, Traceroute,

ParisTraceroute, WebServer and Proxy) which are to be used for providing the

solutions to each task (T1.1, T1.2, T1.3, T2.1 and T2.2 respectively). In the case of
ICMPPing and WebServer, they also include some pseudocode to guide you (please see

sections T1.1 and T2.1 for more details).

These classes inherit the NetworkApplication class, which will allow you to use the

parent’s helper methods (checksum, printOneResult and

printAdditionalDetails). These can be called using the super() function. For

more details on inheritance in Python, see here:

https://docs.python.org/3/tutorial/classes.html#inheritance

Each class contains an init method, which is called when the object is created (which

is done once the command line arguments have been parsed, in this case). This is the starting
point for writing the code in each class, but additional methods can be created as required.
Please do not change the method signature for any of these init functions

(always retain the passing of the args object).

To be clear: you can add new methods and code to each of the main classes (ICMPPing,

Traceroute, ParisTraceroute, WebServer and Proxy), but the remaining

structure, methods and code must remain intact.

For the purposes of plagiarism checking, the provided code will not be considered.

 Running your Python script

Once you have the virtual machine setup, you are ready to begin. For this practical, you will
be building your applications using Python 3 (as installed on the virtual machine).

To run a Python script, open a Terminal window, and navigate to the directory in which the
file you want to run is located. To run the script, simply use the following command:

python3 NetworkApplications.py

Please note the use of python3 rather than python: the default command refers to

Python 2.7, which we are not using in this course. Using this will result in a different outcome
and potential incompatibilities.

https://docs.python.org/3/tutorial/classes.html#inheritance

Practical 1 Network Application Development Lent Term, 2022-2023

SCC. 203 Computer Networks 4

When you first start this task, the provided code will run successfully (defaulting to pinging
lancaster.ac.uk) but do nothing.

 Python Library Usage

You are not expected to use any external libraries/modules for this practical; doing so is strictly
prohibited. All tasks can be achieved fully with the use of standard Python libraries.

We are also aware of a number of network and IP-orientated libraries that are included
within the standard Python distribution. These could potentially be used in different ways to
assist in your implementation. However, as we are trying to build your understanding
around the fundamentals of computer networks, we ask that you do not use these for this
practical either.

The teaching team believe it is vitally important that you grasp the technical details behind
many of these libraries, which do a good job of abstracting and obscuring the details. It is of
course perfectly acceptable to use these libraries in any future software development you
may do, whether this be as part of an upcoming course module or even after graduation.

By following the provided structure and guidance, you will not need to use any of these. If
you are in any doubt about a whether or not you can use a particular library,
please contact the course tutors to confirm.

 Submission and Assessment

The submission for all work completed in this practical is due by the end of Week 16. All
code should be included in a single file, titled: NetworkApplications.py.

 Automated Testing

To improve the efficiency of the marking process, we will be using some simple automated
testing of your code to help guide the in-lab sessions.

To help us in using this, we would request that you follow the guidance described in the
‘Provided/Skeleton Code’ and ‘Submission and Assessment’ sections regarding modifying
provided classes, methods and filenames.

Failure to adhere to this will result in a slowed marking process, which will be detrimental
to all. If you are in any doubt about whether a change or modification is acceptable, please
contact the teaching team.

 Marking Session

During the marking session (scheduled for Week 17), you may be expected to demonstrate
the functionality of each of these scripts, as directed by the teaching team. You will mainly
be assessed on functionality but expect to be able to walk-through and explain your code. As
we will also be providing you with a few small snippets of code (to use in your own

Practical 1 Network Application Development Lent Term, 2022-2023

SCC. 203 Computer Networks 5

solution), you will not be expected to explain these in great detail. However, a general
understanding of how these functions work will be beneficial to your overall learning and
comprehension. There will also be a small proportion of marks available for a consistent
code style and useful commenting. Resilient code, using try and except statements to

catch errors is also preferred, and will be rewarded accordingly.

Practical 1 Network Application Development Lent Term, 2022-2023

SCC. 203 Computer Networks 6

 Task 1.1: ICMP Ping

The first task is to recreate the ping client discussed in Lecture 3: Delay, Loss & Throughput.

Remember that ping is a tool used to measure delay and loss in computer networks. It

does this by sending messages to another host. Once a message has reached that host, it is
sent back to the sender. By measuring the amount of time taken to receive that response, we
can determine the delay in the network. Similarly, by tracking the responses returned from
our messages, we can determine if any have been lost in the network.

ping traditionally uses Internet Control Message Protocol (ICMP) messages to achieve this

behaviour. More details can be found in RFC792. For this task, we will be sending echo request
messages (with an ICMP type code of 8). These requests are useful to us because on reaching
the client, the client will respond with an echo reply message (with an ICMP type code of 0).
By timing the period of time elapsed between sending the request and receiving the reply,
we can accurately determine the network delay between the two hosts.

Remember, you are recreating ping without the use of external libraries; they are explicitly

prohibited!

 Implementation Tips

There are a number of aspects to consider when writing your implementation. Carefully think
about the logic required; use a whiteboard if need be. A ping client sends one ICMP echo

request message at a time and waits until it receives a response. Measuring the time between
sending the message and receiving it will give us the network delay incurred in transit.
Repeating this process provides us with a number of delay measurements over time, showing
any deviation that may occur.

To assist you in your implementation, we have provided pseudocode for this task. This can
be found in the provided code, specifically in the ICMPPing class. It contains suggested

functions, as well as an overview of functionality to be implemented by each. These are
given as comments and are to be treated as guidance only. Note that you may have to
change the parameters passed to each function as you advance with the task. The following
Python libraries might also be useful to your implementation:

https://docs.python.org/3/library/socket.html
https://docs.python.org/3/library/struct.html
https://docs.python.org/3/library/time.html
https://docs.python.org/3/library/select.html
https://docs.python.org/3/library/binascii.html

It is possible to use both socket.SOCK_RAW and socket.SOCK_DGRAM when creating

sockets. SOCK_RAW requires privileges, as it gives you a huge amount of control and power

over the type and content of packets sent through it (for better or worse!). As such, it requires
sudo to work.

In normal circumstances, a non-privileged version would probably be preferable; you don't

https://tools.ietf.org/html/rfc792
https://docs.python.org/3/library/socket.html
https://docs.python.org/3/library/struct.html
https://docs.python.org/3/library/time.html
https://docs.python.org/3/library/select.html
https://docs.python.org/3/library/binascii.html

Practical 1 Network Application Development Lent Term, 2022-2023

SCC. 203 Computer Networks 7

always have privileges on a system. This is where SOCK_DGRAM comes in. However, it appears

that SOCK_DGRAM, when used to specifically to send ICMP packets, is also a privileged

operation within some flavours of Linux (and on the provided VM).

For the purposes of this practical, it is therefore recommended that you use SOCK_RAW,

and run your Python using sudo privileges.

We have provided you with a checksum function (included in the NetworkApplication

parent class) which can be freely used in your solutions without penalty. It is important that
when passing a packet to this function, the checksum field must contain a dummy value of 0.
Once the checksum has been calculated, it can be immediately inserted in the packet to send.

The ICMP header contains both an identifier and a sequence number. These can be used by
your application to match an echo request with its corresponding echo reply. It is also worth
noting that the data included in an echo request packet will be included in its entirety within the
corresponding echo reply. Use these features to your advantage.

Be warned that some servers will reject ICMP requests with an identifier of 0, so ensure
that this is set to a value > 0.

Please ensure that the printOneResult and printAdditionalDetails methods

(and only these methods) are used for reporting the results.

 Debugging and Testing

In theory, any host, whether this be a PC, laptop, phone or server, should respond to a ping
message generated by your application. However, in reality, this is not always the case, as
both networks and hosts can choose to disregard these packets and may do so for a number
of reasons (including security). For the purposes of this task, using any well-known server is
acceptable. As an example, the following popular sites will respond to an echo request:
lancaster.ac.uk, google.com, or bbc.co.uk. These will all return with relatively low delays. To
rigorously test your application, using servers located further afield will usually return larger
delays. For example, the US Department of Education (www.ed.gov) can be queried.

To confirm that the server you have chosen to test with does in fact respond to ICMP echo
request messages, feel free to use the existing built-in ping tool to verify reachability.

Once you are sending packets, you can use the Wireshark tool to inspect these. Wireshark
will also let you investigate the packets that you receive back. In both cases, it provides a
useful method to ensure that these contain the expected information. This is a very useful
tool for debugging, especially if you are getting unexpected errors; this will show exactly
what is being sent from your script. Wireshark is installed in the virtual machine and can be
started from the graphical interface. Once started, you can capture packets on the eth0

interface (as highlighted in Figure 1). It may also be useful to filter packets to icmp only,

using the filter bar found towards the top of the interface (also highlighted in Figure 1).

Practical 1 Network Application Development Lent Term, 2022-2023

SCC. 203 Computer Networks 8

Figure 1: Wireshark Interface

 Completion Criteria

For this task, we are looking for a functioning replica of the ping tool. That is, you can

successfully send and receive ICMP echo messages, timing the delay between. This is then
reported in the terminal window. Your application should continue to perform these
measurements until stopped.

If you are unsure about the accuracy of the delay measured by your own tool, use the built-
in ping tool to confirm your results. We are not expecting the results to be perfectly

identical (delay changes all the time) but showing that they are close is expected.

Potential additional features include:

• Once stopped, show minimum, average and maximum delay across all measurements

(use printAdditionalDetails method)

• Configurable measurement count, set using an optional argument (use count
positional argument)

• Configurable timeout, set using an optional argument (use timeout positional

argument)

• Measuring and reporting packet loss, including unreachable destinations (use

printAdditionalDetails method)

Practical 1 Network Application Development Lent Term, 2022-2023

SCC. 203 Computer Networks 9

• Handling different ICMP error codes, such as Destination Host Unreachable and
Destination Network Unreachable

As with the rest of this task, you do not have to completely implement these features, as no
marks will be awarded for Task 1.1. The features listed above may assist you in Tasks
1.2 and 1.3 though; they are intentionally challenging and designed to stretch you.

Practical 1 Network Application Development Lent Term, 2022-2023

SCC. 203 Computer Networks 10

 Task 1.2: Traceroute

Building on Task 1.1, the second aspect of this task is to recreate the traceroute tool,

again in Python. As discussed in Lecture 3: Delay, Loss & Throughput, this is used to measure
latency between the host and each hop along the route to a destination. This too uses an
ICMP echo request message, but with an important modification: the Time To Live (TTL)
value is initially set to 1. This ensures that we get a response from the first hop; the network
device closest to the host we are running the script on. When the message arrives at this
device, the TTL counter is decremented. When it reaches 0 (in this case at the first hop), the
message is returned to the client with an ICMP type of 11. This indicates that TTL has been
exceeded. As with the previous task, by measuring the time taken to receive this response,
delay can be calculated at each hop in the network. This process can be repeated, increasing
the TTL each time, until we receive an echo reply back (with an ICMP type of 0). This tells
us that we have reached the destination, so we can stop the script.

 Implementation Tips

As with the previous task, make sure you think carefully about the logic here. Remember you
can build upon your Task 1.1 implementation.

As before, the provided checksum function included in the skeleton code can be used without
a penalty.

The same Python documentation as noted in Task 1.1 will be useful for this task too. Of
particular note is the socket.setsockopt(level, optname, value) function,

which can be used to set the TTL of a socket (and thus the packets leaving it):

https://docs.python.org/3/library/socket.html#socket.socket.setsockopt

For this task, we rely on ICMP Type 11 error messages (TTL Exceeded). Unlike Type 0
messages (Echo Reply), these do not contain an identifier field in the response. Any checking
you might do in respect to this identifier will therefore fail (as it is not present).

Please ensure that all code pertaining to this task is included in the Traceroute class.

 Debugging and Testing

As with the previous task, every host on the path to your chosen destination should respond
to your echo request message. In reality, these messages are often filtered, including within the
lab network. As a result, it is especially difficult to test this tool with a remote host. Instead,
it is suggested that you test with a closer endpoint that is reachable: lancaster.ac.uk.
Although the number of hops is small (~5), it can still be used to demonstrate the working of
your application. If you run your script whilst attached to a different network, such as that
at home, your results likely differ. You will also be able to reach external hosts more easily.

https://docs.python.org/3/library/socket.html#socket.socket.setsockopt

Practical 1 Network Application Development Lent Term, 2022-2023

SCC. 203 Computer Networks 11

The traceroute utility can be used to confirm the results generated by your own

application. This is installed on the virtual machine if you wish to use it. Be aware that by
default, this tool actually sends messages over UDP instead of ICMP; this is done to avoid the
blocking discussed earlier. To force traceroute to send packets using ICMP, the -I flag

can be used. See the Linux man page for more details:

https://linux.die.net/man/8/traceroute

As with Task 1.1, Wireshark can be used to inspect the packets leaving your application.
Comparing these to those created using the traceroute utility will provide you with a

meaningful comparison.

Task 1.3: Paris-Traceroute

A well-known limitation of trace route is that it may indicate a path that does not actually
exist in the presence of “load-balancers” in the network. Consider the example below where
a source host Src sends traceroute traffic to a destination host Dst.

Today, most commercial routers have load balancing capabilities. If this capability is enabled,

a router acts as a load balancer. In the example above, node L is a load-balancer. A load-
balancer splits incoming traffic across a set of outgoing interfaces. In the above example, L
splits incoming packets (from Src) with destination Dst across two interfaces: the outgoing
interface facing node A and the outgoing interface facing node B.

A load-balancer typically uses flow-based splitting of traffic, which uses the same output
interface for the packets that have the same “flow identifier”; that is, the 5-tuple: 1) IP
source address, 2) IP destination address, 3) protocol, 4) source port and 5) destination port.
When flow-based splitting is applied to a traceroute traffic between two hosts, each packet
can be assigned to a different path, because the traceroute tool changes the flow identifiers
(in particular, the destination port) of subsequent packets sent to each hop. As a result, the
traceroute tool incorrectly conclude “false links” between nodes.

https://linux.die.net/man/8/traceroute

Practical 1 Network Application Development Lent Term, 2022-2023

SCC. 203 Computer Networks 12

In the example above, L forwards the trace-route packets with TTL=2 to A, and then the
packets with TTL=3 to D. This leads the source to incorrectly conclude that there is a link
from A to D (i.e., false link).

Paris-traceroute is a modified traceroute that does not modify the flow identifiers of
subsequent packets (unlike traceroute), and therefore a paris-traceroute traffic between the
same source and destination should follow the same path even in the presence of flow-based
splitting of traffic by the load-balancers.

For this task, you are expected to recreate the paris-traceroute tool. You can build upon your
Task 1.2 implementation. You are strongly advised to capture the traffic generated by the
paris-traceroute tool with WireShark to inspect the packets generated by this tool.

 Marking Criteria

The majority of marks will be awarded for ensuring that your implementation behaves in a

way similar to the paris-traceroute utility. This includes providing three delay

measurements for each node (i.e., for each TTL) between your machine and the chosen
destination host. You are expected to increase the TTL of each message, until you reach the
final destination, as similarly done for the original trace-route.

Additional marks will be awarded for the following aspects:

• Measuring and reporting packet loss, including unreachable destinations (use

printAdditionalDetails method)

• Repeated measurements for each node (you can present these either as separate

results using the printOneResult method, or use the printMultipleResults to

display all measurements for each hop at once)

• Configurable timeout, set using an optional argument (use timeout positional

argument)

• Configurable protocol (UDP or ICMP), set using an optional argument (use

protocol positional argument)

• Resolve the IP addresses found in the responses to their respective hostnames (see
optional destinationHostname variable in printOneResult method)

As before, please note that the features mentioned above are considered supplementary;
you do not have to complete them all, and you can still receive a satisfactory mark without
completing any of them. They are intentionally challenging and designed to stretch you.

Practical 1 Network Application Development Lent Term, 2022-2023

SCC. 203 Computer Networks 13

 Task 2.1: Web Server

For the second task of this practical, you will be building a simple HTTP web server. Web
Servers are a fundamental part of the Internet; they serve the web pages and content that
we are all familiar with. You will be learning more about web servers and the operation of
the HTTP protocol in Lecture 6: Web & HTTP. Fundamentally, a web server receives a HTTP
GET request for an object (usually a file), located on the web server. Once it receives this
request, the web server will respond by returning this object back to the requester.

As with the previous task, we will be using network sockets to build our application and to
interact with the network. The Web Server differs from the ICMP Ping application in that it
will bind to an explicit socket, identified by a port number. This allows the Web Server to
listen constantly for incoming requests, responding to each in turn. HTTP traffic is usually
bound for port 80, with port 8080 a frequently used alternative. For the purposes of this
application, we suggest you bind to a high numbered port above 1024; these are unprivileged
sockets, which reduces the likelihood of conflict with existing running services on the virtual
machine. For interest, application developers can register port numbers with the Internet
Assigned Numbers Authority (IANA), reserving them for their application’s use:

https://www.iana.org/assignments/service-names-port-numbers/service-names-port-
numbers.xhtml

The application you build should respond to HTTP GET requests, and should be built to
HTTP/1.1 specification, as defined in RFC2616. These requests will contain a Request-URI,
which is used to define the path to the object requested. For example, a request with a URI
of 127.0.0.1:8080/index.html, will serve a file name index.html found in the

same directory as the Python script itself. The URI is broken down as follows:

• 127.0.0.1: Hostname of web server

• 8080: Port number that web server has bound to

• index.html: File to be served

On successfully finding and loading the file, it will be sent back to client with the appropriate
header. This will contain the Status-Code 200, meaning that the file has been found OK, and
that it will be delivered to the client as expected. Your implementation needs only serve
files from the same directory in which the Python script is executed.

 Implementation Tips

As before, we have provided pseudocode that can be used to aid you in this task. This can be
found in the provided code, specifically in the WebServer class. It contains suggested a

suggested function, as well as an overview of functionality to be implemented. This is given
as comments and are to be treated as guidance only. Note that you may have to change
the parameters passed to each function as you advance with the task. An example HTML file
(index.html) is also provided in the same location. The following Python library and its

documentation may also serve as a pointer to helpful functions:

https://docs.python.org/3/library/socket.html

https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://tools.ietf.org/html/rfc2616
https://docs.python.org/3/library/socket.html

Practical 1 Network Application Development Lent Term, 2022-2023

SCC. 203 Computer Networks 14

https://docs.python.org/3/library/socketserver.html

As a baseline, your implementation needs only to be single-threaded. This allows a
maximum of one request to be handled at a time.

 Debugging and Testing

To test your web server application, you must generate a valid request. There are a number
of tools to achieve this. For example, the curl utility can be used to generate a request

(presuming your web server is running on port 8080):

curl 127.0.0.1:8080/index.html

An equally valid method is to use a web browser, such as the Chromium Web Browser installed
on the virtual machine. Simply point the browser to the same URL:

127.0.0.1:8080/index.html

If you are unsure about what a HTTP request should look like, Wireshark can again be used
to inspect packets. This includes both the HTTP request and response. This will help you
debugging the form and structure of your requests, identifying any issues that may be
present. If you are still using Wireshark from the previous task, make sure to remove the
icmp filter! http can be used instead. It will also be necessary to capture packets on the

loopback interface (lo), rather than the external interface (eth0).

If you wish to observe how a Web Server should behave (and examine the packets generated
by such), Python provides a handy way of starting a very simple HTTP server implementation:

python3.11 -m http.server --protocol HTTP/1.1 6789

The above example works in Python version 3.11. You can specify the port number for the
simple HTTP server runs on. In the above example, port 6789 is provided. Using python version
3.11, you can also specify the http protocol version (HTTP/1.1 in the example above). Requests
to this server can be made using the methods described previously.

 Completion Criteria

For this task, you expected to build a functioning Web Server, capable of handling requests
for content. You should be able to demonstrate that, given a request, the Web Server will
return the correct file, as well as producing a well-formed response header with protocol
version and response code set correctly.

Potential additional features include:

• Binding the Web Server to a configurable port, defined as an optional argument (use

port positional argument)

• When a requested file is not available on the server, return a response with the
status code Not Found (404)

• Create a multithreaded server implementation, capable of handling multiple
concurrent connections

https://docs.python.org/3/library/socketserver.html

Practical 1 Network Application Development Lent Term, 2022-2023

SCC. 203 Computer Networks 15

As with the rest of this task, you do not have to completely implement these features, as no
marks will be awarded for Task 2.1. The features listed above may assist you in Task
2.2 though; they are intentionally challenging and designed to stretch you.

Practical 1 Network Application Development Lent Term, 2022-2023

SCC. 203 Computer Networks 16

Task 2.2: Web Proxy

Building on the Web Server described in Task 2.1, this task is concerned with building a
Web Proxy. This operates in much the same way as a web server, with one significant
difference: once configured to use the Proxy Cache application, a client will make all
requests for content via this proxy. Normally, when we make a request (without a Web
Proxy), the requests travels from the host machine to the destination. The Web Server
then processes the request and sends back a response message to the requesting client.

However, when we use a Web Proxy, we place this additional application between the
client and the web server. Now, both the request message sent by the client, and the
response message delivered by the web server, pass through the Web Proxy. In other
words, the client requests the objects via the Web Proxy. The Web Proxy will forward the
client’s request to the web server. The web server will then generate a response message
and deliver it to the proxy server, which in turn sends it to the client. The message flow is
as below:

Request Request

As with the Web Server, your Web Proxy application is only expected to handle HTTP/1.1
GET requests. Similarly, the Web Proxy will also bind to a specific port (this can be the
same as the Web Server) and continue to listen on this port until stopped.

Please ensure that all code pertaining to this task is included in the Proxy class.

 Debugging and Testing

As with Task 2.1, there are a number of ways to test your Web Proxy. For example, to
generate requests using curl, we can use the following:

curl neverssl.com --proxy 127.0.0.1:8000

This assumes that the Web Proxy is running on the local machine and bound to port 8000.
In this case, the URL requested from the proxy is neverssl.com.

A caveat when testing your Web Proxy: some websites have enabled HTTP Strict Transport
Security (HSTS) (RFC6797). This forces clients (including both curl and a web browser) to

use HTTPS rather than HTTP. HTTPS is a secure version of HTTP, but we will consider this
out of scope for this practical.

Thanks to the proliferation of HTTPS (this is a good thing, just not for this practical!) the list
of live websites that you can test the Proxy with is quite limited. A few include:

Client

Proxy

Server

Response Response

https://tools.ietf.org/html/rfc6797

SCC. 203 Computer Networks 17

• http://neverssl.com (see above)

• http://captive.apple.com

It is also possible to run a webserver locally on your virtual machine and test it from that.
This could be your web server implementation from Task 2.1. Alternatively, Python also
has a simple-to-use implementation, that can be run directly from the terminal:
https://docs.python.org/3/library/http.server.html

As with the other tasks, Wireshark can also be used to capture and investigate packets
sent to and from your proxy. As the proxy will be receiving local requests from the web
browser, as well as making external requests to fetch content, it is necessary to capture
packets on both the external (eth0) and loopback (lo) interfaces.

 Marking Criteria

For this task, the majority of marks will be awarded for demonstrating a working Web
Proxy. You are expected to show the functionality of such using curl. Note that you

are not expected to demonstrate the Web Proxy using a website with HSTS enabled
(see above).

Additional marks will be awarded for the following aspects:

• Binding the Web Proxy to a configurable port, defined as an optional argument (use

port positional argument)

• Support for other HTTP request types (PUT, DELETE, etc.)

• This can be tested using the postman-echo service, details of which can
be found here: https://docs.postman-echo.com/?version=latest

• Object caching: A typical Web Proxy will cache the web pages each time the
client makes a particular request for the first time. The basic functionality of
caching works as follows. When the proxy gets a request, it checks if the
requested object is cached, and if yes, it returns the object from the cache,
without contacting the server. If the object is not cached, the proxy retrieves the
object from the server, returns it to the client and caches a copy for future
requests. In practice, the proxy server must verify that the cached responses are
still valid and that they are the correct responses to the client's requests. You
can read more about caching and how it is handled in HTTP in RFC2068. Add
the simple caching functionality described above. You do not need to implement
any replacement or validation policies. Your implementation, however, will need
to be able to write responses to the disk (i.e., the cache) and fetch them from
the disk when you get a cache hit. For this you need to implement some internal
data structure in the proxy to keep track of which objects are cached and where
they are on the disk. You can keep this data structure in main memory; there is
no need to make it persist.

As before, please note that the features mentioned above are considered
supplementary; you do not have to complete them all, and you can still receive a
satisfactory mark without completing any of them. They are intentionally challenging and
designed to stretch you.

http://neverssl.com/
http://captive.apple.com/
https://docs.python.org/3/library/http.server.html
https://docs.postman-echo.com/?version=latest
https://www.ietf.org/rfc/rfc2068.txt

	Coursework Weight: 60%
	Practical Lab Structure
	Running the Code Locally
	Using a Remote Instance of the Virtual Machine
	Provided/Skeleton Code
	Running your Python script
	Python Library Usage
	Submission and Assessment
	Automated Testing
	Marking Session

	Task 1.1: ICMP Ping
	Implementation Tips
	Debugging and Testing
	Completion Criteria

	Task 1.2: Traceroute
	Implementation Tips
	Debugging and Testing
	Marking Criteria

	Task 2.1: Web Server
	Implementation Tips
	Debugging and Testing
	Completion Criteria

	Task 2.2: Web Proxy
	Debugging and Testing
	Marking Criteria

