CDS2003: Data Structures and

Object-Oriented Programming

Lecture: Algorithm Analysis

Review

« Complexity
« Time complexity
e Space complexity

» General rules for deriving time complexity
« Each statement takes a constant time to run
« Consecutive statements
* |f-Else statement
* Loops: product of the number of iterations and the time complexity for an iteration
* Nested loops

* Three cases in algorithm analysis
* Worst-case
* Average-case
* Best-case

Time complexity

* Polynomial time (easy)
« Constant complexity 0(1)
 Logarithmic complexity O(logn) otn!) 0(c")

» Square root complexity 0(Vn) 3 il —
« Linear complexity 0(n) £
* N-LogN complexity O(nlogn) § - %
» Quadratic complexity 0(n?) H /
» Polynomial complexity 0 (n¢) ; o)
» Super-polynomial time (hard)) —— v
——

« Exponential complexity O(c™)
 Factorial complexity O(n!) or O(n")

Note thatc > 1 IS a constant.

[1] https://www.scholarhat.com/tutorial/datastructures

https://www.scholarhat.com/tutorial/datastructures

Complexity theory

* Problem: sorting a list of n elements in increasing order

 Solution 1: selection sort algorithm

* Repeatedly selecting the smallest element from the unsorted portion of
the list and swapping it with the first element of the unsorted part until
the entire list is sorted.

 Time complexity 0(n?)

e Solution 2: brute-force search

« Enumerating all permutations of the list of n elements and finding the
one in increasing order

* Time complexity O(n!)

* From the complexity analysis of algorithms to that of problems

Complexity theory

* A decision problem is one whose answer is either “yes” or “no”
* Many problems can be converted to a decision problem.

* Problem 1: Travelling salesman problem

* Given a list of cities and the distances between each pair of cities

« What is the shortest possible route that visits each city exactly once
and returns to the origin city?

* |s there route of length no more than [that visits each city exactly
once and returns to the origin city?

* Problem 2: Greatest common divisor problem
* |s the greatest common divisor of given two integers no less than k?

[1] https://en.wikipedia.org/iwiki/Travelling_salesman_problem 5

https://en.wikipedia.org/wiki/Travelling_salesman_problem

Complexity theory — Class P

* Definition and features

« Containing all decision problems for which there exists a deterministic Turing
machine that leads to the “YES/NO” answer in polynomial time.

* P means “polynomial time.”
* The set of all decision problems that can be solved in polynomial time

» Greatest common divisor problem
* |s the greatest common divisor of given two integers no less than k?

 Sorting and searching problems

Complexity theory — Class NP

* Definition and features

« Containing all decision problems for which there exists a deterministic Turing
machine that can verify the correctness of a YES solution in polynomial time.

 What is a YES solution to a decision problem?
* An instance that helps give a YES answer to the decision problem

NP means “non-deterministic polynomial time,” but it is not necessarily known if
they can be solved in polynomial time.

* NP problems hold significant importance in computer science.

 Highlighting the difference between problems that can be solved quickly (Class P)
and those that can only be verified quickly

* Driving the development of new algorithms and heuristics
* Representing many real-world optimization challenges
* Providing deep theoretical insights into the nature of computation and complexity 7

Travelling salesman problem (TSP)

* Given: a list of cities and the distances between each pair of cities

* |s there route of length no more than [that visits each city exactly
once and returns to the origin city?

 AYES solution Is a route whose length is no more than [and the
route visits each city exactly once and returns to the origin city.

Cities A B C D E

Input: A 0 * * *

E E E
o O % A B * 0 * * *
A o C * * 0 * *
C C C
© o B B D * * * 0 *
B D D D

E * * * * 0

[1] hitps://www?2.se

https://www2.seas.gwu.edu/~simhaweb/champalg/tsp/tsp.html

Boolean satisfiability problem (SAT)

 Given: a Boolean formula

* Does there exist an assignment (Ture or False) to the variables such
that the formula is satisfied?

 AYES solution Is an assignment to the variables such that the
formula is satisfied.

« Example: (xVxVy)A(=xVayVay)A(=xVyVvVy)

(1] _ - o _ satisfiability 9

https://en.wikipedia.org/wiki/Boolean_satisfiability_problem

Knapsack problem

* Given: a set of items, with given values and sizes/weights/volumes
« Given: a container with a maximum capacity

* Does there exist a subset of items that can be put into the container
and the total value is no less than v?

* AYES solution Is a subset of items whose total size does not exceed
the container capacity and whose total value is no less than v.

[1] hitps://developers.google.com/optimization/pa napsa 10

https://developers.google.com/optimization/pack/knapsack

Vertex coloring problem

* Given: a graph

* |s there a way of coloring the vertices of a graph with at most k colors
such that no two adjacent vertices are of the same color?

* For some special graphs, the answers can be clear.

 Four color theorem: it would never take more than four colors to color the map
such that no two neighbouring regions were the same color.

Bl
Y B
a’ '—r‘

.

A proper vertex coloring with three colors. A map of the United States and coloring divisions with four colors.
(2] hitps:ffen wikinesi 5 colori .

https://en.wikipedia.org/wiki/Graph_coloring

Complexity theory — P versus NP

P is a subset of NP, but is the reverse true?

* |f the solution to a problem is easy to check for correctness, must
the problem be easy to solve?

* An open problem: Whether P = NP or P = NP

* One of the seven Millennium Prize Problems selected by the Clay
Mathematics Institute, each of which carries a US$1,000,000 prize
for the first correct solution. Right now If P = NP

* P # NP is widely believed.
e If P = NP, what would the world be like?

NP

EASY TO CHECK
HARD TO SOLVE

P
EASY TO SOLVE

P=NP

EASY TO CHECK
EASY TO SOLVE

 There are problems harder than NP.

[1] https://medium.com/@bilalaamir/p-vs-np-problem-in-a-nutshell-dbf08 be
[2] https://en.wikipedia.orghviki/P_versus NP_problem

12

https://medium.com/@bilalaamir/p-vs-np-problem-in-a-nutshell-dbf08133bec5
https://en.wikipedia.org/wiki/P_versus_NP_problem

Complexity theory — Class co-NP

* Definition and features

« Containing all decision problems for which there exists a deterministic Turing machine that
can verify the correctness of a NO solution in polynomial time.

P iIs a subset of co-NP

* NP versus Co-NP
« A problem is Co-NP if and only if its complement is in NP, and vice versa.

« Checking a prime number (P, NP, and co-NP)
* Checking a composite number (P, co-NP, and NP)

* Integer factorization (Both NP and co-NP)

« For natural numbers n and k, does n have a factor smaller than k besides 17
* AYes solution (n = 27,k = 4) and a NO solution (n = 35,k = 4)
« Unknown whether the integer factorization problem belongs to Class P

13

Pseudo-polynomial algorithm

* A pseudo-polynomial algorithm is an algorithm whose worst-case
time complexity Is polynomial in the numeric value of input (not
number of inputs).

isPrime(n):
* Checking a prime number:

* The size of input is [log n].
« Exponential time complexity

print(isPrime(12))

print(isPrime(17))

An algorithm of exponential time complexity.

14

Checking a prime number (PRIMES)

* P, NP, and co-NP
« Agrawal, Kayal, and Saxena showed that PRIMES is in P.

Annals of Mathematics, 160 (2004), 781-793

PRIMES is in P

By MANINDRA AGRAWAL, NEERAJ KAYAL, and NITIN SAXENA™

Abstract

We present an unconditional deterministic polynomial-time algorithm that
determines whether an input number is prime or composite.

15

Complexity theory

 NP-hard

« Every problem in NP can be reduced to it in polynomial time
» At least as hard as the hardest problem in NP

« Example: the halting problem (Will the program halt when executed with this input, or will
it run forever?)

* NP-complete
NP and NP-hard
Every problem in NP can be reduced to it in polynomial time

If one could solve an NP-complete problem in polynomial time, then one could solve any
NP problem in polynomial time.

Example: the decision problem version of the TSP
The halting problem is not NP-complete since it does not belong to Class NP.

 So far, we cannot find polynomial algorithms to solve NP-hard problems.

16

How to deal with an NP-hard problem

» Using super-polynomial algorithms to solve it when the input size is small

o(n!) o0(")
o(n°®)
0(n log n)

~ o(n)
/ 0(log n)

oQ)

Time / Space Consumptio

Input Growth

—

17

[1] https://www.scholarhat.com/tutorial/datastructures

https://www.scholarhat.com/tutorial/datastructures

How to deal with an NP-hard problem

* Finding sub-optimal solution
 Sacrificing accuracy
« Approximation algorithms with guaranteeing the quality of the solution
 Heuristic algorithms without guaranteeing the quality of the solution

e Quantum computer (Quantum Turing machine)

« Many quantum algorithm for NP-hard problems are still theoretical and require
further development and testing.

~ e

iy

[1] https://quantumai.google/discover/whatisqc 18

https://quantumai.google/discover/whatisqc

Additional materials

COMPUTERS AND INTRACTABILITY
A Guide to the Theory of NP-Completeness

Michael R. Garey / David S. Johnson

P, NP, and
NP-Completeness

THE BASICS OF COMPUTATIONAL
COMPLEXITY

Oded Goldreich

CAMBRIDGE

Individual assignment

« Mandatory

« PO1: Please check whether the following statement is true or false:
5n+ 10 n’= O(n?)

nlogn+ 4 n=0(n)

log(n?) + 4 log(log n) = O(logn)

12 n'2+ 3 =0(n?)

3"+ 11 n?+ n?%= O(2")

« P02: Please list the functions in ascending order of their growth rates.

°ap o

log? n v Bloglogn n 7vn 2log* n

« P03: Please give the time complexity of the following algorithms using the big-O notation.

def my_function(n):
if n == 1:
return

for i in range(1, n+1):
Inner loop executes only one
time due to break statement.
for j in range(1l, n+l):
print(il*ilj end=ll"}
break

my_function(5) # Example: calling the function with n=5

#this code is contributed by Monu Yadav. 20

Individual assignment

« Mandatory
« P0O4: Please give the time complexity of the following algorithms using the big-O notation.

def function(n):
i=1 # Initialize i to 1
s =1 # Initialize s to 1

Loop until the sum of consecutive integers exceeds n
while 5 <= n:

i+=1 # Increment 1

s += 1 # Add i to the sum

print("%", end="") # Print 'x' without a newline

Example wvalue of n
h = 1@
function(n) # Call the function

« Optional
« PO5: Please give the time complexity of the following algorithms using the big-O notation

def myFunction(n):
for i in range(n):
for j in range(i, i * i):
if j % i == @: # Check if j is divisible by 1
for k in range(j):
print("%", end="") # Print '#' to the console without newline

print() # Move to the next line after printing '*' for each j

Example usage
myFunction(5)
21

C
RS,
0
)
-
O
K2,
O

Q& Al

22

	Slide 1
	Slide 2: Review
	Slide 3: Time complexity
	Slide 4: Complexity theory
	Slide 5: Complexity theory
	Slide 6: Complexity theory – Class P
	Slide 7: Complexity theory – Class NP
	Slide 8: Travelling salesman problem (TSP)
	Slide 9: Boolean satisfiability problem (SAT)
	Slide 10: Knapsack problem
	Slide 11: Vertex coloring problem
	Slide 12: Complexity theory – P versus NP
	Slide 13: Complexity theory – Class co-NP
	Slide 14: Pseudo-polynomial algorithm
	Slide 15: Checking a prime number (PRIMES)
	Slide 16: Complexity theory
	Slide 17: How to deal with an NP-hard problem
	Slide 18: How to deal with an NP-hard problem
	Slide 19: Additional materials
	Slide 20: Individual assignment
	Slide 21: Individual assignment
	Slide 22: Discussion

