
DET102 Data Structures

and Algorithms
Lecture 10: Heap

Queue and Priority Queue

Queue

 First in, first out

 based on the entering order

 Priority Queue

 Item with the highest priority

 based on the priority value

 implementation

binary search tree (how to balance)

heap

The tree is completely

filled on all levels with a

possible exception where

the lowest level is filled

from left to right.

Heap

Structure Property

A complete (or simple complete) binary tree.

Heap-order Property

The data in the node is greater/smaller than the data

in all the descendants of the node.

Max Heap: max value is stored in the root

Min Heap: min value is stored in the root.

In the remaining slides, we will study Min Heap.

Examples

Which one is a min heap？

Would you choose array implementation or linked implementation？

11

13 18

16 19 37 66

33 57 22 24 40

11

13 18

12 19 37 66

33 57 22 24 40

5

Array Representation of Binary Tree

A numbering scheme:

A

B C

F GD E

H I J

0

1 2

5 63 4

7 8 9

A B C D E F G H I J
0 1 2 3 4 5 6 7 8 9

We can represent

binary trees using array

by applying this

numbering scheme.

A

B C

F GD E

H I J

0

1 2

5 63 4

7 8 9

Array Representation

of Binary Tree

6

Array Representation of Binary Tree

Left(i) = 2i+1
Right(i) = 2i+2

A B C D E F G H I J

0 1 2 3 4 5 6 7 8 9

A

B C

F GD E

H I J

0

1 2

5 63 4

7 8 9

Children of a node at slot i:

Parent(i) =  (i-1)/2 

Parent of a node at slot i:

x: “Floor” The greatest integer less than x

x: “Ceiling” The least integer greater than x

For any slot i,

If i is odd: it represents a left son.

If i is even (but not zero): it represents a right son.

The node at the right of the represented node of i (if any), is at i+1.

The node at the left of the represented node of i (if any), is at i-1.

Array Implementation

When we say heap, we involve only Min Heap.

Notations

Length[H]: the number of elements in an array H

which is the length

Heap-size[H]: the total number of elements stored in

the heap.

If heap-size[H]< length[H], then array H may contain

valid elements but these elements are not in the heap.

Parent(k) is at H[]], if k≠0

Lchild(k) is at H[2k+1], if 2k+1≤n-1

Rchild(k) is at H[2k+2], if 2k+2≤n-1

(k-1)/2

is the floor function.

Insert

To insert an item

Step 1: Put the item at the first empty slot in the array

Step 2: Adjust the heap to satisfy heap-order property (float up)

11

13 18

16 19 37 66

33 57 22 24 40

insert 12

11

13 18

16 19 37 66

33 57 22 24 40 12

Insert

To insert an item Step 1: Put the item at the first empty slot in the array

Step 2: Adjust the heap to satisfy heap-order property (float up)

Float up

11

13 18

16 19 37 66

33 57 22 24 40 12

11

13 18

16 19 12 66

33 57 22 24 40 37
11

13 12

16 19 18 66

33 57 22 24 40 37

Delete

To delete an item Step 1: Copy the last data to the root

Step 2: Adjust the heap to satisfy heap-order property (sink)

11

13 18

16 19 37 66

33 57 22 24 40

delete 11

40

13 18

16 19 37 66

33 57 22 24

Delete

To delete an item Step 1: Copy the last data to the root

Step 2: Adjust the heap to satisfy heap-order property (sink)

40

13 18

16 19 37 66

33 57 22 24 40

sink down

13

40 18

16 19 37 66

33 57 22 24

13

16 18

40 19 37 66

33 57 22 24

13

16 18

33 19 37 66

40 57 22 24

Heapify

 To preserve the heap order, the value of all children of

H[i] must be greater than or equal to the value of H[i].

We assume that binary trees rooted at left and right

children of H[i] are (min) heaps, but H[i] may violate the

heap property. In this case, we push the value at H[i]

down the heap until the tree rooted at H[i] is a heap.

7

5 2

2

5 7

Heapify

Lemma: The heap order is preserved when

Heapify is invoked recursively.

Analysis

The children subtrees have at most size of 2n/3

T(n)≤T(2n/3)+Ө(1)

Applying Master Theorem

T(n)=O(logn)

Guess which value can be

the starting value of i？

Build a Heap

 Step 1: Initialization

set heap-size[H]←length[H]

 Step 2: fixing

for i← down to 1

call to Heapify(H,i)

1

2 3

4 5 6 7

Suppose the input numbers are 7,5,6,4,2,1,3

7

5 1

4 2
6 3

1

2 7

4 5 6 3

7

2 1

4 5 6 3

7

5 6

4 2 1 3

Min-heap

Heapsort

 The heap sort is accomplished by using a Build-heap for

maintaining a (min) heap, and Heapify for fixing the

heap.

Step 1: Building

call to Build-heap(H)

Step 2: loop, exchanging root, and fixing the heap

for i←length[H] down to 1

Swap H[0] and H[i]

Set heap-size[H] ←heap-size[H]-1

Call to Heapify(H,0)

Step 3: return at the point of call

return

Exercise

 Insert the following numbers into an empty Heap

(Min-Heap)

11, 13, 7, 5, 22, 3, 19, 1, 2

Given an array of data, how to build a min-

heap？

3,9,7,6,1,4,2,5

How about the max heap?

7

5 6

4 2 1 3

8

7

5 6

8 2 1 3

4 7

8 6

5 2
1 3

4

8

7 6

5 2 1
3

4

Insert to a Max heap

7

5 6

4 2 1 3

3

5 6

4 2 1

6

5 3

4 2 1

Delete from a Max Heap

2

5 7

4 3 6 1

7

5 6

4 3 2 1

7

5 2

4 3 6 1

Heapify for max heap

1

2 3

4 5 6 7

Suppose the input numbers are 1,2,3,4,5,6,7

7

5 1

4 2
6 3

1

2 7

4 5 6 3

Step 1

1

5 7

4 2 6 3

7

5 6

4 2 1 3

Step 2

Build a max heap

7

5 4

2 3 1

7 5 4 2 3 1

1

5 4

2 3 7

1 5 4 2 3 7

5

1 4

2 3

5 1 4 2 3 7

Exchange Heapify

5

3 4

2 1

5 3 4 2 1 7

Exchange

1

3 4

2 5

1 3 4 2 5 7

4

3 1

2

Heapify

4 3 1 2 5 7

Heap sort using Max

heap

2

3 1

4

2 3 1 4 5 7

Exchange Heapify

3

2 1

3 2 1 4 5 7

1

2 3

1 2 3 4 5 7

Heapify

Exchange
1

2

Exchange

2

1

2 1 3 4 5 7
1 2 3 4 5 7

Heap Sort

Algorithm:

Use a heap (max or min)

Every time, select the root item, adjust the heap.

The output sequence is sorted.

Complexity:

O(nlogn)

Application of Heap

Priority Queue

A priority queue is a data structure which

maintains a set S of elements, each of with an

associated value (key), and supports the

following operations:

insert(S, k): insert an element k into the set S

extractMax(S): emove and return the element of S

with the largest key

Complexity

Heap

Heapify: O(log n)

Insert: O(log n)

Delete: O(log n)

Priority Queue

insert: O(log n)

extractMax: O(log n)

Priority Queue in STL

Output:

8 5 11 3

If the data type of the elements in priority

queue is int, max key has the highest

priority by default.

push(): insert a new element to PQ

pop(): remove one element from the top.

top(): return the top element which is the

one with highest priority (max key)

	投影片 1: DET102 Data Structures and Algorithms
	投影片 2: Queue and Priority Queue
	投影片 3: Heap
	投影片 4: Examples
	投影片 5: Array Representation of Binary Tree
	投影片 6: Array Representation of Binary Tree
	投影片 7: Array Implementation
	投影片 8: Insert
	投影片 9: Insert
	投影片 10: Delete
	投影片 11: Delete
	投影片 12: Heapify
	投影片 13: Heapify
	投影片 14: Build a Heap
	投影片 15
	投影片 16: Heapsort
	投影片 17: Exercise
	投影片 18
	投影片 19
	投影片 20
	投影片 21
	投影片 22
	投影片 23
	投影片 24
	投影片 25: Heap Sort
	投影片 26: Application of Heap
	投影片 27: Complexity
	投影片 28: Priority Queue in STL

