
COMP3322A | Lab 6 Node.js, Web service, Pug

LAB 6 NODE.JS, WEB SERVICE, PUG 1

COMP3322A Modern Technologies on World Wide Web
Lab 6: Node.js, Web service, Pug

Overview
In this lab exercise, we will use Node.js to implement a RESTful Web service, use Pug to generate
the HTML page for accessing the Web service, and use jQuery for client-side scripting. In
particular, we will use the Express.js Web framework based on Node.js, together with Pug
template engine and MongoDB. The Web service allows retrieving, updating and deleting topics
in a MongoDB database. The HTML page provides an interface for those operations.

Upon initial page load, you will see a topic table. Each topic has a
recommended study hour per week and a status (“yes” or “no”) indicating
whether you have chosen it into your study plan.

COMP3322A | Lab 6 Node.js, Web service, Pug

LAB 6 NODE.JS, WEB SERVICE, PUG 2

Note: Due to compatibility of difference browsers, the same CSS code may lead to different
display; we will check the lab in the Chrome browser. Therefore, you are recommended to use
the Chrome browser to develop/test your page as well.

Below the table, you can fill in a valid topic name into the input box and delete it permanently
from the table (i.e., delete from the server-side database) by clicking the “Delete”button.

You can click “add”/“remove” operations to update your study plan. For
example, when you click the “add” link of the topic “www”, the row of the
topic will be highlighted in red, status will change to “yes”, and the operation
will change from “add” to “remove”, which is also clickable to remove the
topic from your study plan.

COMP3322A | Lab 6 Node.js, Web service, Pug

LAB 6 NODE.JS, WEB SERVICE, PUG 3

Lab Exercise
Part 1. Preparation
Step 1. Download the code templates from Moodle
Download "lab6_materials.zip" from HKU Moodle, and extract it to a folder. In this folder, you
will find 4 JavaScript files (“app.js”, “users.js”, “externalJS.js”, “generate_db.js”), 1 CSS file
(“style.css”), 2 PUG files (“index.pug” and “layout.pug”) and 1 Image (“logo.png”). In this lab, we
will only edit “users.js” and “externalJS.js”, and keep the others of our provided files unchanged.

Step 2. Create an Express app
Follow steps 1 to 3 in the handout “setup_nodejs_runtime_and_example_1.pdf” to create an
Express app. Use “npm install pug” to install the pug template engine. Rename error.jade,
index.jade and layout.jade in ./views folder to error.pug, index.pug, and layout.pug.

Move files extracted from "lab6_materials.zip" to corresponding subdirectories:
(1) overwrite the original “app.js” in the Express app directory with the “app.js” we provided.
(2) overwrite the original “users.js” in ./routes with the same file that we provided;
(3) move “externalJS.js” to ./public/javascripts;
(4) move “style.css” to ./public/stylesheets;
(5) overwrite the original “index.pug” and “layout.pug” with the same files that we provided;
(6) move “logo.png” to ./public/images.

 “generate_db.js” is an auxiliary JavaScript file to facilitate easier database data initialization,
which you will use next (you can keep the file anywhere you can find).

Step 3. Insert documents into MongoDB
Follow steps 1-3 in Example 6 of the handout “AJAX_JSON_MongoDB_setup_and_examples.pdf”
to install MongoDB (only if MongoDB is not yet installed on your computer), create a “data”
folder in your Express app directory, and start the MongoDB server using the “data” directory of
your project (then keep the MongoDB server running in the terminal).

Launch another terminal, switch to the directory where mongodb is installed, and execute
the following command:

./bin/mongo YourPath/generate_db.js

Make sure you replace “YourPath” by the actual path on your computer where you keep the
“generate_db.js” that we provided.

This command runs the code in “generate_db.js”. If you check out the content of
“generate_db.js”, you will find out that it creates a database “lab6-db” in the database server
and inserts a few topic documents into a topicList collection in the database. Each document in
the topicList collection will contain the following key-value pairs:

COMP3322A | Lab 6 Node.js, Web service, Pug

LAB 6 NODE.JS, WEB SERVICE, PUG 4

l _id: The unique ID of the document, which the MongoDB server adds automatically into each
inserted document. You can check _id of inserted documents using db.topicList.find() in the
interactive shell (refer to step 4 of Example 6 in the handout
“AJAX_JSON_MongoDB_setup_and_examples.pdf”).

l name: The name of the topic.
l hour: The study hour required of the topic (integer format).
l status: a “yes” or “no” string indicating whether the topic is added into your study plan.

Now go to the express app directory, and use “npm install --save monk” to install the monk
module for your project.

Step 4. Open app.js in an editor and check out its content. You should be able to understand the
code according to the lecture content and what we explain in the handout
“setup_nodejs_runtime_and_examples_2.pdf”. You can see a number of middlewares have been
included to handle the incoming requests, among which we will need express.json(),
express.urlencoded() and express.static() in this lab. Besides, the “morgan” module is used for
logging the request status for development usage, which you will see on the terminal where you
run the server app.

This line of code “module.exports = app;” at the end of app.js exports this app as the default
module that the Express app will run once started; then you can start the Express app by typing
“npm start” in the your express app directory.

After running “npm start”, the web server is started and listens at the default port 3000. You can
launch a web browser and visit the web page at http://127.0.0.1:3000 or http://localhost:3000.

Part 2: Create the Web Page Using Pug
We next modify the Pug templates in the ./views directory of your express app, in order to
render the homepage of the app.

Step 5. Open index.pug using an editor. Please refer to https://pugjs.org/api/getting-
started.html to understand the code in the file.

Step 6. Open layout.pug using an editor and check out its content, as follows:

doctype html
html
 head
 title= “lab6”
 link(rel='stylesheet', href='/stylesheets/style.css')
 meta(name="viewport" content="width=device-width, initial-scale=1.0")

COMP3322A | Lab 6 Node.js, Web service, Pug

LAB 6 NODE.JS, WEB SERVICE, PUG 5

 body
 block content
 script(src='https://ajax.googleapis.com/ajax/libs/jquery/3.6.0/jquery.min.js')
 script(src='/javascripts/externalJS.js')

The first line of code in index.pug indicates that index.pug extends layout.pug. With a
layout.pug as above, the web page rendered links to:
(1) a style.css file under ./public/stylesheets for styling;
(2) the jQuery library on Google CDN server;
(3) an externalJS.js file under ./public/javascripts containing client-side JavaScript code.

Note that the ./public directory has been declared to hold static files which can be directly
retrieved by a client browser, using the line of code
“app.use(express.static(path.join(__dirname, 'public')));” in app.js (note that there are two
underscores “_” before dirname in the code). In this way, the rendered web page can
directly load files under the ./public directory.

Now let’s check out the web page rendered using the Pug files. Use “npm start” to start the
Express app (you should always use control+C to kill an already running app before you start
the app again after making modifications). Check out the rendered page at
http://localhost:3000 on your browser. You should see a page like the following.

Especially, your GET request for “/” is handled on the server side by the router index.js, which
renders the HTML page using index.pug and layout.pug. Further, on the terminal where you
have run “npm start”, you can see prompts like the following (logged by the “morgan” module),
showing that the browser has issued three more GET requests (after the GET request for “/”) to
the server side to retrieve the client-side javascript file, the logo image file and the styling sheet
file, respectively, which were linked to in layout.pug and index.pug.

COMP3322A | Lab 6 Node.js, Web service, Pug

LAB 6 NODE.JS, WEB SERVICE, PUG 6

GET / 304 605.500 ms - -
GET /javascripts/externalJS.js 304 1.365 ms - -
GET /images/logo.png 304 1.186 ms - -
GET /stylesheets/style.css 304 0.300 ms - -

Part 3. Implement topic overview and operations

Step 7. Show topics information in a table

In this step, we implement server-side and client-side code for retrieving topic information from
the database and display them in a table on the web page shown on the client browser, when
the page is loaded.

7.1. In the server-side script users.js, complete the callback function in router.get(‘/get_table’,
(req, res) => {…}), which specifies how the server responds to the HTTP GET requests for
http://localhost:3000/users/get_table. The middleware should use collection.find() to find all
documents in the topicList collection, and use res.json() to send a JSON array containing all the
topic documents found to the client.

You can restart your Express app with “npm start” in the terminal. Test if your above server-side
code works by entering http://localhost:3000/users/get_table in the address bar of your browser.
The browser should display a JSON response text like this:

[{"_id":"636898c943c18d902a1cfcef","name":"www","hour":2,"status":"no"},{"_id":"636898c9
43c18d902a1cfcf0","name":"html","hour":4,"status":"no"},{"_id":"636898c943c18d902a1cfcf1"
,"name":"css","hour":4,"status":"no"},{"_id":"636898c943c18d902a1cfcf2","name":"javascript",
"hour":6,"status":"no"},{"_id":"636898c943c18d902a1cfcf3","name":"nodejs","hour":10,"statu
s":"no"},{"_id":"636898c943c18d902a1cfcf4","name":"jquery","hour":6,"status":"no"}]

7.2. Now we add client-side code for displaying the topic table. Recall that in Step 6, the rendered
HTML page is linked to externalJS.js. Open externalJS.js and check out the code provided. We
are going to implement functions in externalJS.js using jQuery. The jQuery code is executed when
the page has been loaded by the browser ($(document).ready(..)). Especially, we call the function
showAllTopics() when the page is loaded, to add topic information retrieved from the server side
into a topic table.

Complete the function showAllTopics(). The table header has been stored in a string
table_content. Use $.getJSON() method with url “/users/get_table” to send a HTTP GET request
to the server side. As implemented in Step 7.1, the server will return a JSON array, in which each
object is a topic document. In the callback function of $.getJSON(), iterate over this array using
$.each(). For each document in the array, create the HTML representation of a table row with
four <td> elements: the values of the first three <td> elements are “name”, “hour”, “status”

COMP3322A | Lab 6 Node.js, Web service, Pug

LAB 6 NODE.JS, WEB SERVICE, PUG 7

fields of the topic document; the last <td> element contains an <a> element with text “add” or
“remove”(if status field equals to “yes”, text should be “remove”; otherwise, text should be
“add”), and attributes href="#" class="operation" rel=_id field of the topic document (i.e., we are
creating the add/remove link as shown in the screenshots at the beginning of this handout). Also
for each row tag, add the attribute class=“highlight” if the status field of the topic is “yes”. The
table row representations should be all concatenated into the string table_content. Finally, use
$(‘#plan_table’).html() to set HTML content of the table element of id “plan_table” to
table_content.

Now browse the web page again at http://localhost:3000/. You should be able to see all topics
shown in a table like the following (note that the “add”/“remove” link is not bound to event
handler yet, and no topic is selected into your study plan yet):

Step 8. Add/remove a topic to/from your study plan by clicking the operation link in the same
row.

We next implement server-side and client-side code for adding/removing a topic to/from your
study plan, when the “add” or “remove” link on a table row is clicked.

8.1. In “users.js”, complete the callback function in router.put(‘/update_status/’, (req. res) =>
{…}), which specifies how the server responds to the HTTP PUT requests for
http://localhost:3000/users/update_status. Use collection.update({‘_id’: req.body._id},
{$set:{status: new_status}}) to update the status field of the topic with id req.body._id. The
new_status should be “yes” if the operation (retrieved from req.body.op) is “add”; otherwise, if
the operation is “remove”, new_status should be “no”. If the update operation is successful,
send “Successfully updated!” to the client; otherwise, send the error in the response.

COMP3322A | Lab 6 Node.js, Web service, Pug

LAB 6 NODE.JS, WEB SERVICE, PUG 8

8.2. In “externalJS.js”, you can find that we register a handler function operateTopic() to the click
event on each operation link in the table of id “plan_table” by: $("#plan_table").on('click',
'.operation', operate). Please refer to https://api.jquery.com/on/ to understand more of how we
use the second parameter of .on() to filter the descendants of the selected elements that trigger
the event. Complete the event handler function operateTopic(event): we have used
event.preventDefault() to prevent opening the link “#” when the hyperlink is clicked; retrieve
_id of the topic that you are going to add/remove from the ‘rel’ attribute using $(this).attr(‘rel’)
and retrieve the operation that your are going to perform using $(this).html(). Then use $.ajax()
to send a HTTP PUT request for “/users/update_status” with JSON data {_id: _id field retrieved,
op: operation retrieved}; upon receiving the server response, alert the response message and
call showAllTopics() to refresh the topic table.

Restart your Express app and browse http://localhost:3000. You are able to add/remove a topic
to/from your study plan by clicking the “add”/“remove” link in the same row. Only when a topic
is in your study plan (i.e., status field equals to “yes”), its row is highlighted in red.

Step 9. Delete a topic from the table permanently.

9.1. In “users.js”, complete the callback function in router.delete(‘/delete_topic/:name’, (req.
res) => {…}), which specifies how the server responds to the HTTP DELETE requests for
http://localhost:3000/users/delete_topic/xx (where xx is the name of the topic). The middleware
retrieves name of the topic that the client wants to delete from req.params.name, and uses
collection.remove({‘name’: req.params.name}) to remove the topic document from the
topicList collection. If the remove operation is successful, send the string “Successfully deleted!”
to the client side; otherwise, send the error in the response.

9.2. In “externalJS.js”, you can find that we have registered a handler function deleteTopic() to
the click event on the “Delete” button underneath the topic table, by selecting element with id

COMP3322A | Lab 6 Node.js, Web service, Pug

LAB 6 NODE.JS, WEB SERVICE, PUG 9

“#submit_delete”. Complete the event handler function deleteTopic(event): retrieve the topic
name to be deleted by obtaining the value of input box with $(“#input_name”).val(); check
whether the topic name retrieved is an existing name in the topic table by using
$(`td:contains(“${topic_name}”)`), which gets a list of <td> elements whose innerhtml contains
the topic name (ref to this link for contains() selector:
https://www.w3schools.com/jquery/sel_contains.asp). If the length of the list is not 0, use
$.ajax() to send a HTTP DELETE request for “/users/delete_topic/:topic_name”; otherwise, alert
the message “No such topic in the table!”. Upon receiving the server response, alert the response
message and call showAllTopics() to refresh the topic table.

Restart your Express app and browse http://localhost:3000. You are able to delete a topic by
typing its name and clicking the “Delete” button. The page will show up like the following:

Congratulations! Now you have finished Lab 6. You should test the pages and the final results
should look similar to the screenshots at the beginning of this document.

Submission:
Please finish this lab exercise before 23:59 Thursday November 17, 2022. Please compress the
entire app folder (i.e., the folder in which you create the express app) into a .zip file and submit
it on Moodle.
(1) Login Moodle.
(2) Find “Labs” section and click “Lab 6”.
(3) Click “Add submission”, browse your .zip file and save it. Done.
(4) You will receive an automatic confirmation email, if the submission was successful.
(5) You can “Edit submission” to your already submitted file, but ONLY before the deadline.

