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Lecture 9: Graph algorithms
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Outline 

BFS and DFS in STL

Topological sorting

Minimum spanning tree

Shortest path
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BFS using STL

In BFS, we start with a node.

1. Create a queue and enqueue source (starting vertex) into it.

2. Mark source as visited.

While queue is not empty, do following

1. Dequeue a vertex from queue. Let this be f.

2. Print f

3. Enqueue all not yet visited adjacent vertices of f and mark them visited.

BFS using STL for competitive coding - GeeksforGeeks
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https://www.geeksforgeeks.org/bfs-using-stl-competitive-coding/


// A Quick implementation of BFS using

// vectors and queue

#include <bits/stdc++.h>

#define pb push_back

using namespace std;

vector<bool> v;

vector<vector<int> > g;

void edge(int a, int b)

{

 g[a].pb(b);

 // for undirected graph add this line

 // g[b].pb(a);
}
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void bfs(int u)

{

 queue<int> q;

 q.push(u);

 v[u] = true;

 while (!q.empty()) {

  int f = q.front();
  q.pop();

  cout << f << " ";

  // Enqueue all adjacent of f and mark them visited

  for (auto i = g[f].begin(); i != g[f].end(); i++) {

   if (!v[*i]) {
    q.push(*i);

    v[*i] = true;

   }

  }

 }
}

 In BFS, we start with a node.

1. Create a queue and enqueue source (starting 
vertex) into it.

2. Mark source as visited.

While queue is not empty, do following
1. Dequeue a vertex from queue. Let this be f.

2. Print f

3. Enqueue all not yet visited adjacent vertices of f 
and mark them visited.
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int main()

{

 int n, e;

 cin >> n >> e;

 v.assign(n, false);

 g.assign(n, vector<int>());

 int a, b;

 for (int i = 0; i < e; i++) {

  cin >> a >> b;

  edge(a, b);

 }

 for (int i = 0; i < n; i++) {

  if (!v[i])

   bfs(i);

 }

 return 0;

}

 In BFS, we start with a node.

1. Create a queue and enqueue source (starting 
vertex) into it.

2. Mark source as visited.

While queue is not empty, do following
1. Dequeue a vertex from queue. Let this be f.

2. Print f

3. Enqueue all not yet visited adjacent vertices of f 
and mark them visited.
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Input: 
8 10 
0 1 
0 2 
0 3 
0 4 
1 5 
2 5 
3 6 
4 6 
5 7 
6 7 
Output: 
0 1 2 3 4 5 6 7 

If you cannot compile using Dev c++,

Tools-> compiler options->General

Tick the option ‘Add the following 

commands when calling compiler’ and 
add ‘-std=c++11’  in the empty frame.
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DFS using STL

In DFS, we start with a node.

1. Create a stack and push source (starting vertex) into it.

2. Mark source as visited.

While stack is not empty, do following

1. Pop a vertex from queue. Let this be f.

2. Print f

3. Push all not yet visited adjacent vertices of f and mark them visited.
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void dfs(int u)

{ 

 stack<int> s;

 s.push(u);

 v[u] = true;

 while (!s.empty()) {

  int f = s.top();

  s.pop();

  cout << f << " ";

  // Push all adjacent of f and mark them visited

  for (auto i = g[f].begin(); i != g[f].end(); i++) {

   if (!v[*i]) {

    s.push(*i);

    v[*i] = true;

   }

  }

 }

}

 In DFS, we start with a node.
1. Create a stack and push source (starting 

vertex) into it.

2. Mark source as visited.

While stack is not empty, do following
1. Pop a vertex from queue. Let this be f.

2. Print f

3. Push all not yet visited adjacent vertices of f and 
mark them visited.
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Directed Acyclic Graphs
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DAG

▪ Directed graphs without directed cycles are 
encountered in many applications. Such a directed 
graph is often referred to as a directed acyclic 
graph, or DAG, for short.

▪ Applications of DAG:

▪ Prerequisites between courses of a degree 
program.

▪ Scheduling constraints between the tasks of a 
project.
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Topological Ordering

▪ Let G be a directed graph with n vertices. A 
topological ordering of G is an ordering v1, . . . ,vn of 
the vertices of G such that for every edge (vi,vj) of 
G, it is the case that i < j. 

▪ A topological ordering is an ordering such that any 
directed path in G traverses vertices in increasing 
order. 

▪ Note that a directed graph may have more than 
one topological ordering.
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A graph has a topological ordering if and only if it is acyclic
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Topological Sorting

A B EC D F

In a DAG, there must exist a vertex with indegree=0

Algorithm 1: 

Find the vertex  v with indegree=0

Output v

Remove v and all its incident edges.
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Topological sorting

computes a topological 
ordering of a directed 
graph.

Step1: Sort all the vertices 
according to degree.

Step2: Always choose the 
vertex with indegree=0, 
and remove all its 
incident edges.
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Topological Sorting

A B EC D F

Algorithm 2: 

Run DFS from any vertex.

Whenever there is a backtrack, push the vertex to the stack.

Pop all the vertices from the stack 

Input:

6 7

0 2

0 3

1 2

2 3

2 4

2 5

4 5
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DFS (v) {                     //Starts with vertex v: 

visited[v] = true;

for each vertex w adjacent to v {

if (! visited[w]) 

DFS (w);                       //Recursion

}

Push v to the stack

}

Pop all the items from the stack

Topological Sorting17
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Minimum Spanning Tree
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Motivation Example 1

▪ One example would be a telecommunications company 

trying to lay cable in a new neighborhood. 

▪ If it is constrained to bury the cable only along certain 

paths (e.g. roads), then there would be a graph containing 

the points (e.g. houses) connected by those paths. 

▪ Some of the paths might be more expensive, because they 

are longer, or require the cable to be buried deeper; these 

paths would be represented by edges with larger weights. 

Currency is an acceptable unit for edge weight – there is 

no requirement for edge lengths to obey normal rules of 

geometry such as the triangle inequality.
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https://en.wikipedia.org/wiki/Triangle_inequality


Motivation Example 2

▪ Suppose we wish to connect all the computers in a new 

office building using the least amount of cable. 

▪ We can model this problem using an undirected, 

weighted graph G whose vertices represent the 

computers, and whose edges represent all the possible 

pairs (u,v) of computers, where the weight w(u,v) of edge 

(u,v) is equal to the amount of cable needed to connect 

computer u to computer v. 

▪ Rather than computing a shortest-path tree from some 

particular vertex v, we are interested instead in finding a 

tree T that contains all the vertices of G and has the 

minimum total weight over all such trees.
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Spanning Tree

▪ In the mathematical field of graph theory, 

a spanning tree T of an undirected graph G is a 

subgraph that is a tree which includes all of

the vertices of G, with a minimum possible 

number of edges，

▪ A graph may have several spanning trees, but a 

graph that is not connected will not contain a 

spanning tree
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Minimum Spanning Tree

 A minimum spanning 

tree (MST) or minimum weight 

spanning tree is a subset of the 

edges of a connected, edge-

weighted undirected graph 

that connects all 

the vertices together, without 

any cycles and with the 

minimum possible total edge 

weight. That is, it is a spanning 

tree whose sum of edge 

weights is as small as possible.
https://en.wikipedia.org/wiki/Minimu

m_spanning_tree
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https://en.wikipedia.org/wiki/Minimum_spanning_tree
https://en.wikipedia.org/wiki/Minimum_spanning_tree
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Properties of MST

▪ If the graph has n vertices, the MST has n-1 

edges.

▪ There may be several minimum spanning trees 

of the same weight; in particular, if all the edge 

weights of a given graph are the same, then 

every spanning tree of that graph is minimum.

▪ If each edge has a distinct weight then there will 

be only one, unique minimum spanning tree. 

(proof？)
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https://math.stackexchange.com/questions/923197/show-that-a-graph-has-a-unique-mst-if-all-edges-have-distinct-weights


MST Algorithms
▪ Borůvka's algorithm:

▪ By Otakar Borůvka in 1926

▪ Complexity: O(mlogn)

▪ Prim’s algorithm

▪ invented by Vojtěch Jarník in 1930 

▪ rediscovered by Prim in 1957 and Dijkstra in 1959

▪ Complexity: O(m log n) or O(m + n log n)

▪ Kruskal’s algorithm

▪ Complexity: O(mlogn)

▪ Reverse-delete algorithm:

▪ Not commonly used

▪ Complexity: O(m log n (log log n)3).

27



Prim’s Algorithm

1.Initialize a tree with a single 

vertex, chosen arbitrarily from the 

graph.

2.Grow the tree by one edge: of 

the edges that connect the tree to 

vertices not yet in the tree, find the 

minimum-weight edge, and 

transfer it to the tree.

3.Repeat step 2 (until all vertices 

are in the tree). https://en.wikipedia.org/wiki/Prim%27s_algorithm

https://algorithms.discrete.ma.tum.de/graph-algorithms/mst-prim/index_en.html

28

https://en.wikipedia.org/wiki/Prim's_algorithm
https://algorithms.discrete.ma.tum.de/graph-algorithms/mst-prim/index_en.html


Kruskal’s Algorithm

▪ Kruskal's algorithm finds a minimum spanning forest of an 

undirected edge-weighted graph. 

▪ If the graph is connected, it finds a minimum spanning tree. (A 

minimum spanning tree of a connected graph is a subset of 

the edges that forms a tree that includes every vertex, where 

the sum of the weights of all the edges in the tree is minimized. 

▪ For a disconnected graph, a minimum spanning forest is 

composed of a minimum spanning tree for each connected 

component.) It is a greedy algorithm in graph theory as in 

each step it adds the next lowest-weight edge that will not 

form a cycle to the minimum spanning forest.
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Kruskal’s Algorithm

1. create a forest F (a set of trees), where each 

vertex in the graph is a separate tree

2. create a set S containing all the edges in the 

graph

3. while S is nonempty and F is not yet spanning

A. remove an edge with minimum weight from S

B. if the removed edge connects two different trees then 

add it to the forest F, combining two trees into a single 

tree

At the termination of the algorithm, the forest 

forms a minimum spanning forest of the graph. If 

the graph is connected, the forest has a single 

component and forms a minimum spanning tree

https://en.wikipedia.org/wiki/Kr

uskal%27s_algorithm
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https://en.wikipedia.org/wiki/Kruskal's_algorithm
https://en.wikipedia.org/wiki/Kruskal's_algorithm


A disjoint set is used to implement Kruskal algorithm.

More examples of Kruskal algorithms.
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https://www.boost.org/doc/libs/1_64_0/libs/disjoint_sets/disjoint_sets.html
https://algorithms.discrete.ma.tum.de/graph-algorithms/mst-kruskal/index_en.html


Shortest path
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Shortest Path

▪ Weighted graph: each edge e=(u,v) has a weight w(e)=w(u,v)

▪ The distance from a vertex u to a vertex v in G, denoted d(u,v), is the 

length of a minimum-length path (also called shortest path) from u to v, 

if such a path exists.

▪ The shortest path problem is about finding a path between 2 vertices in 

a graph such that the total sum of the edges' weights is minimum.

▪ If all edge weights are the same, this problem could be solved easily 

using (BFS).

▪ If the edge weights are different, there are many different algorithms.

Single sourced

All pairs
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Single-sourced Shortest path

Single-sourced:

find a shortest path from some vertex s to each other vertex in G, 

viewing the weights on the edges as distances.
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Bellman Ford’s Algorithm

▪ Bellman Ford's algorithm is used to find the shortest paths from 

the source vertex to all other vertices in a weighted graph.

▪ It depends on the following concept: 

▪ Shortest path contains at most n-1 edges, because 

the shortest path couldn't have a cycle.

Why the shortest path couldn’t have a cycle?
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https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm
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https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm


Bellman Ford’s Algorithm

▪ The outer loop traverses from 0 : n−1.

▪ Loop over all edges,

▪ check if the next node distance > current node distance 
+ edge weight, 

▪ in this case update the next node distance to "current 
node distance + edge weight".

▪ A very important application of Bellman Ford is to check if 
there is a negative cycle in the graph,

▪ Time Complexity of Bellman Ford algorithm is O(V⋅E), in 
case E=V2 the complexity will be O(V3).
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Example

A B

D

C
S

E

10

8

1

-22

-4

-1

1

There are 6 vertices, so we need 5 

iterations. 
Initialize:

S

A

B

C

D

E

0

∞

∞

∞

∞

∞
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Example

A B

D

C
S

E

10

8

1

-22

-4

-1

1

0-th 1st 2nd 3rd 4th 5th

S 0

A ∞ 10 5

B ∞ 10 5

C ∞ 12 87

D ∞ 9

E ∞ 8

e3

e6 e7

e5

e1

e2

e8

e4
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Improvements

▪ The Bellman–Ford algorithm may be improved in practice 

(although not in the worst case) by the observation that, 

if an iteration of the main loop of the algorithm terminates 

without making any changes, the algorithm can be 

immediately terminated, as subsequent iterations will not 

make any more changes. 

▪ With this early termination condition, the main loop may 

in some cases use many fewer than |V| − 1 iterations, 

even though the worst case of the algorithm remains 

unchanged.

▪ Worst case complexity: O(|V||E|)

https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm
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https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm


Dijkstra

(1930-2002) He received the 

1972 Turing Award for fundamental 

contributions to developing 

programming languages
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https://en.wikipedia.org/wiki/Turing_Award


Dijkstra's algorithm

▪ Dijkstra's algorithm (or Dijkstra's Shortest Path First 
algorithm, SPF algorithm) is an algorithm for finding 
the shortest paths between nodes in a graph, which 
may represent, for example, road networks.

▪ It was conceived by computer scientist Edsger W. 
Dijkstra in 1956 and published three years later.

▪ Dijkstra's algorithm has many variants but the most 
common one is to find the shortest paths from the 
source vertex to all other vertices in the graph, 
producing a shortest-path tree.
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Dijkstra's Algorithm

▪ Set all vertices distances = infinity except for the source vertex, set 

the source distance = 0.

▪ Push the source vertex in a min-priority queue in the form (distance 

, vertex), as the comparison in the min-priority queue will be 

according to vertices distances.

▪ Pop the vertex with the minimum distance from the priority queue 

(at first the popped vertex = source).

▪ Update the distances of the connected vertices to the popped 

vertex in case of "current vertex distance + edge weight < next 

vertex distance", then push the vertex with the new distance to the 

priority queue.

▪ If the popped vertex is visited before, just continue without using it.

▪ Apply the same algorithm again until the priority queue is empty.
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If we are only interested in a shortest path between vertices source and 

target, we can terminate the search after line 15 if u = target. Now we 

can read the shortest path from source to target by reverse iteration:

Now sequence S is the list of vertices constituting one of the shortest paths  

from source to target, or the empty sequence if no path exists.
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46



Complexity

▪ The original algorithm uses a min-priority queue and runs in time 
O((|V|+|E|)log |V|) (where |V| is the number of nodes and|E| is the 
number of edges)

▪ It can also be implemented in O(|V|2) using an array.

▪ Fredman & Tarjan propose using a Fibonacci heap min-priority 
queue to optimize the running time complexity to O(|E|+|V|log|V|). 
This is asymptotically the fastest known single-source shortest-
path algorithm for arbitrary directed graphs with unbounded non-
negative weights.

▪ However, if we have to find the shortest path between all pairs of 
vertices, all of the above methods would be expensive in terms of 
time.
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Shortest path tree
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The collection of all shortest paths 

emanating from source s can be 

compactly represented by what is 

known as the shortest-path tree. The 

paths form a rooted tree because if a 

shortest path from s to v passes 

through an intermediate vertex u, it 

must begin with a shortest path from 

s to u.
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Travelling salesman problem (TSP)
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Travelling salesman problem

▪ The Hamiltonian cycle problem:  Given a graph, is there a tour that 

visits every city exactly once. 

▪ The travelling salesman problem: Given a list of cities and the 

distances between each pair of cities, what is the shortest possible 

route that visits each city exactly once and returns to the origin city?

There are many Hamiltonian cycles. The 

shortest one is the solution of travelling 

salesman problem.

1->2->4->3->1
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Travelling Salesman Problem

▪ The problem is a famous NP-hard problem. There is no

polynomial-time known solution for this problem.

▪ In computational complexity theory, NP-hardness (non-

deterministic polynomial-time hardness) is the defining 

property of a class of problems that are informally "at 

least as hard as the hardest problems in NP".

▪ For example: travelling salesman, Hamiltonian cycle, 

longest path, subset sum, partitioning.
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Algorithm to TSP

1. Consider city 1 as the starting and ending point. Since the route 

is cyclic, we can consider any point as a starting point.

2. Generate all (n-1)! permutations of cities.

3. Calculate the cost of every permutation and keep track of the 

minimum cost permutation.

4. Return the permutation with minimum cost.

https://www.geeksforgeeks.org/traveling-salesman-problem-tsp-implementation/

Look at the Python code for TSP in the above webpage, how does the author implement the graph?
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