DET102 Data Structures
and Algorithms

Lecture 10: Heap

Queue and Priority Queue

» Queue

®» First in, first out

= based on the entering order
» Priority Queue

= [tem with the highest priority

= pbased on the priority value

= mplementation
= binary search tree (how to balance)
= Nheap

The free is completely
Heap filed on all levels with @
possible exception where
the lowest level is filled
from left to right.

= Structure Property
» A complete (or simple complete) binary iree.
®» Heap-order Property

»The data in the node is greater/smaller than the data
in all the descendants of the node.

» Max Heap: max value is stored in the root
= Min Heap: min value is stored in the root.

In the remaining slides, we will study Min Heap.

Examples

Which one is a min heap ?

Would you choose array implementation or linked implementation ¢

Array Representation of Binary Tree

Array Representation
of Binary Tree

A numbering scheme:

We can represent
binary trees using array

by applying this
numbering scheme.

Array Representation of Binary Tree

Children of anode afsloti: | eft(j) = 2j+]
Right(i) = 2i+2
Parent of a node at sloft i:
Parent(i) = L (i-1)/2 |
1 2 3 45 6 7 8 9 .« ” .
= | xJ: “Floor” The greatest integer less than x
A|BICID|JE|FIGIH|1]]J [x]: “Ceiling” The least integer greater than x

For any sloft i,
If i is odd: it represents a left son.
If i is even (but not zero): it represents a right son.
The node at the right of the represented node of i (if any), is at i+1.
The node at the left of the represented node of i (if any), is at i-1.

L Is the floor function.
Array Implementation

= When we say heap, we involve only Min Heap.

= Notations

» | ength[H]: the number of elements in an array H
which is the length

®» Heap-size[H]: the total number of elements stored in
the heap.

®» [f heap-size[H]< length[H], then array H may contain
valid elements but these elements are not in the heap.

Parent(k) is af H[| («1)2]], if k#0
Lchild(k) is at H[2k+1], if 2k+1<n-1
Rchild(k) is at H[2k+2], if 2k+2<n-1

Insert

To insert an item

Step 1: Put the item at the first empty slot in the array
Step 2. Adjust the heap to satisfy heap-order property (float up)

Insert

lonsertan item Step 1: Put the item at the first empty slot in the array
Step 2: Adjust the heap to satisfy heap-order property (float up)

O

Delete

To delete an item Step 1: Copy the last data to the root
Step 2: Adjust the heap to satisfy heap-order property (sink)

1, O

13 (18) delete 11 (13) 18)
1) (19) (1) (s 16) (19) (1) (&9

%) () (22) () (w0 &) () (22) (24

Delete

To delete an item Step 1: Copy the last data to the root
Step 2: Adjust the heap to satisfy heap-order property (sink)

(40) 13)
13 18 bl (40) 18)
1) (19 () (9 16) (19) (1) (ee
33) (57) (22) (24) (40 @@@@
(3 13
16) 18) 16) 8

) (19 @) Oy) G (@
(40) (57) (22) (24 () (&) @) Ga)

Heapity

» To preserve the heap order, the value of all children of
H[i] must be greater than or equal to the value of Hi].

» We assume that binary trees rooted aft left and right
children of H[i] are (min) heaps, but H[i] may violate the
heap property. In this case, we push the value at HJi]
down the heap until the tree rooted at HJi] is a heap.

=6

Heapity

®»| emma: The heap order is preserved when
Heapify Is invoked recursively.

= Analysis
»The children subtrees have at most size of 2n/3
T(n)<T(2n/3)+6(1)
= Applying Master Theorem
T(n)=0O(logn)

Ild a Heap

» Step 1: Initialization

set heap-size[H]«—length[H]

» Step 2: fixing

for |«

down to |

call to Heapity(H,i)

Guess which value can be
the starting value of i ?

Heapsort

» The heap sort is accomplished by using a Build-heap for
maintaining a (min) heap, and Heapify for fixing the
heap.

Step 1: Building
call to Build-heap(H)
Step 2: loop, exchanging root, and fixing the heap
for i<—length[H] down o 1
Swap H[0] and HIi]
Set heap-size[H] «<heap-size[H]-1
Call to Heapitfy(H,0)
Step 3: return at the point of call
return

Exercise

®» [nsert the following numbers into an empty Heap
(Min-Heap)

»11,13,7.5,22,3,19, 1,2

®» Glven an array of data, how to build a min-
heap ?

»3,9.7,6,1,4,2,5

I_I/A\Al f\llf\f\l I'I' 'I'If\f'\ VN /N \/ If'\f\f\llf\o

e e Insert to a Max heap

oNol_JFoN°

(@) ~ ¢

Delete from a Max Heap

AR

Heapify for max heap

Builld a max heap
Suppose the input numbers are 1,2,3,4,5,6,7

Step 1 ‘ Step 2 G

ORINOIORONO
‘

Heap sort using Max
heap

7 51412311 1 154

213 1|7
Heyxchange
314|215 5

1 /

Exchange Heapﬁy f E Exchange f E

2 3|14 5|7 3 (2114 5 7 1 123415 7

Exchange

Heap Sort

= Algorithm:
» Use a heap (max or min)
»Every time, select the root item, adjust the heap.

» The output sequence is sorted.
» Complexity:
= O(nlogn)

Application of Heap

= Priority Queue

= A priority qgueue is a data structure which
maintains a set S of elements, each of with an
associated value (key), and supports the
following operations:

=insert(S, k): insert an element k into the set S

»extractMax(S): emove and return the element of S
with the largest key

Complexity

» Heap

Heapify: O(log n)
nsert: O(log n)

Delete: Oflog n)

= Priority Queue
»insert: O(log n)

»extractMax: O(log n)

5
16
11
12
13
14
15
16
17
18
19
28

Priority Queue in STL

int main()

{

priority queue<int:> PQ;
PQ.push(1);
PQ.push(2);
PQ.push(3);
PQ.push(5);

cout<<PQ.top()<<" "
PQ.pop();

cout<<PQ.top()<<" "
PQ.pop();

PQ.push(11);

cout<<PQ.top()<<" ";
PQ.pop();

cout<<PQ.top()<<" "
PQ.pop();

Qutput:
85113

If the data type of the elements in priority
queue is inf, max key has the highest
priority by default.

push(): insert a new element to PQ
pop(): remove one element from the top.
top(): return the top element which is the
one with highest priority (max key)

	投影片 1: DET102 Data Structures and Algorithms
	投影片 2: Queue and Priority Queue
	投影片 3: Heap
	投影片 4: Examples
	投影片 5: Array Representation of Binary Tree
	投影片 6: Array Representation of Binary Tree
	投影片 7: Array Implementation
	投影片 8: Insert
	投影片 9: Insert
	投影片 10: Delete
	投影片 11: Delete
	投影片 12: Heapify
	投影片 13: Heapify
	投影片 14: Build a Heap
	投影片 15
	投影片 16: Heapsort
	投影片 17: Exercise
	投影片 18
	投影片 19
	投影片 20
	投影片 21
	投影片 22
	投影片 23
	投影片 24
	投影片 25: Heap Sort
	投影片 26: Application of Heap
	投影片 27: Complexity
	投影片 28: Priority Queue in STL

