
INT3075 Programming and Problem

Solving for Mathematics

Introduction to Classes

1

Code Listing

L12-1.py

First Class

2

What is a class?

• If you have done anything in computer

science before, you likely will have heard

the term object-oriented programming

(OOP)

• What is OOP, and why should I care?

4

Short answer

• The short answer is that object oriented

programming is a way to think about

“objects” in a program (such as variables,

functions, etc)

• A program becomes less a list of

instruction and more a set of objects and

how they interact

5

Responding to “messages”

• As a set of interacting objects, each object

responds to “messages” sent to it

• The interaction of objects via messages

makes a high-level description of what the

program is doing.

Start!

6

Everything in Python is an object

• in case you hadn't noticed, everything in

Python is an object

• Thus Python embraces OOP at a

fundamental level

7

type vs class

There is a strong similarity between a type

and a Python class

• seen many types already: list, dict,

str, …

• suitable for representing different data

• respond to different messages regarding

the manipulation of that data

8

OOP helps for software engineering

• software engineering (SE) is the
discipline of managing code to ensure its
long-term use

• rememember, SE via refactoring

• refactoring:

– takes existing code and modifies it

– makes the overall code simpler, easier to
understand

– doesn't change the functionality, only the
form!

9

More refactoring

• Hiding the details of what the message

entails means that changes can be made

to the object and the flow of messages

(and their results) can stay the same

• Thus the implementation of the message

can change but its intended effect stay the

same.

• This is encapsulation

10

OOP principles

• encapsulation: hiding design details to make

the program clearer and more easily modified

later

• modularity: the ability to make objects stand

alone so they can be reused (our modules). Like

the math module

• inheritance: create a new object by inheriting

(like father to son) many object characteristics

while creating or over-riding for this object

• polymorphism: (hard) Allow one message to be

sent to any object and have it respond

appropriately based on the type of object it is.
11

Class versus instance

• One of the harder things to get is what a

class is and what an instance of a class is.

• The analogy of the cookie cutter and a

cookie.

12

Template vs exemplar

• The cutter is a template for stamping out

cookies, the cookie is what is made each

time the cutter is used

• One template can be used to make an

infinite number of cookies, each one just

like the other.

• No one confuses a cookie for a cookie

cutter, do they?

13

Same in OOP

• You define a class as a way to generate

new instances of that class.

• Both the instances and the classes are

themselves objects

• the structure of an instance starts out the

same, as dictated by the class.

• The instances respond to the messages

defined as part of the class.

14

Why a class

• We make classes because we need more

complicated, user-defined data types to

construct instances we can use.

• Each class has potentially two aspects:

– the data (types, number, names) that each

instance might contain

– the messages that each instance can respond

to.

15

A First Class

16

Standard Class Names

The standard way to name a class in Python

is called CapWords:

• Each word of a class begins with a Capital

letter

• no underlines

• sometimes called CamelCase

• makes recognizing a class easier

17

dir() function

The dir() function lists all the attributes of

a class

• you can think of these as keys in a

dictionary stored in the class.

19

pass keyword

Remember, the pass keyword is used to

signify that you have intentionally left some

part of a definition (of a function, of a class)

undefined

• by making the suite of a class undefined,

we get only those things that Python

defines for us automatically

20

Constructor

• When a class is defined, a function is

made with the same name as the class

• This function is called the constructor. By

calling it, you can create an instance of the

class

• We can affect this creation (more later),

but by default Python can make an

instance.

22

dot reference

• we can refer to the attributes of an object

by doing a dot reference, of the form:

object.attribute

• the attribute can be a variable or a function

• it is part of the object, either directly or by

that object being part of a class

23

examples

print(my_instance.my_val)

print a variable associated with the object
my_instance

my_instance.my_method()

call a method associated with the object
my_instance

variable versus method, you can tell by the

parenthesis at the end of the reference

24

How to make an object-local

value
• once an object is made, the data is made

the same way as in any other Python

situation, by assignment

• Any object can thus be augmented by

adding a variable

my_instance.attribute = 'hello'

25

New attribute shown in dir

dir(my_instance)

– ['__class__', '__delattr__', '__dict__', '__doc__',

'__format__', '__getattribute__', '__hash__',

'__init__', '__module__', '__new__', '__reduce__',

'__reduce_ex__', '__repr__', '__setattr__',

'__sizeof__', '__str__', '__subclasshook__',

'__weakref__', attribute]

26

Class instance relationship

27

Instance knows its class

• Because each instance has as its type the

class that it was made from, an instance

remembers its class

• This is often called the instance-of

relationship

• stored in the __class__ attribute of the

instance

28

Scope

• It works differently in the class system,

taking advantage of the instance-of

relationship

31

Part of the Object Scope Rule

The first two rules in object scope are:

1.First, look in the object itself

2.If the attribute is not found, look up to the

class of the object and search for the

attribute there.

32

Methods

35

Code Listing

L12-2.py

36

method versus function

• discussed before, a method and a function

are closely related. They are both “small

programs” that have parameters, perform

some operation and (potentially) return a

value

• main difference is that methods are

functions tied to a particular object

38

difference in calling

functions are called, methods are called in the

context of an object:

•function:

do_something(param1)

•method:

an_object.do_something(param1)

This means that the object that the method is

called on is always implicitly a parameter!

39

difference in definition

• methods are defined inside the suite of a class

• methods always bind the first parameter in the

definition to the object that called it

• This parameter can be named anything, but

traditionally it is named self

class MyClass(object):

def my_method(self,param1):

suite

40

more on self

• self is an important variable. In any

method it is bound to the object that called

the method

• through self we can access the instance

that called the method (and all of its

attributes as a result)

41

Back to the example

42

Binding self

43

self is bound for us

• when a dot method call is made, the object

that called the method is automatically
assigned to self

• we can use self to remember, and

therefore refer, to the calling object

• to reference any part of the calling object,
we must always precede it with self.

• The method can be written generically,
dealing with calling objects through self

44

Writing a class

45

Code Lisitng

L12-3.py

46

Python Standard Methods

Python provides a number of standard

methods which, if the class designer

provides, can be used in a normal "Pythony"

way

• many of these have the double underlines

in front and in back of their name

• by using these methods, we "fit in" to the

normal Python flow

48

Standard Method: Constructor

• Constructor is called when an instance is

made, and provides the class designer the

opportunity to set up the instance with

variables, by assignment

49

calling a constructor

As mentioned, a constructor is called by

using the name of the class as a function

call (by adding () after the class name)

student_inst = Student()

• creates a new instance using the
constructor from class Student

50

defining the constructor

• one of the special method names in a
class is the constructor name, __init__

• by assigning values in the constructor,

every instance will start out with the same

variables

• you can also pass arguments to a

constructor through its init method

51

Student constructor

def __init__(self,first='', last='', id=0):

self.first_name_str = first

self.last_name_str = last

self.id_int = id

• self is bound to the default instance as it is being made

• If we want to add an attribute to that instance, we modify
the attribute associated with self.

52

example

s1 = Student()

print(s1.last_name_str)

s2 = Student(last='Python', first='Monty')

print(s2.last_name_str)

Python

53

default constructor

• if you don't provide a constructor, then

only the default constructor is provided

• the default constructor does system stuff

to create the instance, nothing more

• you cannot pass arguments to the default

constructor.

55

Every class should have __init__

• By providing the constructor, we ensure

that every instance, at least at the point of

construction, is created with the same

contents

• This gives us some control over each

instance.

56

__str__, printing

• When print(my_inst)called, it is assumed, by Python, to be

a call to “convert the instance to a string”, which is the __str__
method

• In the method, my_inst is bound to self, and printing then

occurs using that instance.

• __str__ must return a string!

57

Now there are three

There are now three groups in our coding

scheme:

– user

– programmer, class user

– programmer, class designer

58

Class designer

• The class designer is creating code to be

used by other programmers

• In so doing, the class designer is making a

kind of library that other programmers can

take advantage of

59

Code listings

L12-4.py – L12-7.py

Point Class

60

OOP helps software engineering

• software engineering is the discipline of

managing code to ensure its long-term use

• rememember, SE via refactoring

• refactoring:

– takes existing code and modifies it

– makes the overall code simpler, easier to

understand

– doesn't change the functionality, only the

form!

61

More refactoring

• Hiding the details of what the message

entails means that changes can be made

to the object and the flow of messages

(and their results) can stay the same

• Thus the implementation of the message

can change but its intended effect stay the

same.

• This is encapsulation

62

OOP principles (again)

• encapsulation: hiding design details to make the

program clearer and more easily modified later

• modularity: the ability to make objects “stand alone” so

they can be reused (our modules). Like the math module

• inheritance: create a new object by inheriting (like father

to son) many object characteristics while creating or

over-riding for this object

• polymorphism: (hard) Allow one message to be sent to

any object and have it respond appropriately based on

the type of object it is.

63

We are still at encapsulation

• We said that encapsulation:

• hid details of the implementation so that

the program was easier to read and write

• modularity, make an object so that it can

be reused in other contexts

• providing an interface (the methods) that

are the approved way to deal with the

class

64

Private values

65

class namespaces are dicts

• the namespaces in every object and

module is indeed a dictionary

• that dictionary is bound to the special
variable __dict__

• it lists all the local attributes (variables,

functions) in the object

66

private variables in an instance

• many OOP approaches allow you to make

a variable or function in an instance

private

• private means not accessible by the class

user, only the class developer.

• there are advantages to controlling who

can access the instance values

67

privacy in Python

• Python takes the approach “We are all

adults here”. No hard restrictions.

• Provides naming to avoid accidents. Use
__ (double underlines) in front of any

variable

• this mangles the name to include the

class, namely __var becomes _class__var

• still fully accessible, and the __dict__
makes it obvious

68

Code listings

L12-8.py

Privacy Example

69

privacy example

70

