DET102 Data Structures and Algorithms

Lecture 10: Heap

Queue and Priority Queue

- Queue
 - First in, first out
 - based on the entering order
- Priority Queue
 - Item with the highest priority
 - based on the priority value
 - implementation
 - binary search tree (how to balance)
 - heap

Heap

The tree is completely filled on all levels with a possible exception where the lowest level is filled from left to right.

- Structure Property
 - A complete (or simple complete) binary tree.
- Heap-order Property
 - The data in the node is greater/smaller than the data in all the descendants of the node.
 - Max Heap: max value is stored in the root
 - ► Min Heap: min value is stored in the root.

In the remaining slides, we will study Min Heap.

Examples

Which one is a min heap?

Would you choose array implementation or linked implementation?

Array Representation of Binary Tree

A numbering scheme:

We can represent binary trees using array by applying this numbering scheme.

Array Representation of Binary Tree

Children of a node at slot i:

Left(i) = 2i+1Right(i) = 2i+2

Parent of a node at slot i:

Parent(i) =
$$\lfloor (i-1)/2 \rfloor$$

Lx. "Floor" The greatest integer less than x

[x]: "Ceiling" The least integer greater than x

For any slot i,

If *i* is odd: it represents a left son.

If *i* is even (but not zero): it represents a right son.

The node at the right of the represented node of i (if any), is at i+1.

The node at the left of the represented node of i (if any), is at i-1.

 $_{-}$ is the floor function.

Array Implementation

- When we say heap, we involve only Min Heap.
- Notations
 - Length[H]: the number of elements in an array H which is the length
 - Heap-size[H]: the total number of elements stored in the heap.
 - ■If heap-size[H] < length[H], then array H may contain valid elements but these elements are not in the heap.

```
Parent(k) is at H[\lfloor (k-1)/2 \rfloor], if k\neq 0
Lchild(k) is at H[2k+1], if 2k+1 \leq n-1
Rchild(k) is at H[2k+2], if 2k+2 \leq n-1
```

Insert

To insert an item

Step 1: Put the item at the first empty slot in the array

Step 2: Adjust the heap to satisfy heap-order property (float up)

Insert

To insert an item Step 1: Put the item at the first empty slot in the array

Step 2: Adjust the heap to satisfy heap-order property (float up)

Delete

To delete an item Step 1: Copy the last data to the root

Step 2: Adjust the heap to satisfy heap-order property (sink)

Delete

To delete an item Step 1: Copy the last data to the root

Step 2: Adjust the heap to satisfy heap-order property (sink)

Heapify

- To preserve the heap order, the value of all children of H[i] must be greater than or equal to the value of H[i].
- We assume that binary trees rooted at left and right children of H[i] are (min) heaps, but H[i] may violate the heap property. In this case, we push the value at H[i] down the heap until the tree rooted at H[i] is a heap.

Heapify

- Lemma: The heap order is preserved when Heapify is invoked recursively.
- Analysis
 - The children subtrees have at most size of 2n/3 T(n)≤T(2n/3)+\text{\theta}(1)
 - Applying Master Theorem
 T(n)=O(logn)

Build a Heap

- Step 1: Initialization set heap-size[H]←length[H]
- Step 2: fixing for i← down to 1 call to Heapify(H,i)

Guess which value can be the starting value of i?

Min-heap

Suppose the input numbers are 7,5,6,4,2,1,3

Heapsort

The heap sort is accomplished by using a Build-heap for maintaining a (min) heap, and Heapify for fixing the heap.

```
Step 1: Building
    call to Build-heap(H)
Step 2: loop, exchanging root, and fixing the heap
    for i←length[H] down to 1
        Swap H[0] and H[i]
        Set heap-size[H] ←heap-size[H]-1
        Call to Heapify(H,0)
Step 3: return at the point of call
        return
```

Exercise

- Insert the following numbers into an empty Heap (Min-Heap)
 - **1**1, 13, 7, 5, 22, 3, 19, 1, 2

- Given an array of data, how to build a minheap?
 - **3**,9,7,6,1,4,2,5

How about the max heap?

Delete from a Max Heap

Build a max heap

Suppose the input numbers are 1,2,3,4,5,6,7

Heap Sort

- Algorithm:
 - Use a heap (max or min)
 - Every time, select the root item, adjust the heap.
 - The output sequence is sorted.
- Complexity:
 - **→**O(nlogn)

Application of Heap

- Priority Queue
 - A priority queue is a data structure which maintains a set S of elements, each of with an associated value (key), and supports the following operations:
 - insert(S, k): insert an element k into the set S
 - extractMax(S): emove and return the element of S with the largest key

Complexity

- Heap
 - Heapify: O(log n)
 - ■Insert: O(log n)
 - Delete: O(log n)
- Priority Queue
 - ■insert: O(log n)
 - extractMax: O(log n)

Priority Queue in STL

```
main.cpp
      #include <iostream>
      #include<queue>
      using namespace std;
      int main()
          priority queue<int> PQ;
          PQ.push(1);
          PQ.push(8);
          PQ.push(3);
          PQ.push(5);
 11
 12
          cout<<PQ.top()<<" ";</pre>
 13
          PQ.pop();
 14
 15
          cout<<PQ.top()<<" _";</pre>
          PQ.pop();
          PQ.push(11);
 20
          cout<<PQ.top()<<" ";</pre>
 21
          PQ.pop();
 23
          cout<<PQ.top()<<" ";</pre>
          PQ.pop();
 25
          return 0;
```

```
Output:
8 5 11 3
```

If the data type of the elements in priority queue is int, max key has the highest priority by default.

push(): insert a new element to PQ pop(): remove one element from the top. top(): return the top element which is the one with highest priority (max key)