
DET102 Data Structures

and Algorithms
Lecture 02: Vector and List

1

Abstract Data Type2

We want to know whether two cups can hold the same

amount of water

What to do？

Calculate the volume by mathematical formulas

 Fill cup 1 by water, pour the water to cup 2, overflow? vice versa

…

We only care about the result, not how to get the result

 Abstract Data Type for cups!

3
Abstract Data Types

Some advanced data types are very useful.

People tend to create modules that group

together the data types and the functions for

handling these data types. (~ Modular Design)

They form very useful toolkits for programmers.

/*Octopus.h*/
class Octopus

{

private:

float value;

Person p;

Credit_Card_No n;

float Rewards;

…

public:

void Increase_value (..);
void Increase_credit(..);
void Pay_Transaction(..);
bool Identity_Verify(..);
Void accumulate();
…
};

When one search for a “tool”, he

looks at what the tools can do. i.e.

He looks at the abstract data

types (ADT).

He needs not know how the

tools have been implemented.

ADT Example in C++: Set

 Value:

▪ A set of elements

Condition: elements are distinct.

 Operations for Set *s:

1. void Add(ELEMENT e)

postcondition: e will be added to *s

2. void Remove(ELEMENT e)

precondition: e exists in *s

postcondition: e will be removed from *s

3. int Size()

postcondition: the no. of elements in *s

will be returned.

…

4

Mathematically a set

is a collection of items

not in any particular

order.

•An ADT is a package of the

declarations of a data type and

the operations that are

meaningful to it.

•We encapsulate the data type

and the operations and hide them

from the user.

•ADTs are implementation

independent.

5

1. Definition of values

involves

• definition

• condition (optional)

Abstract Data Type

The set ADT:

Consists of 2 parts:

2. Definition of operations

each operation involves

• header

• precondition (optional)

• postcondition

Value:
▪ A set of elements

Condition: elements are distinct.

Operations for Set *s:

1. void Add(ELEMENT e)

postcondition: e will be added to *s

2. void Remove(ELEMENT e)

precondition: e exists in *s

postcondition: e will be removed from *s

3. int Size()

postcondition: the no. of elements in *s
will be returned.

…

ADT and Data Structure

 In computer science, an abstract data type (ADT) is a

mathematical model for data types.

 An abstract data type is defined by its behavior from the

point of view of a user, of the data, specifically in terms

of possible values, possible operations on data of this

type, and the behavior of these operations.

 This mathematical model contrasts with data structures,

which are concrete representations of data, and are

the point of view of an implementer, not a user.

6

Basic Data Structures7

 Linear data structures

 Vector

 List

 Deque

 Stack

 Queue

 Priority queue

 Set

 Multiset

 Map

 Multimap

 Nonlinear data structures

 Tree

 graph

Linear List

A Linear List (or a list, for short)

is a sequence of n nodes x1, x2, .., xn whose essential
structural properties involve only the relative positions
between items as they appear in a line.

 A list can be implemented as

array: statically allocated or dynamically allocated

linked list: dynamically allocated

A list can be sorted or unsorted

8

Must be a

constant.

Array

void ArrayTest(){

int scores[100];

//operate on the elements of the scores

array

scores[0]=1;

scores[1]=2;

scores[2]=3;

}

9

In many programming

languages, array is the

built-in data type.

For example, in C/C++ or

Java, each array has a

fixed size once it is

created, and each array

contains the same type

of elements.

Array in memory

index 0 1 2

31 2

3

-3451

99

23142

scores

10

int scores[100];

An index is the number associated with the place in the array.

We can easily access the specific element using its index, for

example, the middle one.

11 Disadvantages of Arrays

The size of array is fixed. Inserting at the end may

cause overflow.

this size is specified at compile time

Deleting or inserting new elements at the front is

expensive. 3 4 5

Insert

For convenience, allocate “large enough ”

▪waste space: only 20 – 30 elements

▪crash: more than 100 elements

2 Inefficient!

How to improve array?

Vector (also called Array List)

• Access each element using a notion of index in [0,n-1]

• Index of element e = the number of elements that are before e

• It is a more general ADT than array.

• One of the famous containers in c++ Standard Template Library.

• Can store a sequence of objects.

• An element can be accessed, inserted or removed by specifying its index.

12

ADT of Vector

 Main methods:

 at(i): return the element at index i without removing it

 set(i,o): replace the element at index i with new value o

 insert: insert a new element at given index

 erase: remove element at some index

 Additional methods”

 size()

 empty()

13

Reference: full list of member functions of Vector in STL

https://gcc.gnu.org/onlinedocs/gcc-4.6.2/libstdc++/api/a00739.html

Applications of Vector

 Direct applications

 sorted collection of objects

 Indirect applications

 auxiliary data structure for algorithms

 component of other data structures: e.g., stack

 Every place where you can use array

14

Array-based implementation of Vector

 Use an array A of size N

 A variable n keeps track of the size of the array list (number of elements

stored)

 Operation at(i) is implemented in O(1) time by returning A[i]

 Operation set(i,o) is implemented in O(1) time by performing A[i] = o

 Operation insert(i, o): we need to make room for the new element by

shifting forward the n - i elements A[i], …, A[n - 1] In the worst case (i = 0),

this takes O(n) time

 Operation erase(i): we need to fill the hole left by the removed element by

shifting backward the n - i - 1 elements A[i + 1], …, A[n - 1] In the worst case

(i = 0), this takes O(n) time

15

Performance

 In the array-based implementation of vector:

 The space used by the data structure is O(n)

 size, empty, at and set run in O(1) time

 insert and erase run in O(n) time in worst case

 If we use the array in a circular fashion, operations insert(0, x) and erase(0,

x) run in O(1) time

 In an insert operation, when the array is full, instead of throwing an

exception, we can replace the array with a larger one.

16

Growable array-based vector

 In an insert(o) operation (without an index), we always insert at the end

 When the array is full, we replace the array with a larger one

 How large should the new array be?

 Incremental strategy: increase the size by a constant c

 Doubling strategy: double the size

 For size n array, “expand” operation requires n copies

17

Which is better? Incremental or

Doubling

 Comparison Method 1

 Given the current size of S = n

 Worst-case running time

 Incremental strategy: O(1)

Doubling strategy: O(n)

 Are you happy?

 Happy if your focus is really the worst-case

 Unhappy

 For doubling strategy, the total number of resizing array size would be
small

 Can we reconsider the analysis method?

18

Which is better? Incremental or

Doubling

Comparison Method2

Compute the total time T(n) needed to perform a series of n
insert(o) operations

 Assume that we start with an empty stack represented by an
array of size 1

We call amortized time of an insert operation the
average time taken by an insert over the series of
operations, i.e., T(n)/n

 This can be a fairer comparison in some cases

 Amortized analysis (均攤分析/平攤分析)

19

Amortized Analysis

 size(n): the number of elements stored in the vector after n insertion
operations

 capacity(n): the capacity of the vector after n insertion operations

 T(n): the time spent on expanding for n consecutive insertion operations.

 We assume that there are already N elements in the vector before insertion
operations.

 size(n)=N+n

 size(n)<= capacity(n) < 2*size(n)

 because N is a constant

 capacity(n)=O(size(n))=O(n)

 T(n)=aN+4N+8N+16N+….+ capacity(n) < 2* capacity(n)=O(n)

 amortized complexity for single insertion operation is O(1)

20

Expand()21

Incremental Strategy Analysis

 We replace the old array with a new one k = n/c times

 The total time T(n) of a series of n insert operations is proportional to

n + c + 2c + 3c + 4c + … + kc =

n + c(1 + 2 + 3 + … + k) =

n + ck(k + 1)/2

 Since c is a constant, T(n) is O(n + 𝑘2), i.e., O(𝑛2)

 The amortized time of an insert operation is O(n)

22

Doubling Strategy Analysis

 We replace the old array with a new one 𝑘 = log2 𝑛 times

 The total time T(n) of a series of n insert operations is proportional to

𝑛 + 1 + 2 + 4 + 8 + …+ 2𝑘 = 𝑛 + 2𝑘 + 1 − 1 = 3𝑛 − 1

 T(n) is O(n)

 The amortized time of an insert operation is O(1)

23

Vector:

constructor

 Empty constructor

 Fill constructor

 Range constructor

 Copy constructor

24

Vector: iterator25

Vector: capacity26

O(1)

O(1)

Vector: Element Access27

28

Returns a reference to the element at position n in the vector.

The function automatically checks whether n is within the bounds of valid

elements in the vector, throwing an out_of_range exception if it is not (i.e., if n is

greater than, or equal to, its size). This is in contrast with member operator[], that

does not check against bounds.

Vector::at

29
Returns a reference to the first element in the vector.

Unlike member vector::begin, which returns an iterator to this same element, this
function returns a direct reference.

Calling this function on an empty container causes undefined behavior.Vector::front

https://cplusplus.com/vector
https://cplusplus.com/vector::begin
https://cplusplus.com/vector::empty

Vector: Modifier30

https://cplusplus.com/reference/vector/vector/

O(1)

O(1)

O(n)

O(n)

O(1)

https://cplusplus.com/reference/vector/vector/

Linked List
• Singly linked list

• Doubly linked list

• Circular Linked List

31

Singly Linked List

 Each item in the linked list is a node.

 Linear Structure

 Node can be stored in memory consecutively /or not
(logical order and physical order may be different)

32

data next

a1 a2 a3 a4head

a1 a2a3

head





33

Linked List Types in C

 Node

struct node{

int data;

struct node * next;

};

 Linked List

struct linkedlist{

struct node * head;

} ;

a pointer to the next

node in the list

a pointer through
which the list can

be accessed.

34
Linked List Types in C++

// List.h
#include <string>
using namespace std;

class ListNode
{
public:

ListNode(int);
ListNode(int, ListNode *);
ListNode *get_Next()
{

return next;
}
…

private:
int data;
ListNode *next;

};

class List

{

public:

List(String);

List();

//various member functions

private:

ListNode *first;

String name;

}

35 Linked List Type in Python

class Node:

def __init__(self, value=None):

self.value = value

self.next = None

class LinkedList:

def __init__(self):

self.head = None

list1 = LinkedList()

list1.head = Node("Mon")

e2 = Node("Tue")

e3 = Node("Wed")

Link first Node to second node

list1.head.next = e2

Link second Node to third node

e2.next = e3

https://www.tutorialspoint.com/python_data_structure/python_linked_lists.htm

Operations on Linked List

▪ Create a linked list

▪ Get the length of the linked list

▪ Check the empty condition

▪ Traverse a linked list

▪ Insert a node in a linked list

▪ At the front

▪ In a sorted linked list

▪ Delete a node in a linked list

▪ Search a node

36

Create a linked list

Build a linked list {1,2,3}

37

1 2 3head 

How to create a simple linked list with three nodes?

Step 1: create three nodes

Step 2: link these nodes together

Step 3: return the head pointer

Length() Function

 The Length() function takes a linked list and computes

the number of elements in the list.

 Length() is a simple linked list function, but it

demonstrates several concepts which will be used in

later, more complex list functions...

1 2 3head

current

Count=



0 1 2 3

38

PrintList() function

 Very similar to Length() function.

 Used to traverse the linked list.

39

Print the linked list

def listprint(self):

printval = self.head

while printval: # while printval is not None

print (printval.value)

printval = printval.next

Insert a node to a linked list

Three cases when inserting a node

Insert a node at the font

Insert a node at the end of the linked list

Insert a node in the middle

40

One important case missing: Empty List

Insert at the front41

1 2 3

head

newNode

0



def insertAtFrong(self,newdata):

NewNode = Node(newdata)

Update the new nodes next to existing node

NewNode.next = self.head

self.head = NewNode

InsertAtFront()

Add a single node to the head end of any

list.

Historically, it is called Push().

Alternately, it could be called InsertAtFront()

Pay attention to the passing parameters.

Also called

Push() 42

Insert at the End

 This involves pointing the next pointer of the current last node of the linked list to the
new data node. So the current last node of the linked list becomes the second last
data node and the new node becomes the last node of the linked list.

43

Function to add newnode

def insertAtEnd(self, newdata):

NewNode = Node(newdata)

if self.head is None:

self.head = NewNode

return

laste = self.head

while(laste.next):

laste = laste.next

laste.nextval=NewNode

Insert in the middle44

newnode

…… ……

p

newnode

…… ……

p

before insert after insert

Remove a node

Some data become useless and we want to

remove them, how?

Search the useless node by data value

Remove this node

We will encounter two cases

Removing a node at the beginning of the list

Removing a node NOT at the beginning of the list

45

Remove a node

Case 1: Remove a node at the beginning of the list

current status: the node pointed by “head” is unwanted.

The action we need: q=head; head=q.next;

46

……

……

head

head

q

q

before remove

after remove

Remove a node

Case 2: Remove a node not at the beginning of

the list

Current status: q == p.next and the node pointed by

q is unwanted

The action we need: p.next=q.next

47

……

……

p

q

before remove

after remove

p

q

……

……

Dummy Header Node48

So many cases with Insert and Remove operations

We want simpler implementations!

What are the special cases? Why are they different?

One way to simplify:

◦ keep an extra node at the front of the list

……

Dummy Header node

first

Data nodes

The value of these nodes
are our data

We don’t care

about the value of
this node.

Circular Lists

 Suppose that we are at node a3 and want to reach

node a0, how?

 If one extra link is allowed:

49

a0 a1 a2 a3
head

a0 a1 a2 a3
head

Circular Lists

Dummy header node can also be added to

make the implementation easier.

50

a0 a1 a2 a3
head

dummy header node we don’t care about

the value of this node

◼ Empty list
head

Doubly linked lists

 Problem with singly linked list

When at a3, we want to get a2

When deleting node a3, we need to know the

address of node a2

When at a3, it is difficult to insert between a2 and a3

 If allowed to use more memory spaces, what to

do?

51

a0 a1 a2 a3
head

Lnext Data Rnext

Doubly Linked List

To insert a node after an existing node pointed

by p

52

p

p

newnode

newnode

Doubly Linked List

To delete a node, we only need to know a

pointer pointing to the node

53

p

p

Further Extensions

54

 Doubly Linked List with Dummy Header

 When empty

 Doubly Circular Linked List?

Dummy Header node

Lnext Dummy Header Rnext

Summary of Linked List

Linked allocation:

Stores data as individual units and link them by

pointers.

Disadvantages:

Take up additional memory space for the links

Accessing random parts of the list is slow. (need to
walk sequentially)

55

Advantages of linked allocation (1)

Efficient use of memory
Facilitates data sharing
No need to pre-allocate a maximum size of

required memory
No vacant space left

Easy manipulation
To delete or insert an item
To join 2 lists together
To break one list into two lists

56

Advantages of linked allocation (2)

 Variations

Variable number of variable-size lists

Multi-dimensional lists (array of linked lists, linked list
of linked lists, etc.)

Simple sequential operations (e.g. searching,
updating) are fast

57

Applications: Representing Convex Polygons

Polygon:

A closed plane figure
with n sides.

Convex:

A polygon is convex if it
contains all the line
segments connecting
any pair of its points.

not closed closed

not convex
convex

58

Convex Polygons

Every doubly linked list node represents a line of

the polygon.

 It is easy to handle partition.

59

first
first

60

Cut a Polygon

first
1

2
3 4

5

67
8

1 2 3

4

567

8

1 2 3

4’8’ 0

first

60

‘4

567

‘8 0

After Cut

Node List ADT

 The Node List ADT models a sequence of positions storing arbitrary objects

 It establishes a before/after relation between positions

 Generic methods:

 size(), empty()

 Iterator

61

62

63

64 https://cplusplus.com/reference/list/list/

https://cplusplus.com/reference/list/list/

Implementation based on DLL

 A doubly linked list provides a
natural implementation of the
Node List ADT

 Nodes implement Position and
store:

 element

 link to the previous node

 link to the next node

 Special trailer and header nodes

prev next

elem

trailerheader nodes/positions

elements

node

65

Performance

In the implementation of the List ADT by

means of a doubly linked list

The space used by a list with n elements is O(n)

The space used by each position of the list is O(1)

The insert, erase operations of the List ADT run in
O(1) time

66

Lists in C++ STL

67

Python Lists

 Python has a built-in list type, called “list”, which can be written as a list of comma-

separated values (items) between square brackets. Lists might contain items of

different types, but usually the items all have the same type.

 Like strings (and all other built-in sequence types), lists can be indexed and sliced.

68

>>> squares = [1, 4, 9, 16, 25]

>>> squares

[1, 4, 9, 16, 25]

>>> squares[0] # indexing returns the item
1

>>> squares[-1]
25

>>> squares[-3:] # slicing returns a new list
[9, 16, 25]

https://developers.google.com/edu/python/lists
https://docs.python.org/3.7/glossary.html#term-sequence

Common List Methods

 list.append(elem) -- adds a single element to the end of the list

 list.insert(index, elem) -- inserts the element at the given index, shifting elements to

the right.

 list.extend(list2) adds the elements in list2 to the end of the list. Using + or += on a list is

similar to using extend().

 list.index(elem) -- searches for the given element from the start of the list and returns

its index.

 list.remove(elem) -- searches for the first instance of the given element and removes

it

 list.sort() -- sorts the list in place (does not return it).

 list.reverse() -- reverses the list in place (does not return it)

 list.pop(index) -- removes and returns the element at the given index. Returns the

rightmost element if index is omitted (roughly the opposite of append()).

69

https://developers.google.com/edu/python/lists#list-methods

Python Lists

 A Python list is built as an array. Even though you can do many

operations on a Python list with just one line of code, there's a lot

of code built in to the Python language running to make that

operation possible.

 For example, inserting an item at the front of the list.

 list.insert(index, elem)

inserts the element at the given index, shifting elements to the

right.

what is the time complexity of insert()?

 Time complexity of various operations in Python can be found

here.

70

https://wiki.python.org/moin/TimeComplexity

	投影片 1: DET102 Data Structures and Algorithms
	投影片 2: Abstract Data Type
	投影片 3: Abstract Data Types
	投影片 4: ADT Example in C++: Set
	投影片 5: Abstract Data Type
	投影片 6: ADT and Data Structure
	投影片 7: Basic Data Structures
	投影片 8: Linear List
	投影片 9: Array
	投影片 10: Array in memory
	投影片 11: Disadvantages of Arrays
	投影片 12: How to improve array?
	投影片 13: ADT of Vector
	投影片 14: Applications of Vector
	投影片 15: Array-based implementation of Vector
	投影片 16: Performance
	投影片 17: Growable array-based vector
	投影片 18: Which is better? Incremental or Doubling
	投影片 19: Which is better? Incremental or Doubling
	投影片 20: Amortized Analysis
	投影片 21: Expand()
	投影片 22: Incremental Strategy Analysis
	投影片 23: Doubling Strategy Analysis
	投影片 24: Vector: constructor
	投影片 25: Vector: iterator
	投影片 26: Vector: capacity
	投影片 27: Vector: Element Access
	投影片 28
	投影片 29
	投影片 30: Vector: Modifier
	投影片 31: Linked List
	投影片 32: Singly Linked List
	投影片 33: Linked List Types in C
	投影片 34: Linked List Types in C++
	投影片 35
	投影片 36: Operations on Linked List
	投影片 37: Create a linked list
	投影片 38: Length() Function
	投影片 39: PrintList() function
	投影片 40: Insert a node to a linked list
	投影片 41: Insert at the front
	投影片 42: InsertAtFront()
	投影片 43: Insert at the End
	投影片 44: Insert in the middle
	投影片 45: Remove a node
	投影片 46: Remove a node
	投影片 47: Remove a node
	投影片 48: Dummy Header Node
	投影片 49: Circular Lists
	投影片 50: Circular Lists
	投影片 51: Doubly linked lists
	投影片 52: Doubly Linked List
	投影片 53: Doubly Linked List
	投影片 54: Further Extensions
	投影片 55: Summary of Linked List
	投影片 56: Advantages of linked allocation (1)
	投影片 57: Advantages of linked allocation (2)
	投影片 58: Applications: Representing Convex Polygons
	投影片 59: Convex Polygons
	投影片 60: Cut a Polygon
	投影片 61: Node List ADT
	投影片 62
	投影片 63
	投影片 64
	投影片 65: Implementation based on DLL
	投影片 66: Performance
	投影片 67: Lists in C++ STL
	投影片 68: Python Lists
	投影片 69: Common List Methods
	投影片 70: Python Lists

