CDS2003: Data Structures and

Object-Oriented Programming

Lecture: Tuple, String, Set, and Map/Dictionary

Review

* Array
° Types Of a‘rray Womc! o
- Basic operations of array

* Python List
 Basic operations of Python List

CAlgorithms + Data Structures = Programs —
I - Niklaus Wirth-

Group project

« Group project:

Each team can have up to 3 students, and individual projects are also welcome.
Hands-on experience

Problem-solving abilities

Language proficiency

Practical application of concepts

Self-confidence and motivation

» Suggested group project — Phone Directory Management System
* |f you choose the suggested project, each team has up to 2 students.

Description of the suggested project

« A phone directory is a listing of contacts, where each record mainly includes the
name, phone number ,and address of a contact person. Records in the phone
directory are well arranged so that each contact can be easily identified and found.

* In this project, a team of up to 2 students will be required to develop a Phone

Directo&y Mana%ement System and analyze system implementation by using the
knowledge you have learned in this course.

* A suggested menu of the system

*¥¥¥x4¥% Phone Directory Management Syztem #Frddss
1. Inzexrt new records

2.Delete existing records

J. Search 2 record by name

4. Dizplay zrecords 1in sorted order

9.0uit the system

that would wou like to do? [

Description of the suggested project

* Required modules of the Phone Directory Management System
 Module 1: Inserting new records:

This module can assist users to insert new contacts, which include name, telephone
number, address and so on, in the phone directory

« Module 2: Deleting existing records

This model can assist users to delete existing contacts in the phone directory

* Module 3: Searching for a specific record by its name

This module can assist users to delete existing contacts in the phone directory.
* Module 4: Displaying the list of records in a sorted order

This module can assist users to display all contact records in a sorted order in the phone
directory.

 Module 5: Quitting the system

Description of the suggested project

* When developing the application, you should consider making good use
of the data structures and algorithms you have learned in this course.

At least one data structure and one algorithm should be employed.

* Reasons for using the corresponding data structures and algorithms
should be discussed in the written report.

tkkkkk* Phone Directory Managsement System ###ddd
1. Inzert new zrecords

2.Delete existing records

J.Search a zxecord by name

4. Dizplay zrecords 1n sorted order

D.0u1t the =ysztem

that would wvou like to do? [

Submission of the group project

The submission will include two parts:
1. Awritten report and source codes;
2. Apresentation slide and a presentation video

Please submit the two parts in different submission entry in the MOODLE.
* There will be one entry for the written report and source codes, and
» The other entry for a presentation slide and a presentation video.

Submission of a written report and source codes should be in a single compressed file like .zip or. Rar.
« Please put all your source codes in a single folder and make sure that your source codes are executable.

Submission of a presentation slide and a presentation video should be a compressed file including a
P_ET file and a presentation video file or a'link to video (i.e., Youtube, Bilibili, or Google Driver) if the
video is oversize.

II\E/Iacr(lj roup should choose one student as the representative to submit the written materials onto
oodle.

Each group should prepare a video presentation. The video should be about 10 minutes long. It should
be no more than 15 minutes.

Use ZOOM for the video recording.

Marking criteria (tentative)

* Problem solving and application of knowledge (35%)
* Whether the problem is well addressed in the project
* Whether the basic requirements are fulfilled
* Whether knowledge is applied correctly
« Whether the solution is suitable for the problem

« Analysis and critical thinking (40%)
* Whether the solution is effective
 Whether knowledge is applied wisely
* Whether the problem is well-analyzed
* Whether the time and complexity analysis are included in the report
* Whether the knowledge applied is critically discussed in the report

Marking criteria (tentative)

* Object-oriented programming (OOP)
« Whether the project is implemented correctly using the idea of OOP

* Presentation and illustration (15%)
* Whether the problem is clearly defined in the written report
« Whether the knowledge applied is well-illustrated
* Whether the written report is organized elaborately
* Whether the critical points in the project is well-revealed
« Whether the report is written in a concise manner

* Implementation and organization (10%)
* Whether the program code is well-organized
* Whether the application is implemented elegantly and professionally

Guidelines for the video presentation

» Appropriate time allocation and pace:
 Start the presentation punctually
« Use appropriate pace
« Manage time and content with smooth progression

 Clear, logically organized and relevant content
* Include relevant information
 Clearly state and develop the key points
« Avoid ambiguities

» Make effective use of presentation tools

* Use good language, eye contact, and appropriate voice tone
» Gain/hold attention

* Clarity of speech

10

Tuple

* Tuple is a collection of objects separated by commas.
« Similar to a Python list but tuple is immutable/static (No add or delete)

var = (1, Z, 3)

print ("Value in Var[-1] = ", wvar[-1])
print ("Value in Var[-2] = ", war[-2])
print ("Value in Var[-3] = ", wvar[-3])

QOutput:
Output :

tuple with different datatypes

» Create a tuple with one element!

mytuple = ("Geeks",)
print (type (mytuple))

#NOT a tuple
mytuple = ("Geaks")

print (type (mytuple))

Value in Var[-1] = 3) _
Value in Var[-2] = 2 tuple obj = ("immutable”,True,23)
Value in Var[-3] = 1 print({tuple obj) (*immutable', True, 23)
f Code to create a tuple with repetition
Output: tuple3 = ('python',)*3

print{tuplel)

<class 'tuple'>

('python', 'python', 'python')

<class 'str's

» Create a tuple of multiple same elements from a single element

[1] https://www.geeksforgeeks.org/tuple

11

https://www.geeksforgeeks.org/tuples-in-python/?ref=header_outind

 Strings are commonly used for storing and manipulating textual data.
* A string Is defined as an array of characters.

* The difference between a character array and a string is the string is
terminated with a special character \O'.

* |In most programming languages, strings are treated as a data type.

* Programming does not have a character data type, a single character Is
simply a string with a length of 1.

oG

string str = "Geeks”

String

o 1 2 3 4 5
Data Structure str— Gle|e|k|s \0

x—)

12

https://www.geeksforgeeks.org/string-data-structure/

String operations

* Length: Determining the number of characters in a string.
» Access: Accessing individual characters in a string by index.

Example string Stflz?i =‘"Het10 Kittv”" _
my_string = "Hello, World!" ‘G‘E‘E‘K|S‘F|0‘R‘G|E‘E‘K|S| prin Initial String: ", Stringl)
01 2 3 4 56 7 8 9 101112
1312 -11-10-9 -8 -7 6 54 -3 -2 1 # Printi i ' '
Get the length of the string lr'ln 1|j|g a character with a'glv:?n index ‘
lenath = len(tring) print("First character of String is: ", Stringl[3])
ength = lenimy_string print("Last character of String is: ", Stringl[-3])

« Substring/Slicing: Extracting a portion of a string.

#Program to reverse a string
gfg = "Hello, world"
print(gfgl::-1])

« Concatenation: Combining two strings to create a new string.

« Comparison: Comparing two strings to check for equality or order.
« Search: Finding the position of a specific substring within a string.
* Modification: Changing or replacing characters within a string.

https://www.geeksforgeeks.org/python-string/

String concatenation

 Using + operation Using format() function

Defining strings varl = "Hello"
varl = "Hello " var2 = "Kitty"
var2 = "Kitty"

format function is used here to

+ Operator is used to combine strings # combine the string
var3 = varl + var2 print("{} {}".format(varl, var2))
print(var3)

store the result in another variable

¢ USing jOin() methOd vard = "{} {}".format(varl, var2)

print(var3)

varl = "Hello"

var2 = "Kitty" ° USIﬂg Comma “,’7

join() method is used to combine the strings varl = "Hello"
print("".join([varl, var2])) var2 =" "
var3d = "Kitty"

join() method is used here to combine
the string with a separator Space("™ ") # using comma to combine data types
var3 = " ".join([varl, var2]) # with a single whitespace.
print(varl, var2, var3)

 Using f-string

name = "HelloKitty"
age = 50

print{var3)

* Using % operator

varl = "Hello"
var2 = "Kitty"

String concatenation using f-string

#5% 0 t i d h t bi th tri
perator 1s used hiere to combine the string greeting = f"Hello, my name is {name} and I am {age} years old."

print("%s s % s" % (varl, var2))

print(greeting)

[1] https: e, geeksforgeeks org/oython-string-concatenation/ 14

https://www.geeksforgeeks.org/python-string-concatenation/

Find position of a character in a given string

* Using rfind() method Using re.search()

, import re
string = 'Work hard! Play Hard!"’ string = 'Study for yourself'
1EttE‘r _ Ikl pattern = 'for'

match=(re.search(pattern, string))

print(string.rfind(letter))

o l ’Slng IndeX() #getting the starting index using match.start()

print ("starting index", match.start())

Initializing string

ini_string = 'abcdef' #Getting the start and end index in tuple format using match.span()

print ("start and end index", match.span())

Character to find

 Using the loop

printing initial string and character # Initializing string
print("initial_string : ", ini_string, "\ncharacter_to_find : ", c) ini_stringl = 'xyze'
Using Naive Method # Character to find
res = None c = "p"
for i in range(@, len(ini_string)): # printing initial string and character
if ini_stringli] == c: print ("initial_strings : ", ini_stringl,
res = i + 1 "\ncharacter_to_find : ", c)
break
Using index Method
. try:
if res == None:

res = ini_stringl.index(c)

print("No such character available in string") print ("Character {} in string {} is present at {}".format(

else: c, ini_stringl, str(res + 1)))

print("Character {} is present at {}".format(c, str(res)))

except ValueError as e:

print ("No such character available in string {}".format(ini_stringl)) 15

https://www.geeksforgeeks.org/python-find-position-of-a-character-in-given-string/

String find() method

* Returning the lowest index or first occurrence of the substring if it Is

found Iin a given string

* With no start and end argument

© word = 'geeks for geeks'
74 # returns first occurrence of Substring
result = word.find('geeks')
> print("Substring 'geeks' found at index:", result)
result = word.find('for")
print("Substring or ound at index:", result
(" int("Sub i 'f ' found index:" 1t)
How to use find()
if word.find('pawan') != -1:
print("Contains given substring ")
else:
print("Doesn't contains given substring")
Output

Substring 'geeks' found at index: @
Substring 'for ' found at index: 6

Doesn't contains given substring

e v 8 0O

Output

10
-1

* With start and end argument

word = 'geeks for geeks'

Substring is searched in 'eks for geeks'
print(word.find('ge', 2))

Substring is searched in 'eks for geeks'
print(word.find('geeks ', 2))

Substring is searched in 's for g'
print(word.find('g"', 4, 10))

Substring is searched in 's for g'
print(word.find('for ', 4, 11))

16

https://www.geeksforgeeks.org/python-string-find/?ref=header_outind

Updating or deleting a character

« Updating a character * Deleting a character

Python Program to Update
character of a String

Stringl - "HE'IL.LO' Ilm a GEEK" # Pythﬂn PFDQI"EITI tﬂ dElEtE
print("Initial String: ") # character of a 5tring
print(Stringl)

Stringl = "Hello, I'm a HelloKitty"
print("Initial String: ")
print(Stringl)

Updating a character of the String

As python strings are immutable, they don't support item updation directly
there are following two ways
#1

listl = list(Stringl) print("Deleting character at 2nd Index: ")
list1[2] = 'p' del Stringl([2]

String2 = ''.join(listl) print(Stringl)
print("\nUpdating character at 2nd Index: ")

print(String2)

#2
String3 = Stringl[@8:2] + 'p' + Stringl([3:]
print(String3)

https://www.geeksforgeeks.org/python-string/

Set

* Atype of data structure which stores a collection of distinct elements.
* No duplicate elements

* A setis unordered, so we cannot know access item using indexes as
we do In an array or a list.

Python example demonstrate that a set
can store heterogeneous elements
var = {"Geeks", "for", "Geeks"} myset = {"Geeks", "for", 10, 52.7, True}
type{ua r'_] print{mys'&t}

Python program to demonstrate that

typecasting list to set # a set cannot have duplicate values
myset = set(["a", "b", "c"]) # and we cannot change its items
print(myset) .

a set cannot have duplicate values
Adding element to the set myset = {"Geeks", "for", "Geeks"}
myset.add("d") print(myset)
print(myset)

values of a set cannot be changed
myset[1] = "Hello"

[1] hitps://www.geeksforgeeks.org/introduction-to-set-data-structure/ print({myset)
[2] hitps://iwww.geeksforgeeks.org/sets-in-python/ 18

https://www.geeksforgeeks.org/introduction-to-set-data-structure/
https://www.geeksforgeeks.org/sets-in-python/

Frozen set

* Frozen sets are immutable objects that only support methods and
operators that produce a result without affecting the frozen set or sets to
which they are applied.

* Function frozenset() 3 butween nomwal and frozen set
* From dynamic to static # Same as {"a", "b","c"}

normal_set = set(["a", "b","c"])

print{"Normal Set")
print(normal_set)

A frozen set
frﬂZEﬁ_SEt = frﬂEEHSEtI[HE", ”f”, ngu]}

print{"\nFrozen Set")
print(frozen_set)

Uncommenting below line would cause error as

we are trying to add element to a frozen set
frozen set.add("h")

[2] https://www.geeksforgeeks.org/sets-in-python/ 19

https://www.geeksforgeeks.org/introduction-to-set-data-structure/
https://www.geeksforgeeks.org/sets-in-python/

Union and intersection operations

* Two sets can be merged using union() or | operator.
* Intersection operation can be done through intersection() or & operator

Python Program to
demonstrate union of
two sets

people = {"Jay", "Idrish", "Archil"}
vampires = {"Karan", "Arjun"}
dracula = {"Deepanshu", "Raju"}

Union using union()
function
population = people.union(vampires)

print("Union using union() function")
print(population)

Union using " |"
operator
population = people|dracula

print("\nUnion using '|' operator")
print(population)

Python program to
demonstrate intersection
of two sets

set()
set()

setl
set2

for i in range(5):
setl.add(i)

for i in range(3,9):
set2.add(1i)

Intersection using
intersection() function
set3 = setl.intersection(set2)

print("Intersection using intersection() function")
print(set3)

Intersection using
"&" operator
set3 = setl & set2

print{"\nIntersection using '&' operator")
print(set3)

Qutput:

Union using union() function
{'Karan', 'Idrish', 'Jay', 'Arjun', ‘'Archil'}

Union using '|' operator
{'Deepanshu', 'Idrish', 'lJay', 'Raju', 'Archil'}

OQOutput:

Intersection using intersection() function
{3, 4}

Intersection using '&' operator

{3, 4}

20

https://www.geeksforgeeks.org/introduction-to-set-data-structure/
https://www.geeksforgeeks.org/sets-in-python/

Finding differences of sets

 Find differences between sets using difference() or - operator

Python program to Output:
demonstrate difference
of two sets Difference of two sets using difference() function
setl = set() {e, 1, 2}
set2 = set()

Difference of two sets using '-' operator
for i in range(5}: 0 1, 2}

r L

setl.add(i)

for i in range(3,9):
set2.add(1i)
setl = {1, 2, 3}

Difference of two sets set2 = {3, 4, 5}
using difference() function
set3 = setl.difference(set2) # Union

print(setl | set2) # Output: {1, 2, 3, 4, 5}
print(" Difference of two sets using difference() function")
print(set3) # Intersection

print(setl & set?2) # Output: {3}
Difference of two sets

using '-' operator # Difference

set3 = setl - set2 print(setl - set2) # Output: {1, 2}
print("\nDifference of two sets using '-' operator") # Symmetric Difference

print(set3) print(setl ™ set2) # Output: {1, 2, 4, 5}

[2] hitps://www.geeksforgeeks.org/sets-in-python/ 21

https://www.geeksforgeeks.org/introduction-to-set-data-structure/
https://www.geeksforgeeks.org/sets-in-python/

Map

* Map data structure Is also known as a dictionary, associative array, or
hash map and stores a collection of key-value pairs.

« Each key Is associated with a single value.
« A Python dictionary stores the value in key:value pairs
 Efficiently store and retrieve data based on a unigue identifier (the key)

d=1{a':10, 'b': 20, "¢’: 30}

]

d[laI] d['b'] d['CI]

v Unordered: The items in dict are stored without any index value
v" Unique: Keys in dictionaries should be Unique
v Mutable: We can add/Modify/Remove key-value after the creation

22

https://www.geeksforgeeks.org/introduction-to-map-data-structure/
https://pynative.com/python-dictionaries/

Operations of Map

Dict = {}
print("Empty Dictionary: ")
print(Dict)

Dict = dict({1: 'Geeks', 2: 'For', 3: 'Geeks'})
print("\nDictionary with the use of dict(): ")
print(Dict)

Dict = dict([(1, 'Geeks'), (2, 'For')]l)

print("\nDictionary with each item as a pair: ")
print(Dict)

Output

Empty Dictionary:
{}

Dictionary with the use of dict():
{1: 'Geeks', 2: 'For', 3: 'Geeks'}

Dictionary with each item as a pair:
{1: 'Geeks', 2: 'For'}

* Different ways to create a Python dictionary

Creating a map

d = {"keyl': 'valuel', 'key2': 'value2', 'key3': 'value3'}

Adding a new key-value pair
d['key4'] = 'valued'

Retrieving the value associated with a key
print(d['key2']l) # Output: value2

Updating the value associated with a key
d['key2'] = "new_value2'

Removing a key-value pair
del d['key3']

Iterating over the key-value pairs in the map

for key, value in d.items():
print(key, value)

Output

Value for key 'banana': 200

Updated value for key 'banana': 258
Key-value pairs in the map:

apple: 108

banana: 25@

23

https://www.geeksforgeeks.org/introduction-to-map-data-structure/
https://www.geeksforgeeks.org/python-dictionary/?ref=header_outind

Difference between array, set, and map data structures

Duplicate Duplicate values Unique values
values
Order Ordered collection Unordered collection
Retrieval Elements in an array can be Iterate over the set to retrieve the
accessed using their index. value.
Operations Adding, removing, and accessing Set operations like union,
elements intersection, and difference.
Memory Stored as contiguous blocks of Implemented using linked lists or

memory trees

Keys are unique, but the values
can be duplicated

Unordered collection

Elements can be retrieved using
their key.

Maps are used for operations like
adding, removing, and accessing
key-value pairs.

Implemented using linked lists or
trees

24

https://www.geeksforgeeks.org/introduction-to-set-data-structure/

C
RS,
0
)
-
O
K2,
O

Q& Al

25

	Slide 1
	Slide 2: Review
	Slide 3: Group project
	Slide 4: Description of the suggested project
	Slide 5: Description of the suggested project
	Slide 6: Description of the suggested project
	Slide 7: Submission of the group project
	Slide 8: Marking criteria (tentative)
	Slide 9: Marking criteria (tentative)
	Slide 10: Guidelines for the video presentation
	Slide 11: Tuple
	Slide 12: String
	Slide 13: String operations
	Slide 14: String concatenation
	Slide 15: Find position of a character in a given string
	Slide 16: String find() method
	Slide 17: Updating or deleting a character
	Slide 18: Set
	Slide 19: Frozen set
	Slide 20: Union and intersection operations
	Slide 21: Finding differences of sets
	Slide 22: Map
	Slide 23: Operations of Map
	Slide 24: Difference between array, set, and map data structures
	Slide 25: Discussion

