
DET102 Data Structures 

and Algorithms
Lecture 10: Heap



Queue and  Priority Queue

Queue

 First in, first out

 based on the entering order

 Priority Queue

 Item with the highest priority

 based on the priority value

 implementation

binary search tree (how to balance)

heap



The tree is completely 

filled on all levels with a 

possible exception where 

the lowest level is filled 

from left to right.

Heap

Structure Property

A complete (or simple complete) binary tree.

Heap-order Property

The data in the node is greater/smaller than the data 

in all the descendants of the node.

Max Heap: max value is stored in the root

Min Heap: min value is stored in the root.

In the remaining slides, we will study Min Heap.



Examples

Which one is a min heap？

Would you choose array implementation or linked implementation？

11

13 18

16 19 37 66

33 57 22 24 40

11

13 18

12 19 37 66

33 57 22 24 40
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Array Representation of Binary Tree

A numbering scheme:

A

B C

F GD E

H I J

0

1 2

5 63 4

7 8 9

A B C D E F G H I J
0 1 2 3 4 5 6 7 8 9

We can represent 

binary trees using array

by applying this 

numbering scheme.

A

B C

F GD E

H I J

0

1 2

5 63 4

7 8 9

Array Representation 

of Binary Tree
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Array Representation of Binary Tree

Left(i) = 2i+1
Right(i) = 2i+2 

A B C D E F G H I J

0 1 2 3 4 5 6 7 8 9

A

B C

F GD E

H I J

0

1 2

5 63 4

7 8 9

Children of a node at slot i:

Parent(i) =  (i-1)/2 

Parent of a node at slot i:

x: “Floor” The greatest integer less than x

x: “Ceiling” The least integer greater than x

For any slot i, 

If i is odd: it represents a left son.

If i is even (but not zero): it represents a right son.

The node at the right of the represented node of i (if any), is at i+1.

The node at the left of the represented node of i (if any), is at i-1.



Array Implementation

When we say heap, we involve only Min Heap.

Notations

Length[H]: the number of elements in an array H 

which is the length

Heap-size[H]: the total number of elements stored in 

the heap.

If heap-size[H]< length[H], then array H may contain 

valid elements but these elements are not in the heap.

Parent(k) is at H[ ]],   if k≠0

Lchild(k) is at H[2k+1], if 2k+1≤n-1

Rchild(k) is at H[2k+2], if 2k+2≤n-1

(k-1)/2

is the floor function.



Insert

To insert an item

Step 1: Put the item at the first empty slot in the array

Step 2: Adjust the heap to satisfy heap-order property (float up)

11

13 18

16 19 37 66

33 57 22 24 40

insert 12

11

13 18

16 19 37 66

33 57 22 24 40 12



Insert

To insert an item Step 1: Put the item at the first empty slot in the array

Step 2: Adjust the heap to satisfy heap-order property (float up)

Float up

11

13 18

16 19 37 66

33 57 22 24 40 12

11

13 18

16 19 12 66

33 57 22 24 40 37
11

13 12

16 19 18 66

33 57 22 24 40 37



Delete

To delete an item Step 1: Copy the last data to the root

Step 2: Adjust the heap to satisfy heap-order property (sink)

11

13 18

16 19 37 66

33 57 22 24 40

delete 11

40

13 18

16 19 37 66

33 57 22 24



Delete

To delete an item Step 1: Copy the last data to the root

Step 2: Adjust the heap to satisfy heap-order property (sink)

40

13 18

16 19 37 66

33 57 22 24 40

sink down 

13

40 18

16 19 37 66

33 57 22 24

13

16 18

40 19 37 66

33 57 22 24

13

16 18

33 19 37 66

40 57 22 24



Heapify

 To preserve the heap order, the value of all children of 

H[i] must be greater than or equal to the value of H[i].

We assume that binary trees rooted at left and right 

children of H[i] are (min) heaps, but H[i] may violate the 

heap property. In this case, we push the value at H[i] 

down the heap until the tree rooted at H[i] is a heap.

7

5 2

2

5 7



Heapify

Lemma: The heap order is preserved when 

Heapify is invoked recursively.

Analysis

The children subtrees have at most size of 2n/3

T(n)≤T(2n/3)+Ө(1)

Applying Master Theorem

T(n)=O(logn)



Guess which value can be 

the starting value of i？

Build a Heap

 Step 1: Initialization

set heap-size[H]←length[H]

 Step 2: fixing

for i←    down to 1

call to Heapify(H,i)



1

2 3

4 5 6 7

Suppose the input numbers are 7,5,6,4,2,1,3

7

5 1

4 2
6 3

1

2 7

4 5 6 3

7

2 1

4 5 6 3

7

5 6

4 2 1 3

Min-heap



Heapsort

 The heap sort is accomplished by using a Build-heap for 

maintaining a (min) heap, and Heapify for fixing the 

heap.

Step 1: Building

call to Build-heap(H)

Step 2: loop, exchanging root, and fixing the heap

for i←length[H] down to 1

Swap H[0] and H[i]

Set heap-size[H] ←heap-size[H]-1

Call to Heapify(H,0)

Step 3: return at the point of call

return



Exercise 

 Insert the following numbers into an empty Heap 

(Min-Heap)

11, 13, 7, 5, 22, 3, 19, 1, 2

Given an array of data, how to build a min-

heap？

3,9,7,6,1,4,2,5



How about the max heap?



7

5 6

4 2 1 3

8

7

5 6

8 2 1 3

4 7

8 6

5 2
1 3

4

8

7 6

5 2 1
3

4

Insert to a Max heap



7

5 6

4 2 1 3

3

5 6

4 2 1

6

5 3

4 2 1

Delete from a Max Heap



2

5 7

4 3 6 1

7

5 6

4 3 2 1

7

5 2

4 3 6 1

Heapify for max heap



1

2 3

4 5 6 7

Suppose the input numbers are 1,2,3,4,5,6,7

7

5 1

4 2
6 3

1

2 7

4 5 6 3

Step 1

1

5 7

4 2 6 3

7

5 6

4 2 1 3

Step 2

Build a max heap



7

5 4

2 3 1

7 5 4 2 3 1

1

5 4

2 3 7

1 5 4 2 3 7

5

1 4

2 3

5 1 4 2 3 7

Exchange Heapify

5

3 4

2 1

5 3 4 2 1 7

Exchange

1

3 4

2 5

1 3 4 2 5 7

4

3 1

2

Heapify

4 3 1 2 5 7

Heap sort using Max 

heap



2

3 1

4

2 3 1 4 5 7

Exchange Heapify

3

2 1

3 2 1 4 5 7

1

2 3

1 2 3 4 5 7

Heapify

Exchange
1

2

Exchange

2

1

2 1 3 4 5 7
1 2 3 4 5 7



Heap Sort

Algorithm:

Use a heap (max or min)

Every time, select the root item, adjust the heap.

The output sequence is sorted.

Complexity:

O(nlogn)



Application of Heap

Priority Queue

A priority queue is a data structure which 

maintains a set S of elements, each of with an 

associated value (key), and supports the 

following operations:

insert(S, k): insert an element k into the set S

extractMax(S): emove and return the element of S 

with the largest key



Complexity

Heap

Heapify: O(log n)

Insert: O(log n)

Delete: O(log n)

Priority Queue

insert: O(log n)

extractMax: O(log n)



Priority Queue in STL

Output:

8 5 11 3

If the data type of the elements in priority 

queue is int, max key has the highest 

priority by default.

push(): insert a new element to PQ

pop(): remove one element from the top.

top(): return the top element which is the 

one with highest priority (max key)
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