
CDS2003: Data Structures and

Object-Oriented Programming

Lecture: Divide-and-Conquer and Recursion

Review

2

• Course description

• Ethical implications of data science and artificial intelligence
• Seeking to enhance the value of data science for society

• Avoiding harm

• Applying and maintaining professional competence

• Seeking to preserve or increase trustworthiness

• Maintaining accountability and oversight

• Recommended readings

• Online resources
• W3Schools (https://www.w3schools.com/), thanks to Kenneth

• LeetCode (Hands-on practice https://leetcode.com/playground)

https://leetcode.com/playground

We shall discuss…

3

• What is divide-and-conquer

• What is recursion

• Recursion versus iteration

• Advantages or disadvantages of recursion

• Examples of recursion

Divide-and-Conquer

• A mechanism of solving a large problem
• Solving a large problem by recursively breaking it down into smaller (more

manageable) subproblems until they can be solved directly

Divide-and-conquer

5
[1] Divide and Conquer Introduction https://www.javatpoint.com/divide-and-conquer-introduction

https://www.javatpoint.com/divide-and-conquer-introduction

Tree steps of divide-and-conquer

6

1. Divide
• Breaking down the original problem into smaller independent subproblems

2. Conquer
• Solving each of the smaller subproblems individually

• Solving the independent subproblems concurrently in a multi-processor machine

3. Merge/Combine
• Putting together the solutions of the subproblems to get the final solution to the

original problem

• Example: Find the maximum value in an unsorted array.
• Divide: Given the array [4, 6, 2, 8, 3, 1], we can divide it into [4, 6, 2] and [8, 3, 1].

• Conquer: For the first array, the maximum is 6. For the second, the maximum is 8.

• Combine: Compare the two maximums obtained from the halves. In this case, the
maximum between 6 and 8 is 8.

Pros and cons of divide-and-conquer

7

• Advantages
• Solving difficult problems conceptually

• Helping discover efficient algorithms

• Parallelism in multi-processor machines

• Efficient using cache for smaller problems instead of main memory

• Disadvantages
• Additional resources for dividing and combining

• Difficulty of debugging and implementation

• Branch-and-bound?

[1] Divide and Conquer Introduction https://www.javatpoint.com/divide-and-conquer-introduction

https://www.javatpoint.com/divide-and-conquer-introduction

Function

8

• A function is a relation between a set of inputs and a set of possible
outputs where each input is related to exactly one output.

[1] Divide and Conquer Introduction https://www.javatpoint.com/divide-and-conquer-introduction

https://www.javatpoint.com/divide-and-conquer-introduction

Optimization problem

9

• An optimization problem is a mathematical problem that seeks to find
the best solution from a set of feasible solutions, according to a
specific criterion.

• Components of an optimization problem:
• Decision variables: The variables that can be controlled or adjusted to achieve

the desired outcome, e.g., 𝒙 = [𝑥1 𝑥2]′. A solution is a specific set of values
assigned to the decision variables, e.g., 𝒙 = [3 2].

• Constraints: Limitations or restrictions on the decision variables to define the
feasible region, e.g., 3𝑥1 + 2𝑥2 ≤ 2 & 𝑥2 ≥ −5. A feasible solution is a solution
that satisfies the constraints, e.g., 𝒙 = [0.5 0.1]. All feasible solutions constitute
the feasible region.

• An objective function: The function that needs to be maximized or minimized.
For example, maximize 𝑓 𝒙 = 2𝑥1 + 𝑥2. Among all feasible solutions, the
optimal solution is the one that maximizes or minimizes the objective function.

[1] Divide and Conquer Introduction https://www.javatpoint.com/divide-and-conquer-introduction

https://www.javatpoint.com/divide-and-conquer-introduction

Branch-and-bound

10

• Branch-and-bound uses a “divide and conquer” approach to solve
optimization problems.

• The key concepts
• Branching: Divide the problem into smaller subproblems with each

subproblem representing a part of the solution space.

• Bounding: For each subproblem, estimate the bounds of the best possible
solution that can be obtained.

• Pruning: If the bound of a subproblem indicates that it cannot yield a better
solution than the best one found so far, discard that subproblem.

• Keep you cool! We will revisit the concept later.

[1] Divide and Conquer Introduction https://www.javatpoint.com/divide-and-conquer-introduction

https://www.javatpoint.com/divide-and-conquer-introduction

Recursion

Illustrative figures of recursion

12

[1] https://www.linkedin.com/pulse/recursion-explained-understand-you-must-first-ignacio-chitnisky/
[2] https://medium.com/enjoy-algorithm/recursion-explained-how-recursion-works-in-programming-b22113006fe3

[3] https://realpython.com/python-thinking-recursively/

https://www.linkedin.com/pulse/recursion-explained-understand-you-must-first-ignacio-chitnisky/
https://medium.com/enjoy-algorithm/recursion-explained-how-recursion-works-in-programming-b22113006fe3
https://realpython.com/python-thinking-recursively/

What is recursion

13

• A recursive definition is one in which the defined term appears in the
definition itself.

• Your ancestors = (your parents) + (your parents’ ancestors)

• Recursion is the process of defining something (a problem or a solution
to a problem) in terms of (a simpler version of) itself.

• A function is recursive if it calls itself, directly or indirectly.

• Why is recursion needed?
• One of the best solution for a task that can be defined with its similar substask.
• Reducing the length of our code and making it easier to read and write

Examples of recursion

14

• Task: Find your home.

• Checking whether you are at home

• Stopping moving when you are at home

• Finding a route to home and taking one step toward home
when you are not at home

Examples of recursion

15

• Task: Count down a nonnegative number to zero

𝑛, 𝑛 − 1, 𝑛 − 2, … , 0.

• Counting down 5 to zero

• Saying 5 and reducing the problem to counting down 4 to 0

• Saying 4 and reducing the problem to counting down 3 to 0

• Saying 3 and reducing the problem to counting down 2 to 0

• Saying 2 and reducing the problem to counting down 1 to 0

• Saying 1 and reducing the problem to counting down 1 to 0 (Just Saying 0!!!)

Examples of recursion

16

• Task: Count down a nonnegative number to zero
𝑛, 𝑛 − 1, 𝑛 − 2, … , 0

• Base case: 𝑛 = 0

• Recursive case: 𝑛 > 0

• Countdown(5)

• Print(5) and Countdown(4)

• Print(4) and Countdown(3)

• Print(3) and Countdown(2)

• Print(2) and Countdown(1)

• Print(1) and Countdown(0)

Count down to zero
def countdown(n):

print(n)
if n == 0: # Terminate condition

return
else: # Recursive call

countdown(n-1)

countdown(5)

Output:

5
4
3
2
1

Two parts in a recursive function

17

• Termination condition:
• A recursive function always contains one or

more terminating condition.

• A condition in which the recursive function is
processing a simple case (called base case)
and will not call itself.

• Each recursive call makes a new copy of that
function in the stack memory.

• Without termination condition, the recursive
function may run forever and will finally run out
of the stack memory.

• Body:
• The main logic of the recursive function

contained in the body of the function. It also
contains the recursion expansion statement
that in turn calls the method itself.

• Task: Find your home.
• Checking whether you are at

home
• Stopping moving when you

are at home
• Finding a route to home and

taking one step toward home
when your are not at home

Count down to zero
def countdown(n):

print(n)
if n == 0: # Terminate condition

return
else: # Recursive call

countdown(n-1)

About the base case in recursion

18

• We already know the answer to the base case or it is easy to find the
answer to the base case.

• The function stops calling itself when the base case is reached.

• Each successive recursive call to the function should bring it closer
to the base case.

Count down to zero
def countdown(n):

print(n)
if n == 0: # Terminate condition

return
else: # Recursive call

countdown(n-1)

Examples of recursion

19

• Problem: Calculate the factorial of a nonnegative integer 𝑛, where

𝑛! = 𝑛 × 𝑛 − 1 × 𝑛 − 2 × ⋯ × 2 × 1 and 0! = 1

• Top-down approach for design:

• factorial_Recur(4)

• 4 × factorial_Recur(3)

• factorial_Recur(3)

• 3 × factorial_Recur(2)

• factorial_Recur(2)

• 2 × factorial_Recur(1)

• factorial_Recur(1)

• 1 × factorial_Recur(0)

• 1 (base case: 𝑛 = 0)

factorial with Recursion
def factorial_Recur(n):

if n == 0:
return 1

return n * factorial_Recur(n-1)

Examples of recursion

20

• Problem: Calculate the factorial of an integer 𝑛, where

𝑛! = 𝑛 × 𝑛 − 1 × 𝑛 − 2 × ⋯ × 2 × 1 and 0! = 1

• factorial_Recur(4)

• 4 × factorial_Recur(3) = 4 × 6 = 24

• factorial_Recur(3)

• 3 × factorial_Recur(2) = 3 × 2 = 6

• factorial_Recur(2)

• 2 × factorial_Recur(1) = 2 × 1 = 2

• factorial_Recur(1)

• 1 × factorial_Recur(0) = 1 × 1 = 1

• 1 (base case: 𝑛 = 0)
[1] Recursion in Python: An Introduction https://realpython.com/python-recursion/

https://realpython.com/python-recursion/

Exercise (5 mins)

21

https://leetcode.com/playground

• Please use recursion to define a function to calculate the sum of
first 𝑛 natural numbers

1 + 2 + ⋯ + 𝑛

• Starting from def sum_n_Recur(n):

• Testing at sum_n_Recur(4)

• https://leetcode.com/playground

https://leetcode.com/playground

Examples of recursion

22

• Example: Calculate the sum of first n natural numbers
1 + 2 + ⋯ + 𝑛

• sum_n_Recur(4)

• 4 + sum_n_Recur(3)

• sum_n_Recur(3)

• 3 + sum_n_Recur(2)

• sum_n_Recur(2)

• 2 + sum_n_Recur(1)

• 1 (base case: 𝑛 = 1)

sum with Recursion
def sum_n_Recur(n):

if n <= 1:
return n

return n + sum_n_Recur(n-1)

Examples of recursion

23

• Problem: In a Fibonacci sequence (starting from 0 and 1), each
number is the sum of the two preceding ones 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2.

• Base case: 𝑛 < 2

• Recursive case: 𝑛 > 2
• Breaking the problem

• Calling the function recursively

𝑛 0 1 2 3 4 5 6 7 8 9 …

𝐹𝑛 0 1 1 2 3 5 8 13 21 34 …

Fibonacci number with recursion
def get_fn_Recur(n):

if n < 2:
fn = n

else:
fn = get_fn_Recur(n-1) + get_fn_Recur(n-2)

return fn

Illustrative figures of recursion

24

[1] https://www.linkedin.com/pulse/recursion-explained-understand-you-must-first-ignacio-chitnisky/
[2] https://medium.com/enjoy-algorithm/recursion-explained-how-recursion-works-in-programming-b22113006fe3

[3] https://realpython.com/python-thinking-recursively/

https://www.linkedin.com/pulse/recursion-explained-understand-you-must-first-ignacio-chitnisky/
https://medium.com/enjoy-algorithm/recursion-explained-how-recursion-works-in-programming-b22113006fe3
https://realpython.com/python-thinking-recursively/

Four steps for implementing recursion in a function

25

• Step 1 -- Defining a base case:
• Identifying the simplest case for which the solution is known or trivial, relating to the

stopping condition for the recursion, as it prevents the function from infinitely calling itself.

• Step 2 -- Defining a recursive case:
• Defining the problem in terms of smaller subproblems. Break the problem down into

smaller versions of itself, and call the function recursively to solve each subproblem.

• Step 3 -- Ensuring the recursion terminates:
• Making sure that the recursive function eventually reaches the base case, and does not

enter an infinite loop.

• Step 4 -- Combining the solutions:
• Combining the solutions of the subproblems to solve the original problem.

Recursion versus iteration

26

• Recursion and iteration are key techniques in algorithm design.

• A recursive function is one that calls itself to repeat some code block.
• A divide-and-conquer approach: breaking the problem into sub-problems

• An iterative function is one that loops to repeat some code block.
• Sequential execution

• Recursion problems can generally be solved by iteration (using loops).

Recursion versus iteration

27

• Problem: Count down a nonnegative number to zero
𝑛, 𝑛 − 1, 𝑛 − 2, … , 0

Count down to zero with Iteration
def countdown(n):

while n >= 0:
print(n)
n -= 1

Count down to zero with Recursion
def countdown(n):

print(n)
if n == 0: # Terminate condition

return
else: # Recursive call

countdown(n-1)

Recursion versus iteration

28

• Problem: Calculating the sum of first n natural numbers
1 + 2 + ⋯ + 𝑛

sum with Recursion
def sum_n_Recur(n):

if n <= 1:
return n

return n + sum_n_Recur(n-1)

sum with Iteration
def sum_n_Iter(n):

result = 0
for i in range(n+1):

result += i
return result

Recursion versus iteration

29

• Problem: Calculating the factorial of an integer 𝑛, where

𝑛! = 𝑛 × 𝑛 − 1 × 𝑛 − 2 × ⋯ × 2 × 1 and 0! = 1

factorial with Recursion
def factorial_Recur(n):

if n == 0:
return 1

return n * factorial_Recur(n-1)

factorial with Iteration
def factorial_Iter(n):

result = 1
for i in range(1,n+1):

result *= i
return result

Recursion versus iteration

30

• Problem: In a Fibonacci sequence (starting from 0 and 1), each
number is the sum of the two preceding ones 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2.

Fibonacci number with recursion
def get_fn_Recur(n):

if n < 2:
fn = n

else:
fn = get_fn_Recur(n-1) + get_fn_Recur(n-2)

return fn

Fibonacci number with iteration
def get_fn_Iter(n):

if n < 2:
fn = n

else:
first = 0
second = 1

for _ in range(n-1):
sum = first + second
first = second
second = sum

fn = second
return fn

Recursion versus iteration

31

Recursion Iteration

1 Terminates when the base case becomes true. Terminates when the condition becomes false.

2 Used with functions Used with loops

3 Every recursive call needs extra space. Every iteration does not require any extra space.

4 Smaller code size Larger code size

5 Divide-and-conquer Sequential execution

When we use recursion

32

• Pros:
• Breaking a complex task into simpler sub-problems

• Making the code look clean and elegant

• Generating sequence more easily than nested iteration

• Cons:
• Resulting the logic that is hard to follow through sometimes

• Taking up a lot of memory and time

• Complicating the debug process

• Notice
• The speed of a recursive program is slower because of stack overheads.

• If the same task can be done using an iterative solution (using loops), it is often
better to use an iterative solution in place of recursion to avoid stack overhead.

• Mandatory
• P01: Please use recursion to define and test a function to calculate the sum

of a list of numbers. def list_sum_Recur(num_list):

• P02: Please use recursion to define and test a function to find the greatest
common division of two positive integers. def gcd_Recur(a,b):

• P03: Please use recursion to define and test a function to calculate the
harmonic series upto 𝑛 terms. def harmonic_sum_Recur(n):

• P04: Please use recursion to define and test a function to calculate the value
of 𝑥 to the power of 𝑛. def power_Recur(x,n):

• Optional
• P05: Please use recursion to define and test a function to accept a decimal

integer and display its binary equivalent. def Dec2Binary_Recur(num):

• P06: Please use recursion to define and test a function to take in a string and
returns a reversed copy of the string. def reverse_Recur(a,b):

• P07: Please use recursion to define and test a function to check whether a
number is Prime or not. Def isPrime_Recur(a,b):

Individual assignment 02

33

Notice

	Slide 1
	Slide 2: Review
	Slide 3: We shall discuss…
	Slide 4
	Slide 5: Divide-and-conquer
	Slide 6: Tree steps of divide-and-conquer
	Slide 7: Pros and cons of divide-and-conquer
	Slide 8: Function
	Slide 9: Optimization problem
	Slide 10: Branch-and-bound
	Slide 11
	Slide 12: Illustrative figures of recursion
	Slide 13: What is recursion
	Slide 14: Examples of recursion
	Slide 15: Examples of recursion
	Slide 16: Examples of recursion
	Slide 17: Two parts in a recursive function
	Slide 18: About the base case in recursion
	Slide 19: Examples of recursion
	Slide 20: Examples of recursion
	Slide 21: Exercise (5 mins)
	Slide 22: Examples of recursion
	Slide 23: Examples of recursion
	Slide 24: Illustrative figures of recursion
	Slide 25: Four steps for implementing recursion in a function
	Slide 26: Recursion versus iteration
	Slide 27: Recursion versus iteration
	Slide 28: Recursion versus iteration
	Slide 29: Recursion versus iteration
	Slide 30: Recursion versus iteration
	Slide 31: Recursion versus iteration
	Slide 32: When we use recursion
	Slide 33: Individual assignment 02

