
DET102 Data Structures

and Algorithms
Lecture 9: Graph algorithms

1

Outline

BFS and DFS in STL

Topological sorting

Minimum spanning tree

Shortest path

2

BFS using STL

In BFS, we start with a node.

1. Create a queue and enqueue source (starting vertex) into it.

2. Mark source as visited.

While queue is not empty, do following

1. Dequeue a vertex from queue. Let this be f.

2. Print f

3. Enqueue all not yet visited adjacent vertices of f and mark them visited.

BFS using STL for competitive coding - GeeksforGeeks

3

https://www.geeksforgeeks.org/bfs-using-stl-competitive-coding/

// A Quick implementation of BFS using

// vectors and queue

#include <bits/stdc++.h>

#define pb push_back

using namespace std;

vector<bool> v;

vector<vector<int> > g;

void edge(int a, int b)

{

 g[a].pb(b);

 // for undirected graph add this line

 // g[b].pb(a);
}

4

void bfs(int u)

{

 queue<int> q;

 q.push(u);

 v[u] = true;

 while (!q.empty()) {

 int f = q.front();
 q.pop();

 cout << f << " ";

 // Enqueue all adjacent of f and mark them visited

 for (auto i = g[f].begin(); i != g[f].end(); i++) {

 if (!v[*i]) {
 q.push(*i);

 v[*i] = true;

 }

 }

 }
}

 In BFS, we start with a node.

1. Create a queue and enqueue source (starting
vertex) into it.

2. Mark source as visited.

While queue is not empty, do following
1. Dequeue a vertex from queue. Let this be f.

2. Print f

3. Enqueue all not yet visited adjacent vertices of f
and mark them visited.

5

int main()

{

 int n, e;

 cin >> n >> e;

 v.assign(n, false);

 g.assign(n, vector<int>());

 int a, b;

 for (int i = 0; i < e; i++) {

 cin >> a >> b;

 edge(a, b);

 }

 for (int i = 0; i < n; i++) {

 if (!v[i])

 bfs(i);

 }

 return 0;

}

 In BFS, we start with a node.

1. Create a queue and enqueue source (starting
vertex) into it.

2. Mark source as visited.

While queue is not empty, do following
1. Dequeue a vertex from queue. Let this be f.

2. Print f

3. Enqueue all not yet visited adjacent vertices of f
and mark them visited.

6

Input:
8 10
0 1
0 2
0 3
0 4
1 5
2 5
3 6
4 6
5 7
6 7
Output:
0 1 2 3 4 5 6 7

If you cannot compile using Dev c++,

Tools-> compiler options->General

Tick the option ‘Add the following

commands when calling compiler’ and
add ‘-std=c++11’ in the empty frame.

7

DFS using STL

In DFS, we start with a node.

1. Create a stack and push source (starting vertex) into it.

2. Mark source as visited.

While stack is not empty, do following

1. Pop a vertex from queue. Let this be f.

2. Print f

3. Push all not yet visited adjacent vertices of f and mark them visited.

8

void dfs(int u)

{

 stack<int> s;

 s.push(u);

 v[u] = true;

 while (!s.empty()) {

 int f = s.top();

 s.pop();

 cout << f << " ";

 // Push all adjacent of f and mark them visited

 for (auto i = g[f].begin(); i != g[f].end(); i++) {

 if (!v[*i]) {

 s.push(*i);

 v[*i] = true;

 }

 }

 }

}

 In DFS, we start with a node.
1. Create a stack and push source (starting

vertex) into it.

2. Mark source as visited.

While stack is not empty, do following
1. Pop a vertex from queue. Let this be f.

2. Print f

3. Push all not yet visited adjacent vertices of f and
mark them visited.

9

Directed Acyclic Graphs
10

DAG

▪ Directed graphs without directed cycles are
encountered in many applications. Such a directed
graph is often referred to as a directed acyclic
graph, or DAG, for short.

▪ Applications of DAG:

▪ Prerequisites between courses of a degree
program.

▪ Scheduling constraints between the tasks of a
project.

11

Topological Ordering

▪ Let G be a directed graph with n vertices. A
topological ordering of G is an ordering v1, . . . ,vn of
the vertices of G such that for every edge (vi,vj) of
G, it is the case that i < j.

▪ A topological ordering is an ordering such that any
directed path in G traverses vertices in increasing
order.

▪ Note that a directed graph may have more than
one topological ordering.

12

A graph has a topological ordering if and only if it is acyclic

13

Topological Sorting

A B EC D F

In a DAG, there must exist a vertex with indegree=0

Algorithm 1:

Find the vertex v with indegree=0

Output v

Remove v and all its incident edges.

14

Topological sorting

computes a topological
ordering of a directed
graph.

Step1: Sort all the vertices
according to degree.

Step2: Always choose the
vertex with indegree=0,
and remove all its
incident edges.

15

Topological Sorting

A B EC D F

Algorithm 2:

Run DFS from any vertex.

Whenever there is a backtrack, push the vertex to the stack.

Pop all the vertices from the stack

Input:

6 7

0 2

0 3

1 2

2 3

2 4

2 5

4 5

16

DFS (v) { //Starts with vertex v:

visited[v] = true;

for each vertex w adjacent to v {

if (! visited[w])

DFS (w); //Recursion

}

Push v to the stack

}

Pop all the items from the stack

Topological Sorting17

18

Minimum Spanning Tree
19

Motivation Example 1

▪ One example would be a telecommunications company

trying to lay cable in a new neighborhood.

▪ If it is constrained to bury the cable only along certain

paths (e.g. roads), then there would be a graph containing

the points (e.g. houses) connected by those paths.

▪ Some of the paths might be more expensive, because they

are longer, or require the cable to be buried deeper; these

paths would be represented by edges with larger weights.

Currency is an acceptable unit for edge weight – there is

no requirement for edge lengths to obey normal rules of

geometry such as the triangle inequality.

20

https://en.wikipedia.org/wiki/Triangle_inequality

Motivation Example 2

▪ Suppose we wish to connect all the computers in a new

office building using the least amount of cable.

▪ We can model this problem using an undirected,

weighted graph G whose vertices represent the

computers, and whose edges represent all the possible

pairs (u,v) of computers, where the weight w(u,v) of edge

(u,v) is equal to the amount of cable needed to connect

computer u to computer v.

▪ Rather than computing a shortest-path tree from some

particular vertex v, we are interested instead in finding a

tree T that contains all the vertices of G and has the

minimum total weight over all such trees.

21

Spanning Tree

▪ In the mathematical field of graph theory,

a spanning tree T of an undirected graph G is a

subgraph that is a tree which includes all of

the vertices of G, with a minimum possible

number of edges，

▪ A graph may have several spanning trees, but a

graph that is not connected will not contain a

spanning tree

22

23

Minimum Spanning Tree

 A minimum spanning

tree (MST) or minimum weight

spanning tree is a subset of the

edges of a connected, edge-

weighted undirected graph

that connects all

the vertices together, without

any cycles and with the

minimum possible total edge

weight. That is, it is a spanning

tree whose sum of edge

weights is as small as possible.
https://en.wikipedia.org/wiki/Minimu

m_spanning_tree

24

https://en.wikipedia.org/wiki/Minimum_spanning_tree
https://en.wikipedia.org/wiki/Minimum_spanning_tree

25

Properties of MST

▪ If the graph has n vertices, the MST has n-1

edges.

▪ There may be several minimum spanning trees

of the same weight; in particular, if all the edge

weights of a given graph are the same, then

every spanning tree of that graph is minimum.

▪ If each edge has a distinct weight then there will

be only one, unique minimum spanning tree.

(proof？)

26

https://math.stackexchange.com/questions/923197/show-that-a-graph-has-a-unique-mst-if-all-edges-have-distinct-weights

MST Algorithms
▪ Borůvka's algorithm:

▪ By Otakar Borůvka in 1926

▪ Complexity: O(mlogn)

▪ Prim’s algorithm

▪ invented by Vojtěch Jarník in 1930

▪ rediscovered by Prim in 1957 and Dijkstra in 1959

▪ Complexity: O(m log n) or O(m + n log n)

▪ Kruskal’s algorithm

▪ Complexity: O(mlogn)

▪ Reverse-delete algorithm:

▪ Not commonly used

▪ Complexity: O(m log n (log log n)3).

27

Prim’s Algorithm

1.Initialize a tree with a single

vertex, chosen arbitrarily from the

graph.

2.Grow the tree by one edge: of

the edges that connect the tree to

vertices not yet in the tree, find the

minimum-weight edge, and

transfer it to the tree.

3.Repeat step 2 (until all vertices

are in the tree). https://en.wikipedia.org/wiki/Prim%27s_algorithm

https://algorithms.discrete.ma.tum.de/graph-algorithms/mst-prim/index_en.html

28

https://en.wikipedia.org/wiki/Prim's_algorithm
https://algorithms.discrete.ma.tum.de/graph-algorithms/mst-prim/index_en.html

Kruskal’s Algorithm

▪ Kruskal's algorithm finds a minimum spanning forest of an

undirected edge-weighted graph.

▪ If the graph is connected, it finds a minimum spanning tree. (A

minimum spanning tree of a connected graph is a subset of

the edges that forms a tree that includes every vertex, where

the sum of the weights of all the edges in the tree is minimized.

▪ For a disconnected graph, a minimum spanning forest is

composed of a minimum spanning tree for each connected

component.) It is a greedy algorithm in graph theory as in

each step it adds the next lowest-weight edge that will not

form a cycle to the minimum spanning forest.

29

Kruskal’s Algorithm

1. create a forest F (a set of trees), where each

vertex in the graph is a separate tree

2. create a set S containing all the edges in the

graph

3. while S is nonempty and F is not yet spanning

A. remove an edge with minimum weight from S

B. if the removed edge connects two different trees then

add it to the forest F, combining two trees into a single

tree

At the termination of the algorithm, the forest

forms a minimum spanning forest of the graph. If

the graph is connected, the forest has a single

component and forms a minimum spanning tree

https://en.wikipedia.org/wiki/Kr

uskal%27s_algorithm

30

https://en.wikipedia.org/wiki/Kruskal's_algorithm
https://en.wikipedia.org/wiki/Kruskal's_algorithm

A disjoint set is used to implement Kruskal algorithm.

More examples of Kruskal algorithms.

31

https://www.boost.org/doc/libs/1_64_0/libs/disjoint_sets/disjoint_sets.html
https://algorithms.discrete.ma.tum.de/graph-algorithms/mst-kruskal/index_en.html

Shortest path
32

Shortest Path

▪ Weighted graph: each edge e=(u,v) has a weight w(e)=w(u,v)

▪ The distance from a vertex u to a vertex v in G, denoted d(u,v), is the

length of a minimum-length path (also called shortest path) from u to v,

if such a path exists.

▪ The shortest path problem is about finding a path between 2 vertices in

a graph such that the total sum of the edges' weights is minimum.

▪ If all edge weights are the same, this problem could be solved easily

using (BFS).

▪ If the edge weights are different, there are many different algorithms.

Single sourced

All pairs

33

Single-sourced Shortest path

Single-sourced:

find a shortest path from some vertex s to each other vertex in G,

viewing the weights on the edges as distances.

34

Bellman Ford’s Algorithm

▪ Bellman Ford's algorithm is used to find the shortest paths from

the source vertex to all other vertices in a weighted graph.

▪ It depends on the following concept:

▪ Shortest path contains at most n-1 edges, because

the shortest path couldn't have a cycle.

Why the shortest path couldn’t have a cycle?

35

https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm

36

https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm

Bellman Ford’s Algorithm

▪ The outer loop traverses from 0 : n−1.

▪ Loop over all edges,

▪ check if the next node distance > current node distance
+ edge weight,

▪ in this case update the next node distance to "current
node distance + edge weight".

▪ A very important application of Bellman Ford is to check if
there is a negative cycle in the graph,

▪ Time Complexity of Bellman Ford algorithm is O(V⋅E), in
case E=V2 the complexity will be O(V3).

37

Example

A B

D

C
S

E

10

8

1

-22

-4

-1

1

There are 6 vertices, so we need 5

iterations.
Initialize:

S

A

B

C

D

E

0

∞

∞

∞

∞

∞

38

Example

A B

D

C
S

E

10

8

1

-22

-4

-1

1

0-th 1st 2nd 3rd 4th 5th

S 0

A ∞ 10 5

B ∞ 10 5

C ∞ 12 87

D ∞ 9

E ∞ 8

e3

e6 e7

e5

e1

e2

e8

e4

39

Improvements

▪ The Bellman–Ford algorithm may be improved in practice

(although not in the worst case) by the observation that,

if an iteration of the main loop of the algorithm terminates

without making any changes, the algorithm can be

immediately terminated, as subsequent iterations will not

make any more changes.

▪ With this early termination condition, the main loop may

in some cases use many fewer than |V| − 1 iterations,

even though the worst case of the algorithm remains

unchanged.

▪ Worst case complexity: O(|V||E|)

https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm

40

https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm

Dijkstra

(1930-2002) He received the

1972 Turing Award for fundamental

contributions to developing

programming languages

41

https://en.wikipedia.org/wiki/Turing_Award

Dijkstra's algorithm

▪ Dijkstra's algorithm (or Dijkstra's Shortest Path First
algorithm, SPF algorithm) is an algorithm for finding
the shortest paths between nodes in a graph, which
may represent, for example, road networks.

▪ It was conceived by computer scientist Edsger W.
Dijkstra in 1956 and published three years later.

▪ Dijkstra's algorithm has many variants but the most
common one is to find the shortest paths from the
source vertex to all other vertices in the graph,
producing a shortest-path tree.

42

Dijkstra's Algorithm

▪ Set all vertices distances = infinity except for the source vertex, set

the source distance = 0.

▪ Push the source vertex in a min-priority queue in the form (distance

, vertex), as the comparison in the min-priority queue will be

according to vertices distances.

▪ Pop the vertex with the minimum distance from the priority queue

(at first the popped vertex = source).

▪ Update the distances of the connected vertices to the popped

vertex in case of "current vertex distance + edge weight < next

vertex distance", then push the vertex with the new distance to the

priority queue.

▪ If the popped vertex is visited before, just continue without using it.

▪ Apply the same algorithm again until the priority queue is empty.

43

44

If we are only interested in a shortest path between vertices source and

target, we can terminate the search after line 15 if u = target. Now we

can read the shortest path from source to target by reverse iteration:

Now sequence S is the list of vertices constituting one of the shortest paths

from source to target, or the empty sequence if no path exists.

45

A B

D

C
S

E

10

8

1

-22

-4

-1

1

46

Complexity

▪ The original algorithm uses a min-priority queue and runs in time
O((|V|+|E|)log |V|) (where |V| is the number of nodes and|E| is the
number of edges)

▪ It can also be implemented in O(|V|2) using an array.

▪ Fredman & Tarjan propose using a Fibonacci heap min-priority
queue to optimize the running time complexity to O(|E|+|V|log|V|).
This is asymptotically the fastest known single-source shortest-
path algorithm for arbitrary directed graphs with unbounded non-
negative weights.

▪ However, if we have to find the shortest path between all pairs of
vertices, all of the above methods would be expensive in terms of
time.

47

Shortest path tree

A B

D

C
S

E

10

8

1

-22

-4

-1

1

The collection of all shortest paths

emanating from source s can be

compactly represented by what is

known as the shortest-path tree. The

paths form a rooted tree because if a

shortest path from s to v passes

through an intermediate vertex u, it

must begin with a shortest path from

s to u.

48

Travelling salesman problem (TSP)
49

Travelling salesman problem

▪ The Hamiltonian cycle problem: Given a graph, is there a tour that

visits every city exactly once.

▪ The travelling salesman problem: Given a list of cities and the

distances between each pair of cities, what is the shortest possible

route that visits each city exactly once and returns to the origin city?

There are many Hamiltonian cycles. The

shortest one is the solution of travelling

salesman problem.

1->2->4->3->1

50

Travelling Salesman Problem

▪ The problem is a famous NP-hard problem. There is no

polynomial-time known solution for this problem.

▪ In computational complexity theory, NP-hardness (non-

deterministic polynomial-time hardness) is the defining

property of a class of problems that are informally "at

least as hard as the hardest problems in NP".

▪ For example: travelling salesman, Hamiltonian cycle,

longest path, subset sum, partitioning.

51

Algorithm to TSP

1. Consider city 1 as the starting and ending point. Since the route

is cyclic, we can consider any point as a starting point.

2. Generate all (n-1)! permutations of cities.

3. Calculate the cost of every permutation and keep track of the

minimum cost permutation.

4. Return the permutation with minimum cost.

https://www.geeksforgeeks.org/traveling-salesman-problem-tsp-implementation/

Look at the Python code for TSP in the above webpage, how does the author implement the graph?

52

	投影片 1: DET102 Data Structures and Algorithms
	投影片 2: Outline
	投影片 3: BFS using STL
	投影片 4
	投影片 5
	投影片 6
	投影片 7
	投影片 8: DFS using STL
	投影片 9
	投影片 10: Directed Acyclic Graphs
	投影片 11: DAG
	投影片 12: Topological Ordering
	投影片 13
	投影片 14: Topological Sorting
	投影片 15: Topological sorting
	投影片 16: Topological Sorting
	投影片 17
	投影片 18
	投影片 19: Minimum Spanning Tree
	投影片 20: Motivation Example 1
	投影片 21: Motivation Example 2
	投影片 22: Spanning Tree
	投影片 23
	投影片 24: Minimum Spanning Tree
	投影片 25
	投影片 26: Properties of MST
	投影片 27: MST Algorithms
	投影片 28: Prim’s Algorithm
	投影片 29: Kruskal’s Algorithm
	投影片 30: Kruskal’s Algorithm
	投影片 31
	投影片 32: Shortest path
	投影片 33: Shortest Path
	投影片 34: Single-sourced Shortest path
	投影片 35: Bellman Ford’s Algorithm
	投影片 36
	投影片 37: Bellman Ford’s Algorithm
	投影片 38: Example
	投影片 39: Example
	投影片 40: Improvements
	投影片 41: Dijkstra
	投影片 42: Dijkstra's algorithm
	投影片 43: Dijkstra's Algorithm
	投影片 44
	投影片 45
	投影片 46
	投影片 47: Complexity
	投影片 48: Shortest path tree
	投影片 49: Travelling salesman problem (TSP)
	投影片 50: Travelling salesman problem
	投影片 51: Travelling Salesman Problem
	投影片 52: Algorithm to TSP

