
COMP3322A | Lab 7 React

LAB 7 REACT 1

COMP3322A Modern Technologies on World Wide Web
Lab 7: React

Overview
In this lab exercise, we will use React to implement an interactive web page, which displays a list
of course topics. We first login with a valid username and corresponding password, and then we
will see the topic list and can filter these topics by choosing a section name from a drop-down
list. Please refer to the following screenshots:

Upon initial page load, you will see a login page with two input boxes and a
login button. You can fill in the correct username with its password and click
the login button to log in.

After successfully logged in, you will see a welcome message, a logout button,
a drop-down list with the default option “all”, and a list of topics right below
showing the section that the topic belongs to (chosen from three sections:
section-1, section-2, section-3) as well as the topic name.

COMP3322A | Lab 7 React

LAB 7 REACT 2

Lab Exercise
Part 1. Prepare the React App
Step 1. Create a new React App using “create-react-app” command

Launch a terminal. Go to your “lab7” directory and create a React app named “myreactapp” using
the following commands:
cd YourPath/lab7
npx create-react-app myreactapp

Go inside the “myreactapp” directory just created:
cd myreactapp

Then launch the React App as follows:
npm start

After successfully launching the app, you should see prompts like the following in your terminal:

Compiled successfully!

You can now view myreactapp in the browser.

 Local: http://localhost:3000
 On Your Network: http://xxx.xxx.xx.xx:3000

Note that the development build is not optimized.

You can click the drop-down list to show a list of options (sections) besides
“all”. By clicking one of the options, the topic list will be re-rendered to contain
topics belonging to the chosen section only. For example, when we select the
section option “section-3”, the topics list changes accordingly.

COMP3322A | Lab 7 React

LAB 7 REACT 3

To create a production build, use npm run build.
…

And a web page should be loaded automatically in your browser, as follows:

Step 2. Copy the provided files to myreactapp/src folder
Download and extract the files in “lab7_materials.zip”. You will see two JavaScript files “App.js”
and “index.js”, and one CSS file “index.css”. Replace the original “App.js”, “index.css” and
“index.js” files in myreactapp/src with the provided files.

Open “index.js” and compare it with the default one (page 10 of lecture notes
14_React_I_COMP3322A_f2022.pdf). The differences are:
Instead of

import App from './App';
we have

import Lab7App from './App';
And in the render() function, we replace “<App />” with “<Lab7App />”.

“Lab7App” is the React component which renders the main page, as implemented in “App.js”.
Open “App.js” and check out the render() function of the class “Lab7App”. You will see it
conditionally returns some components: If the state variable “isLogin” is false, which means that
the user hasn’t logged in, the function returns a <div> containing 3 elements/compoment:

1. A <p> element displaying the message “Fill in username and password and click the
button to log in”

2. Two <input> elements for username and password inputs.
3. A <LoginButton> component rendering the login button and achieving corresponding

functionalities.
If the state variable “isLogin” is true, which means that the user has successfully logged in, the
function returns a <div> containing 3 elements/component:

1. A <p> element displaying the message “Welcome xxx!”, where xxx is the name of the
logged-in user.

2. A logout <button> element
3. A <Contents> component displaying the drop-down list and the list of topics.

COMP3322A | Lab 7 React

LAB 7 REACT 4

You can refer to the screenshots at the beginning of this document to understand more of the
components.

In this lab, we will only modify “App.js” to achieve the web page. Before you modify “App.js”,
the initial page is as follows when you launch the app using “npm start”:

Part 2. Implement the login and logout functionalities.

Step 3. Handle input changes in the two input boxes
In “App.js”, class component Lab7App has a state of four key-value pairs: (1) isLogin is a boolean
variable indicating whether the user has logged in; (2) loginName is a string variable containing
the name of the logged-in user; (3) inputUserName is updated with the value of the username
input box; (4) inputUserPswd is updated with the value of the password input box. By using
handleInputChange() function as handler of the onChange event on the input boxes, values of
the state variables inputUserName and inputUserPswd are always in sync with values of the input
boxes. We have also provided the implementation of function handleInputChange(), where we
use this.setState{[name]: value} to set value of a state variable according to the respective input
value, where name refers to the value of the name attribute of the input element and value refers
to the input value. Learn more about the usage of [name] at https://reactjs.org/docs/forms.html
(“Handling Multiple Inputs” section).

Step 4. Implement the login and logout functionalities
4.1. In the render() function of Lab7App, remove “{/* step 4.1 */}”, and in its place, render the
LoginButton component. The LoginButton component receives three props:
1. username: which equals the value of state variable inputUserName;
2. password: which equals the value of state variable inputUserPswd;
3. handleStatusChange: which equals this.handleStatusChange. We have provided the

implementation of function handleStatusChange(), which receives the login status (boolean
type) and the name of the logged-in user (string type) as arguments, and set the state
variables isLogin and loginName to the argument values, respectively.

4.2. Go to class LoginButton. In its render() function, we are rendering a login button with the
handler function this.handleClick bound to the onclick event. Implement the function
handleClick(): If the input username and password are valid, use
this.props.handleStatusChange(xx, yy) received from class Lab7App to update the state
variables of Lab7App, where xx equals “true” and yy equals this.props.username received from
class Lab7App; otherwise, alert the message “Login failed!” Hint: you can use the provided

COMP3322A | Lab 7 React

LAB 7 REACT 5

function checkValid() to check if the input username and password are valid, which returns true
if the inputs are included in the predefined array userDB, and returns false, otherwise. Read more
about the array find() function at https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Array/find.

4.3. Go to class Lab7App. In the render() function, remove "{/* step 4.3*/}" and add an onClick
event handler to the logout button, which is an arrow function ()=>this.handleStatusChange()
where handleStatusChange() receives a “false” value and an empty string as arguments.

After this step, when you click the login with incorrect passwords, you will see pages as follows:

when you successfully login:

then clicking logout will lead you to the initial page:

Step 5. Render topics list in class component Contents
Go to class Contents, which has a state of one key-value pair: topics stores the list of topics to be
shown on the page, initialized using the given array topicsDB. Complete the render() function of
class Contents: within { }, apply map() function on topics to create a number of <p> elements,
each presenting information of one topic in the topics array as <p>Section: {topic.section}; Topic
Name: {topic.topic}</p>. The handler function handleTopicsChange() is to change the state
variable topics upon selecting a different option in the drop-down list (to be implemented later).

COMP3322A | Lab 7 React

LAB 7 REACT 6

After this step, you will see the topics list shown up on the page:

Step 6. Render a drop-down list in function component DropDownList
Now go to function DropDownList, which receives the handler function handleTopicsChange of
class Contents in its props. Complete its render() function as follows: remove "{/* step 6*/}", and
in its place, create a drop-down list using the <select> element with four options (with values
“all”, “section-1”, “section-2” and “section-3”, respectively). The option “all” should be
associated with the attribute “selected” as the default option. Add an event handler function to
onChange event on the <select> element (to track the change of selected option and update
topics list accordingly), which should be e => props.handleTopicsChange(e.target.value).

After this step, you will see the drop-down list above the topics list, but the topics list will not
change according to different options selected yet.

COMP3322A | Lab 7 React

LAB 7 REACT 7

Step 7. Implement filtering of topics list
Now implement the function handleTopicsChange() in class Contents as follows: if value of the
argument option is not “all” (i.e., it is one of the three sections instead), apply filter() function on
topicsDB to obtain a filtered topics array where each topic’s section is option (learn more about
JavaScript Array filter method at https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter), and set the state variable
Topics to be the filtered array; otherwise, set the state variable Topics to be topicsDB. Note that
you need to use this.setState() to change a state variable’s value.

After this step, when you select one section from the drop-down list, the topics list will change
accordingly:

Congratulations! Now you have finished Lab 7. You should test the page and the final results
should look similar to the screenshots at the beginning of this document.

COMP3322A | Lab 7 React

LAB 7 REACT 8

Submission:

Please finish this lab exercise before 23:59 Sunday November 27, 2022. You should submit the
App.js file only.

(1) Login Moodle.
(2) Find “Labs” section and click “Lab 7”.
(3) Click “Add submission”, browse your file and save it. Done.
(4) You will receive an automatic confirmation email, if the submission was successful.
(5) You can “Edit submission” to your already submitted file, but ONLY before the deadline.

