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Code Listing 
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What is a class?

• If you have done anything in computer 

science before, you likely will have heard 

the term object-oriented programming 

(OOP)

• What is OOP, and why should I care?
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Short answer

• The short answer is that object oriented 

programming is a way to think about 

“objects” in a program (such as variables, 

functions, etc)

• A program becomes less a list of 

instruction and more a set of objects and 

how they interact
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Responding to “messages”

• As a set of interacting objects, each object 

responds to “messages” sent to it

• The interaction of objects via messages 

makes a high-level description of what the 

program is doing.

Start!
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Everything in Python is an object

• in case you hadn't noticed, everything in 

Python is an object

• Thus Python embraces OOP at a 

fundamental level
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type vs class

There is a strong similarity between a type 

and a Python class

• seen many types already: list, dict, 

str, …

• suitable for representing different data

• respond to different messages regarding 

the manipulation of that data 
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OOP helps for software engineering

• software engineering (SE) is the 
discipline of managing code to ensure its 
long-term use

• rememember, SE via refactoring

• refactoring:

– takes existing code and modifies it

– makes the overall code simpler, easier to 
understand

– doesn't change the functionality, only the 
form!
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More refactoring

• Hiding the details of what the message 

entails means that changes can be made 

to the object and the flow of messages 

(and their results) can stay the same

• Thus the implementation of the message 

can change but its intended effect stay the 

same.

• This is encapsulation
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OOP principles

• encapsulation: hiding design details to make 

the program clearer and more easily modified 

later

• modularity: the ability to make objects stand 

alone so they can be reused (our modules). Like 

the math module

• inheritance: create a new object by inheriting 

(like father to son) many object characteristics 

while creating or over-riding for this object

• polymorphism: (hard) Allow one message to be 

sent to any object and have it respond 

appropriately based on the type of object it is.
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Class versus instance

• One of the harder things to get is what a 

class is and what an instance of a class is.

• The analogy of the cookie cutter and a 

cookie.
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Template vs exemplar

• The cutter is a template for stamping out 

cookies, the cookie is what is made each 

time the cutter is used

• One template can be used to make an 

infinite number of cookies, each one just 

like the other.

• No one confuses a cookie for a cookie 

cutter, do they?
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Same in OOP

• You define a class as a way to generate 

new instances of that class.

• Both the instances and the classes are 

themselves objects

• the structure of an instance starts out  the 

same, as dictated by the class.

• The instances respond to the messages 

defined as part of the class.
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Why a class

• We make classes because we need more 

complicated, user-defined data types to 

construct instances we can use.

• Each class has potentially two aspects:

– the data (types, number, names) that each 

instance might contain

– the messages that each instance can respond 

to.
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A First Class

16



Standard Class Names

The standard way to name a class in Python 

is called CapWords:

• Each word of a class begins with a Capital 

letter

• no underlines

• sometimes called CamelCase

• makes recognizing a class easier
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dir() function

The dir() function lists all the attributes of 

a class

• you can think of these as keys in a 

dictionary stored in the class.
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pass keyword

Remember, the pass keyword is used to 

signify that you have intentionally left some 

part of a definition (of a function, of a class) 

undefined

• by making the suite of a class undefined, 

we get only those things that Python 

defines for us automatically
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Constructor

• When a class is defined, a function is 

made with the same name as the class

• This function is called the constructor. By 

calling it, you can create an instance of the 

class

• We can affect this creation (more later), 

but by default Python can make an 

instance.
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dot reference

• we can refer to the attributes of an object 

by doing a dot reference, of the form:

object.attribute

• the attribute can be a variable or a function

• it is part of the object, either directly or by 

that object being part of a class
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examples

print(my_instance.my_val)

print a variable associated with the object 
my_instance

my_instance.my_method()

call a method associated with the object 
my_instance

variable versus method, you can tell by the 

parenthesis at the end of the reference
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How to make an object-local 

value
• once an object is made, the data is made 

the same way as in any other Python 

situation, by assignment

• Any object can thus be augmented by 

adding a variable

my_instance.attribute = 'hello'
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New attribute shown in dir

dir(my_instance)

– ['__class__', '__delattr__', '__dict__', '__doc__', 

'__format__', '__getattribute__', '__hash__', 

'__init__', '__module__', '__new__', '__reduce__', 

'__reduce_ex__', '__repr__', '__setattr__', 

'__sizeof__', '__str__', '__subclasshook__', 

'__weakref__', attribute]
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Class instance relationship
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Instance knows its class

• Because each instance has as its type the 

class that it was made from, an instance 

remembers its class

• This is often called the instance-of 

relationship

• stored in the __class__ attribute of the 

instance

28







Scope

• It works differently in the class system, 

taking advantage of the instance-of 

relationship
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Part of the Object Scope Rule

The first two rules in object scope are:

1.First, look in the object itself

2.If the attribute is not found, look up to the 

class of the object and search for the 

attribute there.
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Methods
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Code Listing 

L12-2.py
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method versus function

• discussed before, a method and a function 

are closely related. They are both “small 

programs” that have parameters, perform 

some operation and (potentially) return a 

value

• main difference is that methods are 

functions tied to a particular object

38



difference in calling

functions are called, methods are called in the 

context of an object:

•function: 

do_something(param1)

•method: 

an_object.do_something(param1)

This means that the object that the method is 

called on is always implicitly a parameter!
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difference in definition

• methods are defined inside the suite of a class

• methods always bind the first parameter in the 

definition to the object that called it

• This parameter can be named anything, but 

traditionally it is named self

class MyClass(object):

def my_method(self,param1):

suite

40



more on self

• self is an important variable. In any 

method it is bound to the object that called 

the method

• through self we can access the instance 

that called the method (and all of its 

attributes as a result)
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Back to the example
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Binding self
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self is bound for us

• when a dot method call is made, the object 

that called the method is automatically 
assigned to self 

• we can use self to remember, and 

therefore refer, to the calling object

• to reference any part of the calling object, 
we must always precede it with self.

• The method can be written generically, 
dealing with calling objects through self
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Writing a class
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L12-3.py
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Python Standard Methods

Python provides a number of standard 

methods which, if the class designer 

provides, can be used in a normal "Pythony" 

way

• many of these have the double underlines 

in front and in back of their name

• by using these methods, we "fit in" to the 

normal Python flow
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Standard Method: Constructor

• Constructor is called when an instance is 

made, and provides the class designer the 

opportunity to set up the instance with 

variables, by assignment
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calling a constructor

As mentioned, a constructor is called by 

using the name of the class as a function 

call (by adding () after the class name)

student_inst = Student()

• creates a new instance using the 
constructor from class Student
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defining the constructor

• one of the special method names in a 
class is the constructor name, __init__

• by assigning values in the constructor, 

every instance will start out with the same 

variables

• you can also pass arguments to a 

constructor through its init method
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Student constructor

def __init__(self,first='', last='', id=0):

self.first_name_str = first

self.last_name_str = last

self.id_int = id

• self is bound to the default instance as it is being made

• If we want to add an attribute to that instance, we modify 
the attribute associated with self.
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example

s1 = Student()

print(s1.last_name_str)

s2 = Student(last='Python', first='Monty')

print(s2.last_name_str)

Python
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default constructor

• if you don't provide a constructor, then 

only the default constructor is provided

• the default constructor does system stuff 

to create the instance, nothing more

• you cannot pass arguments to the default 

constructor.
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Every class should have __init__

• By providing the constructor, we ensure 

that every instance, at least at the point of 

construction, is created with the same 

contents

• This gives us some control over each 

instance.
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__str__, printing

• When print(my_inst)called, it is assumed, by Python, to be 

a call to “convert the instance to a string”, which is the __str__
method

• In the method, my_inst is bound to self, and printing then 

occurs using that instance.

• __str__ must return a string!
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Now there are three

There are now three groups in our coding 

scheme:

– user

– programmer, class user

– programmer, class designer
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Class designer

• The class designer is creating code to be 

used by other programmers

• In so doing, the class designer is making a 

kind of library that other programmers can 

take advantage of
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Code listings 

L12-4.py – L12-7.py

Point Class
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OOP helps software engineering

• software engineering is the discipline of 

managing code to ensure its long-term use

• rememember, SE via refactoring

• refactoring:

– takes existing code and modifies it

– makes the overall code simpler, easier to 

understand

– doesn't change the functionality, only the 

form!
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More refactoring

• Hiding the details of what the message 

entails means that changes can be made 

to the object and the flow of messages 

(and their results) can stay the same

• Thus the implementation of the message 

can change but its intended effect stay the 

same.

• This is encapsulation
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OOP principles (again)

• encapsulation: hiding design details to make the 

program clearer and more easily modified later

• modularity: the ability to make objects “stand alone” so 

they can be reused (our modules). Like the math module

• inheritance: create a new object by inheriting (like father 

to son) many object characteristics while creating or 

over-riding for this object

• polymorphism: (hard) Allow one message to be sent to 

any object and have it respond appropriately based on 

the type of object it is.
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We are still at encapsulation

• We said that encapsulation:

• hid details of the implementation so that 

the program was easier to read and write

• modularity, make an object so that it can 

be reused in other contexts

• providing an interface (the methods) that 

are the approved way to deal with the 

class
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Private values
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class namespaces are dicts

• the namespaces in every object and 

module is indeed a dictionary

• that dictionary is bound to the special 
variable __dict__

• it lists all the local attributes (variables, 

functions) in the object
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private variables in an instance

• many OOP approaches allow you to make 

a variable or function in an instance 

private

• private means not accessible by the class 

user, only the class developer.

• there are advantages to controlling who 

can access the instance values
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privacy in Python

• Python takes the approach “We are all 

adults here”. No hard restrictions.

• Provides naming to avoid accidents. Use 
__ (double underlines) in front of any 

variable

• this mangles the name to include the 

class, namely __var becomes _class__var

• still fully accessible, and the __dict__
makes it obvious
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Code listings 

L12-8.py

Privacy Example
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privacy example
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