
INT3075 Programming and Problem 

Solving for Mathematics

More on Files and Exceptions
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What we already know

• Files are bytes on disk. Two types, text 

and binary (we are working with text)

• open creates a connection between the 

disk contents and the program

• different modes of opening a file, 'r', 'w', 'a'

• files might have different encodings 

(default is utf_8)

2



more of what we know

• all access, reading or writing, to a text file 

is by the use of strings

• iteration via a for loop gathers info from a 

file opened for reading one line at a time

• we write to a file opened for writing using 
the print function with an argument 

file=
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Code Listing 

L11-1.py

Review
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results, searching for "This"
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More ways to read

• my_file.read() 

– Reads the entire contents of the file as a 

string and returns it. It can take an optional 

argument integer to limit the read to N bytes, 

that is my_file.read(N)

• my_file.readline() 

– Delivers the next line as a string.

• my_file.readlines() # note plural

– Returns a single list of all the lines from the 

file
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example file

We'll work with a file called temp.txt which 

has the following file contents

First Line

Second Line

Third Line

Fourth Line
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More ways to write

• Once opened, you can write to a file (if the 

mode is appropriate):

• my_file.write(s) 

– Writes the string s to the file

• my_file.writelines(lst) 

– write a list of strings (one at a time) to the 

file
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Universal New Line
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Different OS's, different format

• Each operating system (Windows, OS X, 

Linux) developed certain standards for 

representing text

• In particular, they chose different ways to 

represent the end of a file, the end of a 

line, etc.
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Universal new line

• To get around this, Python provides by 

default a special file option to deal with 

variations of OS text encoding called 

Universal new line

• you can over-ride this with an option to 
open called newline=

– look at the docs for what this entails.
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Working with a file
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The current file position

• Every file maintains a current file 

position. 

• It is the current position in the file, and 

indicates what the file will read next

• Is set by the mode table above
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Remember the file object buffer

• When the disk file is opened, the contents 

of the file are copied into the buffer of the 

file object

• Think of the file object as a very big list, 

where every index is one of the pieces of 

information of the file

• The current position is the present index in 

that list
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the tell() method

• The tell() method tells you the current 

file position

• The positions are in bytes (think 

characters for UTF-8) from the beginning 

of the file

my_file.tell()  => 42L
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the seek() method

• the seek() method updates the current 

file position to a new file index (in bytes 

offset from the beginning of the file)

• fd.seek(0) # to the beginning of the file

• fd.seek(100)  # 100 bytes from beginning
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counting bytes is a pain

• counting bytes is a pain 

• seek has an optional argument set:

– 0: count from the beginning

– 1: count for the current file position

– 2: count from the end (backwards)
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every read moves current 

forward
• every read/readline/readlines moves the 

current pos forward

• when you hit the end, every read will just 
yield '' (empty string), since you are at 

the end

– no indication of end-of-file this way!

• you need to seek to the beginning to start 

again (or close and open, seek is easier)
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with statement

open and close occur in pairs (or should) 

so Python provides a shortcut, the with

statement

• creates a context that includes an exit 

which is invoked automatically

• for files, the exit is to close the file

with expression as variable:

suite
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File is closed automatically when 

the suite ends



read(size=1)

• you can use the read() method to read 

just one byte at a time, and in combination 
with seek move around the file and “look 

for things”. Once current is set, you can 

begin reading again
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More on CSV files
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spreadsheets

• The spreadsheet is a very popular, and 

powerful, application for manipulating data

• Its popularity means there are many 

companies that provide their own version 

of the spreadsheet

• It would be nice if those different versions 

could share their data
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CSV, basic sharing

• A basic approach to share data is the 

comma separated value (CSV) format

– it is a text format, accessible to all apps

– each line (even if blank) is a row

– in each row, each value is separated from the 

others by a comma (even if it is blank)

– cannot capture complex things like formula
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Spread sheet and corresponding CSV file



Even CSV isn't universal

• As simple as that sounds, even CSV 

format is not completely universal

– different apps have small variations

• Python provides a module to deal with 

these variations called the csv module

• This module allows you to read 

spreadsheet info into your program
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csv reader
• import the csv module

• open the file as normally, creating a file 

object.

• create an instance of a csv reader, used to 

iterate through the file just opened

– you provide the file object as an argument to 

the constructor

• iterating with the reader object yields a row 

as a list of strings
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Code Listing 

L11-2.py 

(and output)
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things to note

• Universal new line is working by default

– needed for this worksheet

• A blank line in the CSV shows up as an 

empty list

• empty column shows up as an empty 

string in the list
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csv writer

much the same, except:

• the opened file must have write enabled

• the method is writerow, and it takes a list 

of strings to be written as a row
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Code Listing 

L11-3.py

39

This code listing is a good example of reading, 

modifying and then writing out a CSV file that 

could be read by a spreadsheet



os module
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What is the os module

• The os module in Python is an interface 

between the operating system and the 

Python language.

• As such, it has many sub-functionalities 

dealing with various aspects.

• We will look mostly at the file related stuff
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What is a directory/folder?

• Whether in Windows, Linux or on OS X, all 

OS's maintain a directory structure.

• A directory is a container of files or other 

directories

• These directories are arranged in a 

hierarchy or tree
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Tree

• it has a root node, 

with branch

nodes, ends in 

leaf nodes

• the directory 

structure is 

hierarchy (tree)
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Directory tree

• Directories can be organized in a 

hierarchy, with the root directory and 

subsequent branch and leaf directories

• Each directory can hold files or other 

directories
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file path is a path through the 

tree
A path to a file is a path through the 

hierarchy to the node that contains a file

/gary/python/code/myCode.py

– path is from the root node /, to the bill 

directory, to the python directory, to the code 

directory where the file myCode.py resides

45



the / in a path

• think of / as an 

operator, showing 

something is a 

directory

• follow the path, the 

leaf is either a 

directory or file

/gary /hong

/

/python

/code
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a path String

• a valid path string for python is a string 

which indicates a valid path in the 

directory structure

• Thus '/Users/gary/python/code.py' is 

a valid path string
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different 'paths' for different os

• It turns out that each OS has its own way 

of specifying a path

– C:\gary\python\myFile.py

– /Users/gary/python/myFile.py

• Nicely, Python knows that and translates 

to the appropriate OS
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Two special directory names

• The directory name '.' is shortcut for the 

name of the current directory you are in as 

you traverse the directory tree

• The directory name '..' is a shortcut for 

the name of the parent directory of the 

current directory you are in
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Some os commands

• os.getcwd() Returns the full path of the 

current working directory

• os.chdir(path_str) Change the 

current directory to the path provided

• os.listdir(path_str) Return a list 

of the files and directories in the path 
(including '.')
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Some more os commands
• os.rename(source_path_str, 

dest_path_str) Renames a file or 

directory

• os.mkdir(path_str) make a new 

directory. So 
os.mkdir('/Users/bill/python/ne

w') creates the directory new under the 

directory python.

• os.remove(path_str)Removes the file

• os.rmdir(path_str) Removes the 

directory, but the directory must be empty
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the walk function

• os.walk(path_str) Starts at the 

directory in path_str. It yields three 

values:

– dir_name, name of the current directory

– dir_list, list of subdirectories in the 

directory

– files, list of files in the directory

• If you iterate through, walk will visit every 

directory in the tree. Default is top down
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Walk example
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os.path module
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os.path module

allows you to gather some info on a path's 
existence

• os.path.isfile(path_str) is this a 
path to an existing file (T/F)

• os.path.isdir(path_str) is this a 
path to an existing directory (T/F)

• os.path.exists(path_str) the path 
(either as a file or directory) exists (T/F)
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os.path names
assume p = '/Users/bill/python/myFile.py'

• os.path.basename(p) returns 'myFile.py'

• os.path.dirname(p) returns 

'/Users/bill/python'

• os.path.split(p) returns 

['Users/bill/python','myFile.py']

• os.path.splitext(p) returns 

'/Users/bill/python/myFile', '.py'

• os.path.join(os.path.split(p)[0],'other.

py') returns '/Users/bill/python/other.py'
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Code Listing 

L11-4.py
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Utility to find strings in files

• The main point of this function is to look 

through all the files in a directory structure 

and see if a particular string exists in any 

of those files

• Pretty useful for mining a set of files

• lots of comments so you can follow
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More Exceptions
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What we already know

try-except suite to catch errors:

try:

suite to watch

except ParticularError

error suite
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more of what we know

• try suite contains code that we want to 

watch:

– if an error occurs the try suite stops and looks 

for an except suite that can handle the error

• except suite has a particular error it can 

handle and a suite of code for handling 

that error
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Error Flow
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Code Listing 

L11-5.py
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Continuing …



Check for specific exceptions

• Turns out that you don’t have to check for 

an exception type. You can just have an 

exception without a particular error and it 

will catch anything

• That is a bad idea. How can you fix (or 

recover from) an error if you don’t know 

the kind of exception

• Label your exceptions, all that you expect!
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What exceptions are there?

• In the present Python, there is a set of 

exceptions that are pre-labeled.

• To find the exception for a case you are 

interested it, easy enough to try it in the 

interpreter and see what comes up

• The interpreter tells you what the 

exception is for that case.
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Examples

>>> 100/0

Traceback (most recent call last):

File "<pyshell#1>", line 1, in <module>

100/0

ZeroDivisionError: integer division or modulo by zero

>>> open('badFileName')

Traceback (most recent call last):

File "<pyshell#2>", line 1, in <module>

open('badFileName')

IOError: [Errno 2] No such file or directory: 'badFileName'

error

names

CAPS

matter!

71



Philosophy of Exception 

Handling
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Dealing with problems

Two ways to deal with exceptions

• LBYL: Look Before you Leap

• EAFP: Easier to Ask Forgiveness than 

Permission (famous quote by Grace 

Hopper)
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Look Before You Leap

• By this we mean that before we execute a 

statement, we check all aspects to make 

sure it executes correctly:

– if it requires a string, check that

– if it requires a dictionary key, check that

• Tends to make code messy. The heart of 

the code (what you want it to do) is hidden 

by all the checking.
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Easier to Ask Forgiveness than 

Permission

• By this we mean, run any statement you 

want, no checking required

• However, be ready to “clean up any 

messes” by catching errors that occur

• The try suite code reflects what you 

want to do and the except code what 

you want to do on error. Cleaner 

separation!
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Python likes EAFP

• Code Python programmers support the 

EAFP approach:

– run the code, let the except suites deal with 

the errors. Don’t check first.
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Code Listing 

L11-6.py
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Extensions to the basic 

Exception Model
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finally suite

• you can add a finally suite at the end 

of the try/except group

• the finally suite is run as you exit the 
try/except suite, no matter whether 

an error occurred or not. 

– even if an exception raised in the try suite 

was not handled!

• Gives you an opportunity to clean up as 
you exit the try/except group
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finally and with

finally is related to a with statement:

• creates a context (the try suite)

• has an exit, namely execute the finally

suite
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else

• One way to think about things is to think of 
the try as a kind of condition (an 

exception condition) and the excepts as 

conditional clauses

• if an exception occurs then you match the 

exception 

• the else clause covers the non-

exception condition. It runs when the try 

suite does not encounter an error. 

82



The whole thing
try:

code to try

except PythonError1:

exception code

except PythonError2:

exception code

except:

default except code

else:

non exception case

finally:

clean up code
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Code Listing 

L11-7.py
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Raising and creating your own 

exceptions
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invoking yourself, raise

• You can also choose to invoke the 

exception system anytime you like with the 
raise command

raise MyException

• you can check for odd conditions, raise 

them as an error, then catch them

• they must be part of the existing exception 

hierarchy in Python
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Non-local catch

• Interestingly, the except suite does not 

have to be right next to the try suite.

• In fact, the except that catches a try 

error can be in another function

• Python maintains a chain of function 

invocations. If an error occurs in a function 

and it cannot catch it, it looks to the 

function that called it to catch it
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Make your own exception

• You can make your own exception. 

• Exceptions are classes, so you can make 

a new exception by making a new 

subclass:

class MyException (IOError):

pass

• When you make a new class, you can add 

your own exceptions.
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Code Listing 

L11-8.py
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