CDS2003: Data Structures and

Object-Oriented Programming

Lecture: Divide-and-Conquer and Recursion

Review

» Course description

 Ethical implications of data science and artificial intelligence
« Seeking to enhance the value of data science for society
 Avoiding harm
« Applying and maintaining professional competence
» Seeking to preserve or increase trustworthiness
« Maintaining accountability and oversight

« Recommended readings

* Online resources
« W3Schools (https://www.w3schools.com/), thanks to Kenneth

* LeetCode (Hands-on practice https://leetcode.com/playground)

https://leetcode.com/playground

We shall discuss...

* What is divide-and-conquer

* What is recursion

« Recursion versus iteration

« Advantages or disadvantages of recursion

« Examples of recursion

Divide-and-Conquer

Divide-and-conquer

« A mechanism of solving a large problem

« Solving a large problem by recursively breaking it down into smaller (more
manageable) subproblems until they can be solved directly

problem

divide

solve
subproblem

solve

conquer
q subproblem

combine

solution to

problem

[1] Divide and Conquer Introduction https://www.javatpoint.com/divide-and-conquer-introduction

https://www.javatpoint.com/divide-and-conquer-introduction

Tree steps of divide-and-conquer

1. Divide
» Breaking down the original problem into smaller independent subproblems
2. Conquer

« Solving each of the smaller subproblems individually
» Solving the independent subproblems concurrently in a multi-processor machine

3. Merge/Combine

« Putting together the solutions of the subproblems to get the final solution to the
original problem

« Example: Find the maximum value in an unsorted array.
 Divide: Given the array [4, 6, 2, 8, 3, 1], we can divide it into [4, 6, 2] and [8, 3, 1].
« Conquer: For the first array, the maximum is 6. For the second, the maximum is 8.

« Combine: Compare the two maximums obtained from the halves. In this case, the
maximum between 6 and 8 is 8.

Pros and cons of divide-and-conguer

« Advantages
 Solving difficult problems conceptually
» Helping discover efficient algorithms
 Parallelism in multi-processor machines
o Efficient using cache for smaller problems instead of main memory

» Disadvantages
 Additional resources for dividing and combining
« Difficulty of debugging and implementation

conquer

 Branch-and-bound?

solution to

problem

[1] Divide and Conquer Introduction hitps://www.javatpoint.com/divide-and-conquer-introduction

https://www.javatpoint.com/divide-and-conquer-introduction

« A function Is a relation between a set of inputs and a set of possible
outputs where each input is related to exactly one output.

v/ X

1to 1 Many to 1 1to many Many to many

60000000

[1] Divide and Conquer Introduction https://www.javatpoint.com/divide-and-conquer-introduction

https://www.javatpoint.com/divide-and-conquer-introduction

Optimization problem

* An optimization problem is a mathematical problem that seeks to find
the best solution from a set of feasible solutions, according to a
specific criterion.

« Components of an optimization problem:

 Decision variables: The variables that can be controlled or adjusted to achieve
the desired outcome, e.g., x = [x; x,]". A solution is a specific set of values

assigned to the decision variables, €. g., x = [3 2].

« Constraints: Limitations or restrictions on the decision variables to define the
feasible region, e.g., 3x; + 2x, < 2 & x, = —5. Afeasible solution is a solution
that satisfies the constralnts e.g., x = [O 5 0.1]. All feasible solutions constitute
the feasible region.

* An objective function: The function that needs to be maximized or minimized.
For example, maximize f(x) = 2x, + x,. Among all feasible solutions, the
optimal solution is the one that maximizes or minimizes the objective function.

[1] Divide and Conquer Introduction hitps://www.javatpoint.com/divide-and-conquer-introduction

https://www.javatpoint.com/divide-and-conquer-introduction

Branch-and-bound

* Branch-and-bound uses a “divide and conquer” approach to solve
optimization problems.

* The key concepts

« Branching: Divide the problem into smaller subproblems with each
subproblem representing a part of the solution space.

» Bounding: For each subproblem, estimate the bounds of the best possible
solution that can be obtained.

* Pruning: If the bound of a subproblem indicates that it cannot yield a better
solution than the best one found so far, discard that subproblem.

« Keep you cool! We will revisit the concept later.

[1] Divide and Conquer Introduction hitps://www.javatpoint.com/divide-and-conquer-introduction 10

https://www.javatpoint.com/divide-and-conquer-introduction

Recursion

lllustrative figures of recursion

Real Pjtnon

https://www.linkedin.com/pulse/recursion-explained-understand-you-must-first-ignacio-chitnisky/
https://medium.com/enjoy-algorithm/recursion-explained-how-recursion-works-in-programming-b22113006fe3
https://realpython.com/python-thinking-recursively/

What Is recursion

» A recursive definition is one in which the defined term appears in the
definition itself.

* Your ancestors = (your parents) + (your parents’ ancestors)

* Recursion is the process of defining something (a problem or a solution
to a problem) in terms of (a simpler version of) itself.

A function is recursive if it calls itself, directly or indirectly.

* Why Is recursion needed?
* One of the best solution for a task that can be defined with its similar substask.
« Reducing the length of our code and making it easier to read and write

13

Examples of recursion
 Task: Find your home.

* Finding a route to home and taking one step toward home w
when you are not at home

* Checking whether you are at home

« Stopping moving when you are at home .

14

Examples of recursion

» Task: Count down a nonnegative number to zero
nn—1n-2,...,0.
« Counting down 5 to zero
« Saying 5 and reducing the problem to counting down 4 to O
« Saying 4 and reducing the problem to counting down 3 to O
« Saying 3 and reducing the problem to counting down 2 to O
« Saying 2 and reducing the problem to counting down 1 to O

« Saying 1 and reducing the problem to counting down 1 to O (Just Saying 0!!)

15

Examples of recursion

» Task: Count down a nonnegative number to zero
nn—1,n-2,..,0

e Basecase:n=0
 Recursive case: n > 0

countdown(n):

« Countdown(5) f]’jr‘]”i(:”()) |

* Print(5) and Countdown(4) return

+ Print(4) and Countdown(3) e "
* Print(3) and Countdown(2)

 Print(2) and Countdown(1)

* Print(1) and Countdown(0O)

countdown(5)

16

Two parts In a recursive function

 Termination condition: » Task: Find your home.
* Arecursive function always contains one or « Checking whether you are at
more terminating condition. home
* A condition in which the recursive function is « Stopping moving when you
processing a simple case (called base case) are at home

and will not call itself.

« Each recursive call makes a new copy of that
function in the stack memory.

« Without termination condition, the recursive
function may run forever and will finally run out
of the stack memory.

 Finding a route to home and
taking one step toward home
when your are not at home

countdown(n):
« Body: print(n)

* The main logic of the recursive function fn==0:
contained in the body of the function. It also
contains the recursion expansion statement
that in turn calls the method itself.

return
else:
countdown(n-1)

About the base case In recursion

* We already know the answer to the base case or it Is easy to find the
answer to the base case.

* The function stops calling itself when the base case Is reached.

* Each successive recursive call to the function should bring it closer
to the base case.

countdown(n):
print(n)
if n==0:

return
else:
countdown(n-1)

18

Examples of recursion

* Problem: Calculate the factorial of a nonnegative integer n, where
nn=nxmnh-1))xXx n—-2) X---x2x land0!'=1

» Top-down approach for design:
» factorial_Recur(4)
» 4 x factorial _Recur(3)

. factorial _Recur(3) factorial_Recur(n):
- 3 x factorial_Recur(2) ==
_ return 1
° factorlaI_Recur(Z) return n * factorial_Recur(n-1)
. 2 x factorial_Recur(1)
. factorial Recur(1)
. 1 x factorial _Recur(0)

. 1 (base case: n = 0) 19

Examples of recursion

* Problem: Calculate the factorial of an integer n, where
nn=nxn—-1)xXxn-2)x--x2x1land0! =1

* factorial _Recur(4)

* 4 X factorial_Recur(3) = 4 X 6 = 24 e e .

» factorial Recur(3) J
. 3 X factorial Recur(2)=3x2 =6 3t = 3¢ j =3+ 2= 6
. factorial_Recur(2) I h
. 2 X factorial Recur(l) =2x1=2 £] | _

. factorial_Recur(1) o= 1

. 1 x factorial Recur(0) =1x1=1

. 1 (base case: n = 0)

[1] Recursion in Python: An Introduction hitps://realpython.com/python-recursion/ 20

https://realpython.com/python-recursion/

Exercise (5 mins)

 Please use recursion to define a function to calculate the sum of
first n natural numbers
1+2+-+n

+ Starting from
Mo R-18sum_n_Recur(4)

* https://leetcode.com/playground

21

https://leetcode.com/playground

Examples of recursion

« Example: Calculate the sum of first n natural numbers
1+2+-+n

 sum_n_Recur(4)
4+ sum_n_Recur(3)
. sum_n_Recur(3)

sum_n_Recur(n):

if n<=1:
. 3 + sum_n_Recur(2) returnn
- return n + sum_n_Recur(n-1)
. sum_n_Recur(2)

. 2 +sum_n_Recur(1)
. 1 (base case: n = 1)

22

Examples of recursion

* Problem: In a Fibonacci sequence (starting from 0 and 1), each
number Is the sum of the two precedingones F, = F,,_{ + F,,_,.

13 21 34

 Base case: n < 2

get_fn_Recur(n):
if n<2:
fn=n

else:
fn =get _fn_Recur(n-1) + get_fn_Recur(n-2)

* Breaking the problem return fn
 Calling the function recursively

e Recursive case: n > 2

23

lllustrative figures of recursion

Real Pjtnon

https://www.linkedin.com/pulse/recursion-explained-understand-you-must-first-ignacio-chitnisky/
https://medium.com/enjoy-algorithm/recursion-explained-how-recursion-works-in-programming-b22113006fe3
https://realpython.com/python-thinking-recursively/

Four steps for implementing recursion in a function

« Step 1 -- Defining a base case:

« Identifying the simplest case for which the solution is known or trivial, relating to the
stopping condition for the recursion, as it prevents the function from infinitely calling itself.

« Step 2 -- Defining a recursive case:

» Defining the problem in terms of smaller subproblems. Break the problem down into
smaller versions of itself, and call the function recursively to solve each subproblem.

« Step 3 -- Ensuring the recursion terminates:

« Making sure that the recursive function eventually reaches the base case, and does not
enter an infinite loop.

« Step 4 -- Combining the solutions:
« Combining the solutions of the subproblems to solve the original problem.

25

Recursion versus iteration

* Recursion and iteration are key techniques in algorithm design.

* Arecursive function is one that calls itself to repeat some code block.
« A divide-and-conquer approach: breaking the problem into sub-problems

* An iterative function is one that loops to repeat some code block.
e Sequential execution

* Recursion problems can generally be solved by iteration (using loops).

26

Recursion versus iteration

* Problem: Count down a nonnegative number to zero
nn—1,n—-2,..,0

countdown(n):

orint(n) countdown(n):

while n >= 0;
print(n)
n-=1

if n==0:
return

else:
countdown(n-1)

27

Recursion versus iteration

* Problem: Calculating the sum of first n natural numbers
1+2+-+n

sum_n_Iter(n):
result=0
foriin range(n+1):
result += i
return result

sum_n_Recur(n):

if n<=1:
returnn
return n + sum_n_Recur(n-1)

28

Recursion versus iteration

* Problem: Calculating the factorial of an integer n, where
nn=nxmnh-1))xmn-2) X~ x2x1land0!' =1

factorial_lter(n):
result =1
foriin range(1,n+1):
result *=i
return result

factorial _Recur(n):

if n==0:
return 1
return n * factorial _Recur(n-1)

29

Recursion versus iteration

* Problem: In a Fibonacci sequence (starting from 0 and 1), each
number is the sum of the two precedingones F, = F,,_; + F,,_,.

get_fn_Iter(n):

if n<2:
get_fn_Recur(n): CRMP

ifn<2: else:
fn=n first=0
else: second =1
fn = get_fn_Recur(n-1) + get_fn_Recur(n-2) for _in range(n-1):
return fn sum = first + second
first = second
second = sum
fn = second
return fn

Recursion versus iteration

Recursion lteration

1 Terminates when the base case becomes true. Terminates when the condition becomes false.
2 Used with functions Used with loops

3 Every recursive call needs extra space. Every iteration does not require any extra space.
4 Smaller code size Larger code size

5 Divide-and-conquer Sequential execution

31

When we use recursion

* Pros:
* Breaking a complex task into simpler sub-problems
« Making the code look clean and elegant
» Generating sequence more easily than nested iteration

» Cons:
» Resulting the logic that is hard to follow through sometimes
» Taking up a lot of memory and time
« Complicating the debug process

* Notice
* The speed of a recursive program is slower because of stack overheads.

* If the same task can be done using an iterative solution (using loops), it is often
better to use an iterative solution in place of recursion to avoid stack overhead.

32

Individual assignment 02

 Mandatory

 PO1: Please use recursion to define and test a function to calculate the sum
of a list of numbers. list_sum_Recur(num_list):

« P02: Please use recursion to define and test a function to find the greatest
common division of two positive integers. HERIS NSO CRIE

* P03: Please use recursion to define and test a function to calculate the
harmonic series upto n terms. harmonic_sum_Recur(n):

* P04: Please use recursion to define and test a function to calculate the value
of x to the power of n. power_Recur(x,n):

« Optional

« PO5: Please use recursion to define and test a function to accept a decimal
iInteger and display its binary equivalent. Dec2Binary Recur(num):
« PO6: Please use recursion to define and test a function to take in a string and

returns a reversed copy of the string. reverse_Recur(a,b):

 PO7: Please use recursion to define and test a function to check whether a
number is Prime or not. isPrime_Recur(a,b):

33

	Slide 1
	Slide 2: Review
	Slide 3: We shall discuss…
	Slide 4
	Slide 5: Divide-and-conquer
	Slide 6: Tree steps of divide-and-conquer
	Slide 7: Pros and cons of divide-and-conquer
	Slide 8: Function
	Slide 9: Optimization problem
	Slide 10: Branch-and-bound
	Slide 11
	Slide 12: Illustrative figures of recursion
	Slide 13: What is recursion
	Slide 14: Examples of recursion
	Slide 15: Examples of recursion
	Slide 16: Examples of recursion
	Slide 17: Two parts in a recursive function
	Slide 18: About the base case in recursion
	Slide 19: Examples of recursion
	Slide 20: Examples of recursion
	Slide 21: Exercise (5 mins)
	Slide 22: Examples of recursion
	Slide 23: Examples of recursion
	Slide 24: Illustrative figures of recursion
	Slide 25: Four steps for implementing recursion in a function
	Slide 26: Recursion versus iteration
	Slide 27: Recursion versus iteration
	Slide 28: Recursion versus iteration
	Slide 29: Recursion versus iteration
	Slide 30: Recursion versus iteration
	Slide 31: Recursion versus iteration
	Slide 32: When we use recursion
	Slide 33: Individual assignment 02

