
CDS2003: Data Structures and

Object-Oriented Programming

Lecture: Algorithm Analysis

Review

2

• Algorithm analysis after implementation
• Time complexity

• Space time complexity

• Algorithm analysis:
• Big-Oh notation 𝑓 𝑛 = 𝑂(𝑔 𝑛)

• Big-Omega notation 𝑓 𝑛 = Ω(𝑔(𝑛))

• Big-Theta notation 𝑓 𝑛 = Θ(𝑔(𝑛))

[1] https://www.scholarhat.com/tutorial/datastructures
[2] Jain, H. (2016). Problem Solving in Data Structures & Algorithms Using Java: The Ultimate Guide to Programming. CreateSpace Independent Publishing Platform.

https://www.scholarhat.com/tutorial/datastructures

Algorithm analysis – Big-Oh notation

3

• The “Big-Oh notation” is commonly used for algorithm complexity.
• 𝑓 𝑛 = 𝑂(𝑔(𝑛)) if there exist positive constants 𝑐 and 𝑛0.

such that 𝑓 𝑛 ≤ 𝑐𝑔(𝑛) when 𝑛 ≥ 𝑛0.

• In other words, 𝑐𝑔(𝑛) gives an upper bound for 𝑓(𝑛).

• The function 𝑓 𝑛 growth is slower than 𝑐𝑔(𝑛).

• Example: 𝑛2 + 𝑛 = 𝑂(𝑛2).

• Example: 𝑛2 + 𝑛 = 𝑂 𝑛3 ???

• There are many upper bounds.

• Which one is better?

[1] Jain, H. (2016). Problem Solving in Data Structures & Algorithms Using Java: The Ultimate Guide to Programming. CreateSpace Independent Publishing Platform.

Growth

Rate

Input Size

Algorithm analysis – Big-Omega notation

4

• The “Big-Omega notation”
• 𝑓 𝑛 = Ω(𝑔(𝑛)) if there exist positive constants 𝑐 and 𝑛0.

such that 𝑓 𝑛 ≥ 𝑐𝑔(𝑛) when 𝑛 ≥ 𝑛0.

• In other words, 𝑐𝑔(𝑛) gives a lower bound for 𝑓(𝑛).

• The function 𝑓 𝑛 growth is faster than 𝑐𝑔(𝑛).

• Example: 𝑓 𝑛 = 𝑐𝑛 and 𝑔 𝑛 = 𝑛𝑐 give 𝑓 𝑛 = Ω(𝑔(𝑛)).

• Example: 𝑓 𝑛 = 𝑛3 + 2𝑛2 = Ω(𝑛3).

• Example: 𝑓 𝑛 = 𝑛3 + 2𝑛2 = Ω(𝑛2.5) ???

• There are many lower bounds.

• Which one is better?

[1] Jain, H. (2016). Problem Solving in Data Structures & Algorithms Using Java: The Ultimate Guide to Programming. CreateSpace Independent Publishing Platform.

Growth

Rate

Input Size

Algorithm analysis – Big-Theta notation

5

• The “Big-Theta notation”
• 𝑓 𝑛 = Θ(𝑔(𝑛)) if there exists positive constants 𝑐1, 𝑐2, and 𝑛1.

such that 𝑐1𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝑐2𝑔(𝑛) when 𝑛 ≥ 𝑛1.

• In other words, 𝑐1𝑔(𝑛) gives a lower bound for 𝑓 𝑛 ,

• And 𝑐2𝑔(𝑛) gives an upper bound for 𝑓 𝑛 ,

• The function 𝑔 𝑛 is an asymptotically tight bound on 𝑓 𝑛 .

• In other words, the function 𝑓 𝑛 grows at the same rate as 𝑔(𝑛).

• Example: 𝑓 𝑛 = 𝑛3 + 𝑛2 + 𝑛 = Θ(𝑛3).

[1] Jain, H. (2016). Problem Solving in Data Structures & Algorithms Using Java: The Ultimate Guide to Programming. CreateSpace Independent Publishing Platform.

Growth

Rate

Input Size

Main types of complexities

6

• Constant complexity 𝑂 1
• Independent of the input size 𝑛

• Logarithmic complexity 𝑂 log 𝑛

• Square root complexity 𝑂(√𝑛)

• Linear complexity 𝑂(𝑛)

• N-LogN complexity 𝑂 𝑛 log 𝑛

• Quadratic complexity 𝑂(𝑛2)

• Polynomial complexity 𝑂(𝑛𝑐)

• Exponential complexity 𝑂(𝑐𝑛)

• Factorial complexity 𝑂(𝑛!) or 𝑂(𝑛𝑛)

Note that 𝑐 > 1 is a constant.

[1] https://www.scholarhat.com/tutorial/datastructures

https://www.scholarhat.com/tutorial/datastructures

Constant time complexity 𝑂(1)

7

• The running time is independent of the input size 𝑛.
• Each statement is assumed to take a constant amount of time to run.

• Examples
• Assigning a value to a variable

• Determining a number is odd or even

• Printing out a phase like “Hello World”

• Accessing 𝑛𝑡ℎ element of an array

• A push or pop operation of a stack

• …

[1] https://www.simplilearn.com/tutorials/data-structure-tutorial

a = 5
print(a % 2 == 1)
print("Hello World!")
b = [0, 2, 1]
x = b[1]
b.append(a)
print(a)

https://www.simplilearn.com/tutorials/data-structure-tutorial

Linear time complexity 𝑂(𝑛)

8

• The running time is proportional to the input size

• When a function checks all values in an input data set or traverses all the
nodes of a data structure, the complexity is no less than 𝑂(𝑛).

• Examples
• Array operations like searching element, finding min, finding max, and so on

• Linked list operations like traversal, finding min, finding max, and so on

[1] https://www.simplilearn.com/tutorials/data-structure-tutorial

def main(n):
for i in range(n):

print(i)

https://www.simplilearn.com/tutorials/data-structure-tutorial

Logarithmic time complexity 𝑂(log 𝑛)

9

• The running time is proportional to the logarithm of the input size.

• An example
• 1, 2, 4, 8, 16, …, 2𝑘,…

• 2𝑘 ≤ 𝑛 ⇒ 𝑘 ≤ log2 𝑛

[1] https://www.geeksforgeeks.org/understanding-time-complexity-simple-examples/

def log_print(n):
i = 1
while i <= n:

print("Hello World !!!")
i = 2 * i

https://www.geeksforgeeks.org/understanding-time-complexity-simple-examples/

N-LogN time complexity 𝑂(𝑛 log 𝑛)

10

• An example
• The inner loop: log2 𝑛 iterations

• The outer loop : 𝑛 iterations

[1] https://www.geeksforgeeks.org/understanding-time-complexity-simple-examples/

def nlog_print(n):
for j in range(n):

i = 1
while i <= n:

print("Hello World !!!")
i = 2 * i

https://www.geeksforgeeks.org/understanding-time-complexity-simple-examples/

Double logarithmic time complexity 𝑂(log log 𝑛)

11

• An example
• 𝑗 = 1, 𝑖 = 3 → 9 = 32

• 𝑗 = 2, 𝑖 = 9 → 81 = 34 = 322

• 𝑗 = 3, 𝑖 = 81 → 38 = 323

• … 𝑗 = 𝑘, 𝑖 = 3 → 32𝑘
…

• 32𝑘
≤ 𝑛 ⇒ log 2𝑘 ≤ log 𝑛

• ⇒ 𝑘 ≤ log log 𝑛

[1] https://www.geeksforgeeks.org/understanding-time-complexity-simple-examples/

def loglog_print(n):
i = 3
for j in range(2,n+1):

if(i >= n):
break

print("Hello World !!!")
i *= i

https://www.geeksforgeeks.org/understanding-time-complexity-simple-examples/

Quadratic time complexity 𝑂(𝑛2)

12

• The running time grows quadratically with the input size.

• An example: nested loops
• Inner loop: 𝑛 iterations

• Outer loop: 𝑛 iterations

• Other examples
• Bubble-sort

• Selection-sort

• Insertion-sort

[1] https://www.simplilearn.com/tutorials/data-structure-tutorial

def main2(n):
for i in range(n):

for j in range(n):
print(i+j)

def main3(n):
a = []
for i in range(n):

a.append(i)
for j in range(n):

a[i] = a[i] + j
print(a[i])

return a

https://www.simplilearn.com/tutorials/data-structure-tutorial

Exponential time complexity 𝑂(𝑐𝑛)

13

• The running time grows exponentially with the input size.

• Examples
• A brute-force search of all possible subsets of the input data set

• The recursive calculation of Fibonacci numbers (space complexity 𝑂(𝑛))

[1] https://www.simplilearn.com/tutorials/data-structure-tutorial

Algorithm 1
def get_fn_1(n):

if n < 2:
fn = n

else:
fn = get_fn_1(n-1) + get_fn_1(n-2)

return fn

https://www.simplilearn.com/tutorials/data-structure-tutorial

Factorial time complexity 𝑂(𝑛!)

14

• The running time grows factorially with the input size.

• Examples
• A brute-force search of all possible permutations of the input elements

• A naïve solution to the Traveling Salesman problem

def factorial(n):
for _ in range(n):

print(n)
factorial(n-1)

General rules for deriving the time complexity

15

• Constants
• Each statement takes a constant time to run.

• Consecutive statements
• Just add the time complexity of all the consecutive statements

• If-Else Statement
• Consider the time complexity of the larger of “if” block or “else” block.

[1] Jain, H. (2016). Problem Solving in Data Structures & Algorithms Using Java: The Ultimate Guide to Programming. CreateSpace Independent Publishing Platform.

General rules for deriving the time complexity

16

• Loops
• The time complexity of a loop is a product of the number of iterations in the loop

and the time complexity of the statements inside the loop.

• Nested loop
• The time complexity of a nested loop is a product of the time complexity of the

statements inside loop multiplied by a product of the size of all the loops.

• Logarithmic statement
• If each iteration the input size is decreased by a constant factor.

[1] Jain, H. (2016). Problem Solving in Data Structures & Algorithms Using Java: The Ultimate Guide to Programming. CreateSpace Independent Publishing Platform.

Exercise

17

• Please give the time complexity of the following algorithms
using the big-O notation

def algorithm_1(n):
 a = 0
 b = 0
 if n < 1:
 a += n
 else:
 b -= n
 c = a * b
 return c

def algorithm_2(n):
 a = 0
 i = 0
 while i < n:
 a += 1
 i += 1
 return a

def algorithm_3(n):
 a = 0
 for i in range(n):
 for j in range(100):
 a += 1
 return a

Exercise

18

• Please give the time complexity of the following algorithms
using the big-O notation

def fun1(n):
 m = 0
 i = 0
 while i < n:
 m += 1
 i += 1
 return m

def fun2(n):
 m = 0
 i = 0
 while i < n:
 j = 0
 while j < n:
 m += 1
 j += 1
 i += 1
 return m

def fun3(n):
 m = 0
 i = 0
 while i < n:
 j = 0
 while j < i:
 m += 1
 j += 1
 i += 1
 return m

def fun4(n):
 m = 0
 i = 1
 while i < n:
 m += 1
 i = i * 2
 return m

def fun7(n):
 m = 0
 i = 0
 while i < n:
 j = 0
 while j < n:
 m += 1
 j += 1
 i += 1
 i = 0
 while i < n:
 k = 0
 while k < n:
 m += 1
 k += 1
 i += 1
 return m

def fun5(n):
 m = 0
 i = n
 while i > 1:
 m += 1
 i = i / 2
 return m

def fun6(n):
 m = 0
 i = 0
 while i < n:
 j = 0
 while j < n:
 k = 0
 while k < n:
 m += 1
 k += 1
 j += 1
 i += 1
 return m

Exercise

19

• Please give the time complexity of the following algorithms
using the big-O notation

def fun8(n):
 import math
 m, i = 0, 0
 while i < n:
 j = 0
 while j < math.sqrt(n):
 m += 1
 j += 1
 i += 1
 return m

def fun9(n):
 m = 0
 i = n
 while i > 1:
 j = 0
 while j < i:
 m += 1
 j += 1
 i /= 2
 return m

def fun10(n):
 m, i = 0, 0
 while i < n:
 j = i
 while j > 0:
 m += 1
 j -= 1
 i += 1
 return m

def fun11(n):
 m, i = 0, 0
 while i < n:
 j = i
 while j < n:
 k = j + 1
 while k < n:
 m += 1
 k += 1
 j += 1
 i += 1
 return m

def fun12(n):
 m, i = 0, 0
 while i < n:
 j = 0
 while j < n:
 m += 1
 j += 1
 i += 1
 return m

def fun13(n):
 m, i = 0, 0
 while i <= n:
 j = 0
 while j <= i:
 m += 1
 j += 1
 i *= 2
 return m

Constant space complexity 𝑂(1)

20

def algorithm_1(n):
a = 0
a += 1
b = a + n
return b

def algorithm_2(n):
a = 0
i = 0
while i < n:

a += 1
i += 1

return a

Linear space complexity 𝑂(𝑛)

21

def seq_gen(n):
a = []
i = 0
while i < n:

a.append(i)
i += 1

return a

def sum_n(inputs):
result = 0
for i in inputs:

result += i
return result

factorial with Recursion
def factorial_Recur(n):

if n == 0:
return 1

return n * factorial_Recur(n-1)

Quadratic space complexity 𝑂(𝑛2)

22

def algorithm_sq(n):
a = []
i = 0
while i < n:

b = []
j = 0
while j < n:

b.append(j)
j += 1

a.append(b)
i += 1

return a

Three cases in algorithm analysis

23

• Worst-case complexity
• The complexity of solving the problem for the worst input of size 𝑛. It provides the

upper bound for the algorithm. This is the most common analysis used.

• Maximum amount of resource

• Average-case complexity
• This complexity is defined with respect to the distribution of the values in the input

data. Usually, if the distribution of the input values are not specified, we calculate
the complexity for all the possible inputs and then take an average of it.

• Best-case complexity
• The complexity of solving the problem for the best input of size 𝑛.

• Minimum amount of resource

Three cases in algorithm analysis

24

• Time complexity
• Worst case and average case 𝑂(log 𝑛)

• Best case 𝑂(1)

[1] https://www.geeksforgeeks.org/binary-search/

Return index of x in arr if present, else -1
def binary_search_recursive(arr, low, high, x):

Check condition
if high >= low:

mid = (high + low) // 2
If the element is at the middle
if arr[mid] == x:

return mid
If the element is smaller than mid, go to the left subarray
elif arr[mid] > x:

return binary_search(arr, low, mid - 1, x)
Else go to the right subarray
else:

return binary_search(arr, mid + 1, high, x)
else:

The element is not in the array
return -1

https://www.geeksforgeeks.org/binary-search/

Discussion

25

Q & A!

	Slide 1
	Slide 2: Review
	Slide 3: Algorithm analysis – Big-Oh notation
	Slide 4: Algorithm analysis – Big-Omega notation
	Slide 5: Algorithm analysis – Big-Theta notation
	Slide 6: Main types of complexities
	Slide 7: Constant time complexity O 1
	Slide 8: Linear time complexity O n
	Slide 9: Logarithmic time complexity O log n
	Slide 10: N-LogN time complexity O n log n
	Slide 11: Double logarithmic time complexity O log log n
	Slide 12: Quadratic time complexity O n
	Slide 13: Exponential time complexity O c n
	Slide 14: Factorial time complexity O n
	Slide 15: General rules for deriving the time complexity
	Slide 16: General rules for deriving the time complexity
	Slide 17: Exercise
	Slide 18: Exercise
	Slide 19: Exercise
	Slide 20: Constant space complexity O 1
	Slide 21: Linear space complexity O n
	Slide 22: Quadratic space complexity O n
	Slide 23: Three cases in algorithm analysis
	Slide 24: Three cases in algorithm analysis
	Slide 25: Discussion

