
DET102 Data Structures

and Algorithms
Lecture 01: Course Introduction and Algorithm complexity

1

Course Information

 Time: 9:00-12:00 Friday

 Avenue: 802 in CBCC

 Dual-mode is provided.

 F2F: full-time students

 Microsoft Teams: Part-time students

 Video will be provided for self-
learning and review.

 Online exercise on Moodle will be
used to take attendance.

 Lecturer

 Yingchao ZHAO (趙英超)

 Office: A805

 Tel: 3702 4206

 Email: yczhao@cihe.edu.hk

 Consultation Hour:

 Thursday 13:00-17:00

 Online Q&A (optional)

 Wednesday 21:00-22:00

 On teams.

2

mailto:yczhao@cihe.edu.hk

Assignments & Grading

 Online Exercise:

 Available in moodle for a week. 20% of the final grade

 You can try twice, and we take the highest mark.

 We also use it as attendance. Your attendance rate should be at least 80%.

 Programming Project:

 Two Individual projects: P1 and P2

 Must be done in C/C++/Python.

 Project (demo+report): 40% of the final grade.

 Final Exams:

 Paper based : 40% of final grade

3

Assignments & Grading

 Academic Honesty:

 All classwork should be done independently, unless explicitly stated otherwise on

the assignment handout.

 You may discuss general solution strategies, but you must write up the solutions

yourself.

 You may refer to materials from internet, but you must cite those materials in your

submission.

 NO LATE SUBMISSION ACCEPTED

 Turn in what you have at the time it’s due.

 All exercises are due at the start of next class.

 Late projects will be accepted, but you will be penalized.

4

Resources

 Online Resources

 Dave Mount’s Lecture Notes: http://www.cs.umd.edu/~mount/420/Lects/420lects.pdf

 Stanford C programming:
https://www.youtube.com/playlist?list=PLD28639E2FFC4B86A

 Stanford CS Education Library: http://cslibrary.stanford.edu/

 Khan Academy: https://www.khanacademy.org/computing/computer-
science/algorithms#concept-intro

 Books

 Mark, A. Weiss (2013). Data Structures and Algorithm Analysis in C++ (4th ed.). Pearson.

 Agarwal, B. and Baka, B. (2018). Hands-On Data Structures and Algorithms with
Python: Write complex and powerful code using the latest features of Python 3.7 (2nd

ed.). Packt Publishing

 Cormen, T. H., Leiserson, C. E, Rivest, R. L. & Stein, C. (2009). Introduction to Algorithms
(3rd ed.). Cambridge, Mass.: MIT Press.

5

http://www.cs.umd.edu/~mount/420/Lects/420lects.pdf
https://www.youtube.com/playlist?list=PLD28639E2FFC4B86A
http://cslibrary.stanford.edu/
https://www.khanacademy.org/computing/computer-science/algorithms#concept-intro
https://www.khanacademy.org/computing/computer-science/algorithms#concept-intro

Online Judgement

1. Aizu Online Judge (AOJ)

 http://judge.u-aizu.ac.jp

2. Hangzhou Dianzi University Online Judge (HDU)

https://acm.hdu.edu.cn/

3. UVa Online Judge (UVa)

https://onlinejudge.org/

4. Leetcode

 https://www.leetcode.com/

6

Programming Competition

1. Baidu BestCoder

http://bestcoder.hdu.edu.cn/contests/contest_list.php

2. ACM International Collegiate Programming Contest

https://icpc.global/

3. CodeForces

https://codeforces.com/

7

What is Algorithm？

 A process or set of rules to be followed in calculations or

other problem-solving operations, especially by a

computer.

 Example

Get up
Have

breakfast
Go to
CIHE

8

Algorithm in computer science

 A sequence of elementary computational steps that transform the

input into the output.

 A tool for solving well-specified computational problems, e.g.,

Sorting, Matrix Multiplication

 What do we need to do with an algorithm?

Correctness Proof:

for every input instance, it halts with the correct output

 Performance Analysis (1 second or 10 years, 1K or 10G):

How does the algorithm behave as the problem size gets large

both in running time and storage requirement

9

Algorithm Example: Top 3

 You are given 10 scores. You need to print the top 3

scores in non-increasing order. Note: the scores are

integers between 0 and 100.

 Sample input:

25 36 4 55 71 18 0 71 89 65

 Sample output:

89 71 71

10

Algorithm 1: Search three times

1. Save all the scores in an array A[10]

2. Find the largest number in A and output it

3. Remove the number found in step 2 from A. Find the

largest number in the remaining 9 numbers and output

it.

4. Remove the number found in step 3 from A. Find the

largest number in the remaining 8 numbers and output

it.

11

Algorithm 2: Sorting first

1. Save all the scores in an array A[10]

2. Sort A in decreasing (non-increasing) order.

3. Output the first three elements of A in order.

12

Algorithm 3: Counting frequency

1. Count the frequency of number p and save it in array

C[p]

2. Check array C in the order of C[100], C[99], C[98],….

If C[p]>0, output p for C[p] time(s) until we totally output 3

numbers.

13

How to describe

an algorithm?

Pseudocode

 Pseudocode is an artificial and informal language that
helps programmers develop algorithms.

 Pseudocode is a "text-based" detail (algorithmic) design
tool.

 Pseudocode often uses structural conventions of a
normal programming language, but it is intended for
human reading rather than machine reading.

 It typically omits details that are essential for machine
understanding of the algorithm, such as variable
declarations and language-specific code.

14

Pseudocode

Denote variable in English.

Omit variable declaration and type

Use if, while, for,…

Use indentation rather than { } to represent blocks

=, ==, !=, ||, &&, !

A[i] represents the i-th item in array A.

15

Pseudo code example

// Algorithm 1: search three times

for i from 1 to 10
A[i]=the i-th score

a= max value in A
remove a from A
b= max value in A
remove b from A
c= max value in A
output a,b,c

16

Task 1:
Try to write pseudocode for

Algorithm 2 and Algorithm 3

Generalized problem: Top n

 You are given m scores ai (i=1,2,…,m). You need to print

the top n scores in non-increasing order.

Constraints:

• m<=1000000

• n<=1000

• 0<=ai<=1000000

Which algorithm to use？
• concise

• easy to code

• efficiency

• memory used

17

Algorithm Complexity

How to measure efficiency of an algorithm？

Time complexity: how much is used in CPU/GPU？

Space complexity: how much is used in memory？

Balance between time complexity and space

complexity.

 Time complexity usually causes more troubles.

18

Kinds of Analysis

(Usually) Worst case Analysis:

• T(n) = max time on any input of size n

• Knowing it gives us a guarantee about the upper
bound.

• In some cases, worst case occurs fairly often

(Sometimes) Average case Analysis:

• T(n) = average time over all inputs of size n

• Average case is often as bad as worst case.

(Rarely) Best case Analysis:

• Cheat with slow algorithm that works fast on some input.

• Good only for showing bad lower bound.

19

Kinds of Analysis

Worst Case: maximum value

Average Case: average value

Best Case: minimum value

20

Worst case

Average case

Best case

0 1 2 3 4 n

Analyze algorithms

While analyzing a particular algorithm, we usually count
the number of operations performed by the algorithm.

We focus on the number of operations, not on the
actual computer time to execute the algorithm.

 This is because a particular algorithm can be
implemented on a variety of computers and the speed
of the computer can affect the execution time.
However, the number of operations performed by the
algorithm would be the same on each computer.

21

Primitive Operations

 Primitive operations are basic computations performed

by an algorithm. Examples are evaluating an expression,

assigning a value to a variable, indexing into an array,

calling a method, returning from a method, etc. They

are easily identifiable in pseudocode and largely

independent from the programming language.

 By inspecting the pseudocode, we can determine the

maximum number of primitive operations executed by

an algorithm as a function of the input size. Think about

the worst case, best case, and average case.

22

Algorithm arrayMax(A, n):

Input: An array A of n integers

Output: the max element

Number of operations:

max = A[0]

for i = 1 to n-1 do

if (A[i] > max) then max = A[i]

return max

2

n

6(n-1) (including increment counter)

1

Total: 7n-3

Example23

The algorithm arrayMax executes about 7n - 3 primitive
operations in the worst case. Define:
▪ a = Time taken by the fastest primitive operation
▪ b = Time taken by the slowest primitive operation

Let T(n) be the worst case time of arrayMax.
Then a(7n - 3) <= T(n) <= b(7n - 3)

▪ The running time T(n) is bounded by two linear functions
▪ Changing the hardware/software environment will not affect

the growth rate of T(n)

Primitive Operations24

Asymptotic Notation25

 Asymptotic Tight Bound:  Intuitively like “=” (The

Theta notation)

 Asymptotic Upper Bound:  Intuitively like “≤” (The Big-
Oh notation)

 Asymptotic Lower Bound Ω Intuitively like “≥” (The Little-

Omega notation)

 Asymptotic Upper Bound: o Intuitively like “<” (The Little-
Oh notation)

 Asymptotic Lower Bound: 𝜔 Intuitively like “>” (The Little-

Omega notation)

-notation

 For a given function g(n), we denote by (g(n)) the set of functions

 (g(n))={f(n): there exist positive constants 𝑐1, 𝑐2 and 𝑛0 such that

 0 ≤ 𝑐1𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝑐2𝑔 𝑛 for all n ≥ 𝑛0}

𝑛0
n

𝑓 𝑛

𝑐1𝑔 𝑛

𝑐2𝑔 𝑛

𝑓 𝑛 = (g(n))

The value of f(n) always lies

between 𝑐1𝑔 𝑛 𝑎𝑛𝑑 𝑐2𝑔 𝑛
inclusively.

g(n) is an asymptotically tight bound for f(n)

26

-notation

 Example: To show that
1

2
𝑛2 − 3𝑛 = Θ(𝑛2)

 Since any constant is a degree-0 polynomial, we can
express any constant function as Θ(𝑛0) or Θ(1).

 Θ(1) means either a constant or a constant function with
respect to some variable.

27

O-notation

 For a given function g(n), we denote by O(g(n)) the

set of functions

O(g(n))={f(n): there exist positive constants 𝑐 and 𝑛0
such that 0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 for all n ≥ 𝑛0}

28

𝑛0
n

𝑐𝑔 𝑛

𝑓 𝑛 𝑓 𝑛 = O(g(n))

O-notation

 O(g(n))={f(n): there exist positive constants 𝑐 and 𝑛0 such that

0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 for all n ≥ 𝑛0}

 Once the input size n gets big enough (bigger than n0), then

f(n) is always less than some constant multiple of g(n).

 (c allows us to shift g(n) up by a constant amount to account

for machine speed, etc.)

 [Introduced in 1894 by Paul Bachmann, popularized by Don

Knuth.]

29

O-notation

 Example: To show that
1

2
𝑛2 − 3𝑛 = 𝑂(𝑛2)

 If 𝑓 𝑛 = (g(n)), then 𝑓 𝑛 = O(g(n)).

 Typically, in this class, we’ll want things to be sub-linear: we don’t
want to look at every data item.

 Quadratic function: O(n2)

 Linear function: O(n)

 Sublinear function: O(log n), O(n1/2), O(n0.99),…

30

Alternative Definition of O-notation

O() notation focuses on the largest term and

ignores constants

Largest term will dominate eventually for large

enough n.

Constants depend on “irrelevant” things like machine

speed, architecture, etc.

Definition: f(n) is O(g(n)) if the limit of f(n) / g(n),

is a constant as n goes to infinity.

31

Examples

Example 1:

Suppose f(n) = 12n2 + n + 2 log n.

Consider g(n) = n2

Then lim [f(n)/g(n)]= lim[12 + (1/n) + (2 log n) / n2] = 12

Example 2:

Is f(n) = n log n in O(n)？

Check: lim [(n log n) / n] = lim log n = infinity! So no!

𝑓 𝑛 = O(g(n))

or f(n)=O(n2)

32

33

Big-O Taxonomy

Growth Rate Name Notes
O(1) constant Best, independent of input size

O(log log n) very fast

O(log n) logarithmic often for tree-based data

structures

O(logk n) polylogarithmic

O(np), 0 < p < 1 E.g. O(n1/2) = O(𝑛) Still sub-linear

O(n) linear Have to look at all data

O(n log n) Time to sort

O(n2) quadratic Ok if n is small enough

O(nk) polynomial Tractable

O(2n) exponential bad

O(n!) factorial bad

34
Big-O Examples

Ω-notation

 Ω-notation provides an asymptotic lower bound.

𝑛0
n

𝑐𝑔 𝑛

𝑓 𝑛

𝑓 𝑛 = Ω(g(n))

For a given function g(n), we denote by Ω(g(n)) the set of

functions

Ω(g(n))={f(n): there exist positive constants 𝑐 and 𝑛0 such that

0 ≤ 𝑐𝑔 𝑛 ≤ 𝑓 𝑛 for all n ≥ 𝑛0}

35

Ω-notation

 Example: To show that
1

2
𝑛2 − 3𝑛 = Ω(𝑛2)

 If 𝑓 𝑛 = (g(n)), then 𝑓 𝑛 = Ω(g(n)).

 If 𝑓 𝑛 = Ω(g(n)) and 𝑓 𝑛 = O(g(n)), then 𝑓 𝑛 = (g(n)).

36

Asymptotically tight or not?37

 2n=O(n) this is asymptotically tight

 2n=O(n2) this is not asymptotically tight

𝜔-notation

𝑜-notation

n=Ω(logn) this is not asymptotically tight

n=Ω(n) this is asymptotically tight

o(g(n))={f(n): there exist positive constants 𝑐 and 𝑛0 such that

0 ≤ 𝑓 𝑛 < 𝑐𝑔 𝑛 for all n ≥ 𝑛0}

𝜔(g(n))={f(n): there exist positive constants 𝑐 and 𝑛0 such that

0 ≤ 𝑐𝑔 𝑛 < 𝑓 𝑛 for all n ≥ 𝑛0}

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)
= 0

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)
= ∞

100n versus n2 100n versus n

Why 100n=O(n)？

When n is very big like 10000000000000000

 100n is 1000000000000000000

 n is 10000000000000000

 nearly the same

Why 100n=o(n2)？

When n is 10000000000000000

 100n is 1000000000000000000

 n2 is 100000000000000000000000000000000

 Differ a lot!

38

Example

𝑛 log 𝑛 = 𝑜(𝑛2)

𝑛 log 𝑛 = 𝑂(𝑛 log 𝑛) but 𝑛 log 𝑛 ≠ 𝑜(𝑛 log 𝑛)

2𝑛 = 𝑜(𝑛2)

2𝑛 = 𝑂(𝑛) but 2𝑛 ≠ 𝑜(𝑛)

2𝑛2 = 𝑜(𝑛3)

2𝑛2 = 𝑂 𝑛2 but 2𝑛2 ≠ 𝑜(𝑛2)

39

Asymptotic Notation

Relationship between typical functions

log n = o (n)

n = o (n log n)

nc = o (2n) where nc may be n2, n4, etc.

If f(n)=n+log n, we call log n lower order terms

(You are not required to analyze, but
remember these relations)

log n < 𝑛 < n < nlog n < n2 < n4 < 2n < n!

40

Asymptotic Notation

When calculating asymptotic running time

 Drop low-order terms

 Ignore leading constants

 Example 1: T(n) = An2+Bn+C

 An2

 T(n) = O(n2)

 Example 2: T(n) = Anlogn+Bn2+Cn+D

 Bn2

 T(n) = O(n2)

41

Exercises

1. Write the order of the following functions with 𝑂-notation (asymptotically
tight bound).

 f(n)=2n2+3n+5

 g(n)=1000nlogn+5

2. True or False

 Is 2𝑛+1 = 𝑂(2𝑛)?

 Is 22𝑛 = 𝑂(2𝑛)?

3. Why “The running time of algorithm A is at least O(n2)” is meaningless？

42

Insertion-Sort(A)

1 for j = 1 to n-1

2 key = A[j]

3 i = j-1

4 while i >= 0 and A[i] > key

5 A[i+1] = A[i]

6 i = i - 1

7 A[i+1] = key

43

Very often the algorithm

complexity can be observed

directly from simple

algorithms

Asymptotic Performance

O(n2)

There are 4 very useful rules for such Big-Oh analysis ...

General rules for Big-Oh Analysis:

Rule 1. FOR LOOPS

The running time of a for loop is at

most the running time of the

statements inside the for loop

(including tests) times no. of iterations

Rule 2. NESTED FOR LOOPS

The total running time of a

statement inside a group of nested

loops is the running time of the

statement multiplied by the product

of the sizes of all the loops.

for (i=0;i<N;i++)

for (j=0;j<N;j++)

k++; O(N2)

for (i=0;i<N;i++)

a++; O(N)

Rule 3. CONSECUTIVE STATEMENTS

Count the maximum one.

for (i=0;i<N;i++)

a++;

for (i=0;i<N;i++)

for (j=0;j<N;j++)

k++;

O(N2)

Rule 4. IF / ELSE

For the fragment:

If (condition)

S1

else

S2,

take the test +

the maximum

for S1 and S2.

44
Asymptotic Performance

Example of Big-Oh Analysis:

void function1(int n)

{ int i, j;

int x=0;

for (i=0;i<n;i++)

x++;

for (i=0;i<n;i++)

for (j=0;j<n;j++)

x++;

}

This function is O(__)

void function2(int n)

{ int i;

int x=0;

for (i=0;i<n/2;i++)

x++;

}

This function is O(__)

45
Asymptotic Performance

Example of Big-Oh Analysis:

void function4(int n)

{ int i;

int x=0;

for (i=0;i<10;i++)

for (j=0;j<n/2;j++)

x--;

}

void function3(int n)

{ int i;

int x=0;

if (n>10)

for (i=0;i<n/2;i++)

x++;

else

{ for (i=0;i<n;i++)

for (j=0;j<n/2;j++)

x--;

}

}

This function is O(__)

This function is O(__)

46 Asymptotic Performance

Example of Big-Oh Analysis:

void function5(int n)

{ int i;

for (i=0;i<n;i++)

if (IsSignificantData(i))

SpecialTreatment(i);

}

This function is O(____)

Suppose

IsSignificantData is O(n),

SpecialTreatment is O(n log n)

47 Asymptotic Performance

Insertion-Sort(A)

1 for j = 1 to n-1

2 key = A[j]

3 i = j-1

4 while i >= 0 and A[i] > key

5 A[i+1] = A[i]

6 i = i - 1

7 A[i+1] = key

What is the complexity of the following algorithm？

Let’s check the three algorithms for Top N!

48

Algorithm 1: Search n times

1. Save all the scores in an array A[m]

2. for k=1 to n

3. Find the largest number in A and output it

4. Remove the number found in step 3 from A.

O(m*n)

49

Algorithm 2: Sorting first

1. Save all the scores in an array A[m]

2. Sort A in decreasing (non-increasing) order.

3. Output the first n elements of A in order.

if step 2 sorting algorithm’s complexity is g(n)

O(m+g(n)+n)

50

Algorithm 3: Counting frequency

1. Count the frequency of number p and save it in array

C[p]

2. Check array C in the order of C[M], C[M-1], C[M-2],….

If C[p]>0, output p for C[p] time(s) until we totally output n

numbers.

where M is the largest number.

O(m+M+n)

51

Maximum Profit
Time Limit : 1 sec, Memory Limit : 131072 KB

Maximum Profit

You can obtain profits from foreign exchange margin transactions. For example, if you buy

1000 dollar at a rate of 100 yen per dollar and sell them at a rate of 108 yen per dollar, you

can obtain (108 - 100) × 1000 = 8000 yen.

Write a program which reads values of a currency Rt at a certain time t (t = 0, 1, 2, ... n-1),

and reports the maximum value of Rj - Ri where j > i .

Input

The first line contains an integer n. In the following n lines, Rt (t = 0, 1, 2, ... n-1) are given in

order.

Output

Print the maximum value in a line.

Constraints
2 <= n <= 200,000

1<= Rt <= 1,000,000,000

52

Source: https://onlinejudge.u-aizu.ac.jp/problems/ALDS1_1_D

53

https://onlinejudge.u-aizu.ac.jp/problems/ALDS1_1_D

Method 1: Simple algorithm

 Let maxv be the maximum profit. We can use the

following simple algorithm to get the solution.

What is the complexity of this simple algorithm？

// Simple algorithm

for j from 1 to n-1

for i from 0 to j-1

maxv=max{maxv, R[j]-R[i]}

Note: the initial value of maxv should be small enough, or you can use R1-R0

as the initial value.

54

Method 2: Quick algorithm

//Quick algorithm

minv=R[0]

for j from 1 to n-1

maxv=max{ maxv, R[j]-minv }

minv=min{ minv, R[j]}

What is the complexity of this quick algorithm？

55

Recursion

 A function or procedure that calls itself.

 Need to beware of infinite loop

Base case

recurring case

56

Recursion

Can simply the code

Can solve the problems with the following properties:

 The problem can be divided or reduced into the same problem
with small parameters

We need information of the subproblems to solve the current

one.

57

Example: factorial

n’s factorial: n!=1*2*3*…*n

int factorial(int n){

if (n==1)

return 1;

else

return n*factorial(n-1);

}

Make sure that

you have an end.

58

Complexity

factorial(n)

if n==1

return 1

else

return n*factorial(n-1)

T(n)=T(n-1)+c

T(1)=O(1)

T(n)=T(n-1)+c

=(T(n-2)+c)+c

=(T(n-3)+c)+c+c

…

=T(n-k)+k*c

…

=T(1)+(n-1)*c

=c’+(n-1)*c

=O(n)

59

Example: GCD

 The greatest common divisor (GCD) of two or more numbers

is the greatest common factor number that divides them,

exactly. It is also called the highest common factor (HCF).

Most common way of computing GCD quickly is by

Euclidean algorithm.

60

Example: Fibonacci Number

Base case: F(0)=1, F(1)=1

Recursive relation: F(n)=F(n-1)+F(n-2) if n>1

int f(int n){

if (n<2)

return 1;

else

return f(n-1)+f(n-2);

}

Warning: DO NOT use recursion to

calculate the n-th Fibonacci

number using recursion without

memorization as it is very slow

61

Example: Hanoi Tower

Move n plates from pile A to pile C via pile B. Small plates

can never be placed under larger plates.

Hanoi(n, A, B, C)

If n==1

move the plate from A to C directly

else

move n-1 plates from A to B via C

move 1 plate from A to C

move n-1 plates from B to C via A

62

Divide and Conquer

Divide the problem into smaller local problems

Recursively solve the local problem

Conquer the global problem by combining the

results of local problems.

63

Find the minimum value

findMaximum(A, left, right)

mid=(left + right) / 2 // Divide

if left== right // There is only one element

return A[left]

else

u=findMaximum(A, left, mid) //solve the first half

v=findMaximum(A, mid+1,right) //solve the second half

x=max(u,v) // Conquer

return x

64

Complexity

findMaximum(A, left, right)

mid=(left + right)/2

if left== right

return A[left]

else

u=findMaximum(A, left, mid)

v=findMaximum(A, mid+1,right)

x=max(u,v)

return x

T(n)=T(n/2)+T(n/2)+c=2T(n/2)+c

T(1)=O(1)

T(n)=2T(n/2)+c

=2(2T(n/4)+c)+c

=4(2T(n/8)+c)+c+2c

…

=2kT(n/2k)+c*(1+2+22+…+2k-1)

=2kT(n/2k)+c*(2k-1)

…

=2lognT(n/2logn)+(2logn-1)*c

=nT(1)+(n-1)*c

=n*c’+(n-1)*c

=O(n)

65

Example: Power

Compute ab mod P where a and b are both

large integers and P=1000000007 which is a

prime.

66

#define P 1000000007

long long power(long long a, long long b){

if(b==0){

return 1;

}

else{

if(b%2==0){

return power((a*a)%P, b/2);

}

else{

return (power((a*a)%P, (b-1)/2)*a)%P;

}

}

}

67

	投影片 1: DET102 Data Structures and Algorithms
	投影片 2: Course Information
	投影片 3: Assignments & Grading
	投影片 4: Assignments & Grading
	投影片 5: Resources
	投影片 6: Online Judgement
	投影片 7: Programming Competition
	投影片 8: What is Algorithm？
	投影片 9: Algorithm in computer science
	投影片 10: Algorithm Example: Top 3
	投影片 11: Algorithm 1: Search three times
	投影片 12: Algorithm 2: Sorting first
	投影片 13: Algorithm 3: Counting frequency
	投影片 14: Pseudocode
	投影片 15: Pseudocode
	投影片 16: Pseudo code example
	投影片 17: Generalized problem: Top n
	投影片 18: Algorithm Complexity
	投影片 19: Kinds of Analysis
	投影片 20: Kinds of Analysis
	投影片 21: Analyze algorithms
	投影片 22: Primitive Operations
	投影片 23: Example
	投影片 24
	投影片 25: Asymptotic Notation
	投影片 26: -notation
	投影片 27: -notation
	投影片 28: O-notation
	投影片 29: O-notation
	投影片 30: O-notation
	投影片 31: Alternative Definition of O-notation
	投影片 32: Examples
	投影片 33: Big-O Taxonomy
	投影片 34: Big-O Examples
	投影片 35: 大寫 omega-notation
	投影片 36: 大寫 omega-notation
	投影片 37: Asymptotically tight or not?
	投影片 38: 100n versus n2 100n versus n
	投影片 39: Example
	投影片 40: Asymptotic Notation
	投影片 41: Asymptotic Notation
	投影片 42: Exercises
	投影片 43: Asymptotic Performance
	投影片 44: Asymptotic Performance
	投影片 45: Asymptotic Performance
	投影片 46: Asymptotic Performance
	投影片 47: Asymptotic Performance
	投影片 48
	投影片 49: Algorithm 1: Search n times
	投影片 50: Algorithm 2: Sorting first
	投影片 51: Algorithm 3: Counting frequency
	投影片 52
	投影片 53
	投影片 54: Method 1: Simple algorithm
	投影片 55: Method 2: Quick algorithm
	投影片 56: Recursion
	投影片 57: Recursion
	投影片 58: Example: factorial
	投影片 59: Complexity
	投影片 60: Example: GCD
	投影片 61: Example: Fibonacci Number
	投影片 62: Example: Hanoi Tower
	投影片 63: Divide and Conquer
	投影片 64: Find the minimum value
	投影片 65: Complexity
	投影片 66: Example: Power
	投影片 67

