
INT3075 Programming and Problem

Solving for Mathematics

More on Files and Exceptions

1

What we already know

• Files are bytes on disk. Two types, text

and binary (we are working with text)

• open creates a connection between the

disk contents and the program

• different modes of opening a file, 'r', 'w', 'a'

• files might have different encodings

(default is utf_8)

2

more of what we know

• all access, reading or writing, to a text file

is by the use of strings

• iteration via a for loop gathers info from a

file opened for reading one line at a time

• we write to a file opened for writing using
the print function with an argument

file=

3

Code Listing

L11-1.py

Review

4

results, searching for "This"

6

More ways to read

• my_file.read()

– Reads the entire contents of the file as a

string and returns it. It can take an optional

argument integer to limit the read to N bytes,

that is my_file.read(N)

• my_file.readline()

– Delivers the next line as a string.

• my_file.readlines() # note plural

– Returns a single list of all the lines from the

file
7

example file

We'll work with a file called temp.txt which

has the following file contents

First Line

Second Line

Third Line

Fourth Line

8

More ways to write

• Once opened, you can write to a file (if the

mode is appropriate):

• my_file.write(s)

– Writes the string s to the file

• my_file.writelines(lst)

– write a list of strings (one at a time) to the

file

12

Universal New Line

14

Different OS's, different format

• Each operating system (Windows, OS X,

Linux) developed certain standards for

representing text

• In particular, they chose different ways to

represent the end of a file, the end of a

line, etc.

15

Universal new line

• To get around this, Python provides by

default a special file option to deal with

variations of OS text encoding called

Universal new line

• you can over-ride this with an option to
open called newline=

– look at the docs for what this entails.

16

Working with a file

17

The current file position

• Every file maintains a current file

position.

• It is the current position in the file, and

indicates what the file will read next

• Is set by the mode table above

18

Remember the file object buffer

• When the disk file is opened, the contents

of the file are copied into the buffer of the

file object

• Think of the file object as a very big list,

where every index is one of the pieces of

information of the file

• The current position is the present index in

that list

19

the tell() method

• The tell() method tells you the current

file position

• The positions are in bytes (think

characters for UTF-8) from the beginning

of the file

my_file.tell() => 42L

21

the seek() method

• the seek() method updates the current

file position to a new file index (in bytes

offset from the beginning of the file)

• fd.seek(0) # to the beginning of the file

• fd.seek(100) # 100 bytes from beginning

22

counting bytes is a pain

• counting bytes is a pain

• seek has an optional argument set:

– 0: count from the beginning

– 1: count for the current file position

– 2: count from the end (backwards)

23

every read moves current

forward
• every read/readline/readlines moves the

current pos forward

• when you hit the end, every read will just
yield '' (empty string), since you are at

the end

– no indication of end-of-file this way!

• you need to seek to the beginning to start

again (or close and open, seek is easier)

24

with statement

open and close occur in pairs (or should)

so Python provides a shortcut, the with

statement

• creates a context that includes an exit

which is invoked automatically

• for files, the exit is to close the file

with expression as variable:

suite

26

File is closed automatically when

the suite ends

read(size=1)

• you can use the read() method to read

just one byte at a time, and in combination
with seek move around the file and “look

for things”. Once current is set, you can

begin reading again

28

More on CSV files

29

spreadsheets

• The spreadsheet is a very popular, and

powerful, application for manipulating data

• Its popularity means there are many

companies that provide their own version

of the spreadsheet

• It would be nice if those different versions

could share their data

30

CSV, basic sharing

• A basic approach to share data is the

comma separated value (CSV) format

– it is a text format, accessible to all apps

– each line (even if blank) is a row

– in each row, each value is separated from the

others by a comma (even if it is blank)

– cannot capture complex things like formula

31

Spread sheet and corresponding CSV file

Even CSV isn't universal

• As simple as that sounds, even CSV

format is not completely universal

– different apps have small variations

• Python provides a module to deal with

these variations called the csv module

• This module allows you to read

spreadsheet info into your program

33

csv reader
• import the csv module

• open the file as normally, creating a file

object.

• create an instance of a csv reader, used to

iterate through the file just opened

– you provide the file object as an argument to

the constructor

• iterating with the reader object yields a row

as a list of strings

34

Code Listing

L11-2.py

(and output)

35

things to note

• Universal new line is working by default

– needed for this worksheet

• A blank line in the CSV shows up as an

empty list

• empty column shows up as an empty

string in the list

37

csv writer

much the same, except:

• the opened file must have write enabled

• the method is writerow, and it takes a list

of strings to be written as a row

38

Code Listing

L11-3.py

39

This code listing is a good example of reading,

modifying and then writing out a CSV file that

could be read by a spreadsheet

os module

40

What is the os module

• The os module in Python is an interface

between the operating system and the

Python language.

• As such, it has many sub-functionalities

dealing with various aspects.

• We will look mostly at the file related stuff

41

What is a directory/folder?

• Whether in Windows, Linux or on OS X, all

OS's maintain a directory structure.

• A directory is a container of files or other

directories

• These directories are arranged in a

hierarchy or tree

42

Tree

• it has a root node,

with branch

nodes, ends in

leaf nodes

• the directory

structure is

hierarchy (tree)

43

Directory tree

• Directories can be organized in a

hierarchy, with the root directory and

subsequent branch and leaf directories

• Each directory can hold files or other

directories

44

file path is a path through the

tree
A path to a file is a path through the

hierarchy to the node that contains a file

/gary/python/code/myCode.py

– path is from the root node /, to the bill

directory, to the python directory, to the code

directory where the file myCode.py resides

45

the / in a path

• think of / as an

operator, showing

something is a

directory

• follow the path, the

leaf is either a

directory or file

/gary /hong

/

/python

/code

46

a path String

• a valid path string for python is a string

which indicates a valid path in the

directory structure

• Thus '/Users/gary/python/code.py' is

a valid path string

47

different 'paths' for different os

• It turns out that each OS has its own way

of specifying a path

– C:\gary\python\myFile.py

– /Users/gary/python/myFile.py

• Nicely, Python knows that and translates

to the appropriate OS

48

Two special directory names

• The directory name '.' is shortcut for the

name of the current directory you are in as

you traverse the directory tree

• The directory name '..' is a shortcut for

the name of the parent directory of the

current directory you are in

49

Some os commands

• os.getcwd() Returns the full path of the

current working directory

• os.chdir(path_str) Change the

current directory to the path provided

• os.listdir(path_str) Return a list

of the files and directories in the path
(including '.')

50

Some more os commands
• os.rename(source_path_str,

dest_path_str) Renames a file or

directory

• os.mkdir(path_str) make a new

directory. So
os.mkdir('/Users/bill/python/ne

w') creates the directory new under the

directory python.

• os.remove(path_str)Removes the file

• os.rmdir(path_str) Removes the

directory, but the directory must be empty
52

the walk function

• os.walk(path_str) Starts at the

directory in path_str. It yields three

values:

– dir_name, name of the current directory

– dir_list, list of subdirectories in the

directory

– files, list of files in the directory

• If you iterate through, walk will visit every

directory in the tree. Default is top down

53

Walk example

54

os.path module

55

os.path module

allows you to gather some info on a path's
existence

• os.path.isfile(path_str) is this a
path to an existing file (T/F)

• os.path.isdir(path_str) is this a
path to an existing directory (T/F)

• os.path.exists(path_str) the path
(either as a file or directory) exists (T/F)

56

os.path names
assume p = '/Users/bill/python/myFile.py'

• os.path.basename(p) returns 'myFile.py'

• os.path.dirname(p) returns

'/Users/bill/python'

• os.path.split(p) returns

['Users/bill/python','myFile.py']

• os.path.splitext(p) returns

'/Users/bill/python/myFile', '.py'

• os.path.join(os.path.split(p)[0],'other.

py') returns '/Users/bill/python/other.py'

57

Code Listing

L11-4.py

58

Utility to find strings in files

• The main point of this function is to look

through all the files in a directory structure

and see if a particular string exists in any

of those files

• Pretty useful for mining a set of files

• lots of comments so you can follow

59

More Exceptions

61

What we already know

try-except suite to catch errors:

try:

suite to watch

except ParticularError

error suite

62

more of what we know

• try suite contains code that we want to

watch:

– if an error occurs the try suite stops and looks

for an except suite that can handle the error

• except suite has a particular error it can

handle and a suite of code for handling

that error

63

Error Flow

64

Code Listing

L11-5.py

65

Continuing …

Check for specific exceptions

• Turns out that you don’t have to check for

an exception type. You can just have an

exception without a particular error and it

will catch anything

• That is a bad idea. How can you fix (or

recover from) an error if you don’t know

the kind of exception

• Label your exceptions, all that you expect!

68

What exceptions are there?

• In the present Python, there is a set of

exceptions that are pre-labeled.

• To find the exception for a case you are

interested it, easy enough to try it in the

interpreter and see what comes up

• The interpreter tells you what the

exception is for that case.

69

Examples

>>> 100/0

Traceback (most recent call last):

File "<pyshell#1>", line 1, in <module>

100/0

ZeroDivisionError: integer division or modulo by zero

>>> open('badFileName')

Traceback (most recent call last):

File "<pyshell#2>", line 1, in <module>

open('badFileName')

IOError: [Errno 2] No such file or directory: 'badFileName'

error

names

CAPS

matter!

71

Philosophy of Exception

Handling

72

Dealing with problems

Two ways to deal with exceptions

• LBYL: Look Before you Leap

• EAFP: Easier to Ask Forgiveness than

Permission (famous quote by Grace

Hopper)

73

Look Before You Leap

• By this we mean that before we execute a

statement, we check all aspects to make

sure it executes correctly:

– if it requires a string, check that

– if it requires a dictionary key, check that

• Tends to make code messy. The heart of

the code (what you want it to do) is hidden

by all the checking.

74

Easier to Ask Forgiveness than

Permission

• By this we mean, run any statement you

want, no checking required

• However, be ready to “clean up any

messes” by catching errors that occur

• The try suite code reflects what you

want to do and the except code what

you want to do on error. Cleaner

separation!

75

Python likes EAFP

• Code Python programmers support the

EAFP approach:

– run the code, let the except suites deal with

the errors. Don’t check first.

76

Code Listing

L11-6.py

77

Extensions to the basic

Exception Model

79

finally suite

• you can add a finally suite at the end

of the try/except group

• the finally suite is run as you exit the
try/except suite, no matter whether

an error occurred or not.

– even if an exception raised in the try suite

was not handled!

• Gives you an opportunity to clean up as
you exit the try/except group

80

finally and with

finally is related to a with statement:

• creates a context (the try suite)

• has an exit, namely execute the finally

suite

81

else

• One way to think about things is to think of
the try as a kind of condition (an

exception condition) and the excepts as

conditional clauses

• if an exception occurs then you match the

exception

• the else clause covers the non-

exception condition. It runs when the try

suite does not encounter an error.

82

The whole thing
try:

code to try

except PythonError1:

exception code

except PythonError2:

exception code

except:

default except code

else:

non exception case

finally:

clean up code

83

Code Listing

L11-7.py

84

Raising and creating your own

exceptions

86

invoking yourself, raise

• You can also choose to invoke the

exception system anytime you like with the
raise command

raise MyException

• you can check for odd conditions, raise

them as an error, then catch them

• they must be part of the existing exception

hierarchy in Python

87

Non-local catch

• Interestingly, the except suite does not

have to be right next to the try suite.

• In fact, the except that catches a try

error can be in another function

• Python maintains a chain of function

invocations. If an error occurs in a function

and it cannot catch it, it looks to the

function that called it to catch it

88

Make your own exception

• You can make your own exception.

• Exceptions are classes, so you can make

a new exception by making a new

subclass:

class MyException (IOError):

pass

• When you make a new class, you can add

your own exceptions.

89

Code Listing

L11-8.py

90

Part 1

Part 2

