
Assignment 2: a file synchroniser
version: 1.0.0 last updated: 2024-07-12 11:00:00

NOTE:

A video explaining the assignment can be found here.

An additional help video for subset 2 onwards is available at this link.

Contents
Aims
The Task

Getting Started
Subset 1
Subset 2
Subset 3
Subset 4
Subset 5
Handling Errors
Reference implementation
Helper utilities

Formats of rbuoy indices
Type A Buoy Index format
Type B Buoy Index format
Type C Buoy Index format

rbuoy vs rsync
Assumptions and Clarifications
Subset weighting
Change Log
Assessment

Testing
Submission
Due Date
Assessment Scheme
Intermediate Versions of Work
Assignment Conditions

Aims
building a concrete understanding of file system objects;
practising C, including bitwise operations and robust error handling;
understanding file operations, including input-output operations on binary data

The Task
The rsync utility is a useful and popular tool which efficiently transfers files between computers. In this assignment you will be implementing
rbuoy, which is a simplified version of rsync.

To copy a file from a sending computer to a receiver, it would theoretically be sufficient to just naïvely send over the entire contents (and
possibly metadata) of the file.

However, if the receiver already has an older version of the file which is very close to the sender's version (or even an identical copy!), then a
large amount of redundant data is being transmitted. With slow networks or large file sizes this can translate to a unnecessary waiting and cost.

Both the real rsync utility and the rbuoy utility that you'll be implementing in this assignment avoid unnecessary data transfer by only sending
the chunks of a file which differ between sender and receiver. The rbuoy algorithm takes place over four stages:

1. Stage 1: the sender constructs a Type A Buoy Index (TABI) file containing a record for each file the sender wants to send. Each record
contains metadata about the file, as well as a hash for each block in the file (see the subset 1 description for more information).

7/29/24, 4:49 PM COMP1521 24T2 — Assignment 2: a file synchroniser

https://web.cse.unsw.edu.au/~cs1521/24T2/assignments/ass2/index.html 1/17

https://www.youtube.com/watch?v=B2l2FHKaUU8
https://youtu.be/QDo0V6Bu5n0
https://en.wikipedia.org/wiki/Rsync

2. Stage 2: the receiver uses the TABI file to construct a Type B Buoy Index (TBBI) file containing a record for each TABI record. The TBBI file
contains information about which blocks the receiver already has an up-to-date copy of (see the subset 2 description for more
information).

3. Stage 3: the sender uses the Type B Buoy Index file to construct a Type C Buoy Index (TCBI) file containing a record for each TBBI record.
The TCBI file contains the contents of the blocks which the receiver did not have an up-to-date copy of (see the subset 3 description for
more information).

4. Stage 4: the receiver uses the TCBI file to reconstruct an up-to-date copy of the files it is receiving. (see the subset 4 description for more
information).

The first four subsets of this assignment correspond to implementing each of these stages for a given list of files. The fifth subset involves
adding support for directories.

The real rsync utility is able to transfer files over a network to a remote computer; where the sender would be one computer and the receiver
would be a different computer. It can also transfer files locally, where the 'sender' and 'receiver' are two different directories on the same
computer. In this assignment, you will only be implementing the local version of rbuoy, where the sender and receiver are two different
directories on the same computer.

Getting Started
Create a new directory for this assignment, change to this directory, and fetch the provided code by running

$ mkdir -m 700 rbuoy
$ cd rbuoy
$ 1521 fetch rbuoy

If you're not working at CSE, you can download the provided files as a zip file or a tar file.

This will give you the following files:

You can run make to compile the provided code; and you should be able to run the result.

$ make
dcc rbuoy.c rbuoy_main.c rbuoy_provided.c -o rbuoy
$./rbuoy
Usage: ./rbuoy [--stage-1|--stage-2|--stage-3|--stage-4]

You may optionally create extra .c or .h files. You can modify the provided Makefile fragment if you choose to do so.

You should run 1521 rbuoy-examples to get a directory called examples/ full of test files and example Buoy Index files to test your program
against.

$ 1521 rbuoy-examples
$ ls examples
aaa bbb ccc tabi tbbi tcbi

Subset 1
To complete subset 1, you need to complete the provided stage_1 function.

The stage_1 function should create a TABI file at the specified output path, based on a given array of filenames.

The TABI file should contain the appropriate header, as outlined in the format of the TABI file section below.

It should then produce a TABI record for each file in the given array of in_filenames.

rbuoy.c is the only file you need to change: it contains partial definitions of four functions, stage_1, stage_2, stage_3,
and stage_4, to which you need to add code to complete the assignment. You can also add your own
functions to this file.

rbuoy_main.c contains a main, which has code to parse the command line arguments, and which then calls one of
stage_1, stage_2, stage_3, and stage_4, depending on the command line arguments given to rbuoy. Do not
change this file.

rbuoy.h contains shared function declarations and some useful constant definitions. Do not change this file.

rbuoy_provided.c contains the hash_block function; you should call this function to calculate hashes for subset 1. Do not
change this file.

rbuoy.mk contains a Makefile fragment for rbuoy.

rbuoy_hash_block.c contains the source code for the 1521 rbuoy-hash-block helper utility which we have provided you. You
may find it useful to look at this code to better understand how the hash_block function can be used. Do
not change, attempt to compile with, or submit this file.

7/29/24, 4:49 PM COMP1521 24T2 — Assignment 2: a file synchroniser

https://web.cse.unsw.edu.au/~cs1521/24T2/assignments/ass2/index.html 2/17

https://web.cse.unsw.edu.au/~cs1521/24T2/assignments/ass2/provided.zip
https://web.cse.unsw.edu.au/~cs1521/24T2/assignments/ass2/provided.tar
https://manpages.debian.org/jump?q=make.1

$ 1521 rbuoy-examples
$ cd examples/aaa
$ ls
emojis.txt empty fizz fractal_bin little_endian_shorts long_path lyrics.txt short.txt
$../../rbuoy --stage-1 ../out.tabi emojis.txt empty
$ 1521 rbuoy-show ../out.tabi
Field name Offset Bytes ASCII/Numeric

magic 0x00000000 54 41 42 49 chr TABI
num records 0x00000004 02 dec 2
============================= Record 0 ==============================
pathname len 0x00000005 0a 00 dec 10
pathname 0x00000007 65 6d 6f 6a 69 73 2e 74 chr emojis.t
 0x0000000f 78 74 chr xt
num blocks 0x00000011 03 00 00 dec 3
hashes[0] 0x00000014 90 30 e3 14 6e e7 0a 90 chr .0..n...
hashes[1] 0x0000001c 91 90 5c 46 fc 07 b3 93 chr ..\F....
hashes[2] 0x00000024 8c ec 01 86 4c dc 63 af chrL.c.
============================= Record 1 ==============================
pathname len 0x0000002c 05 00 dec 5
pathname 0x0000002e 65 6d 70 74 79 chr empty
num blocks 0x00000033 00 00 00 dec 0

HINT:

Use fopen to create the TABI file for writing. You should overwrite the file if it already exists.

Use fputc and/or fwrite to write bytes to the TABI file.

Use fgetc and/or fread to read bytes from the input files.

Use stat to get the size of each input file. In particular, you may find the st_size field of the struct stat useful. You may find inode
to be a useful source of documentation for the struct stat fields - note that filesystem blocks are not relevant to this assignment,
and shouldn't be confused with the blocks in a TABI record.

The provided number_of_blocks_in_file function will determine the number of blocks required for a TABI record, given the size of
the file in bytes.

Use C bitwise operations such as << & and | to combine bytes into little endian integers. You may find it useful to write a helper
function to do this, as you will need to do this in later subsets.

Make sure you understand the format of the TABI file.

To compute the hashes field, you will need to open and read from the file, and for each block use the provided hash_block function.

Think carefully about the functions you can construct to avoid repeated code.

NOTE:

TABI files do not necessarily end with .tabi . This has been done with the provided example files purely as a convenience.

You may assume any paths in in_filenames are either regular files or do not exist.

Subset 2
To complete subset 2, you need to complete the provided stage_2 function.

The stage 2 function receives a path to an input TABI file and a path to an output TBBI file.

The TBBI file should contain the appropriate header, as outlined in the format of the TBBI file section below.

It should then produce a TBBI record for each file in the given TABI file.

7/29/24, 4:49 PM COMP1521 24T2 — Assignment 2: a file synchroniser

https://web.cse.unsw.edu.au/~cs1521/24T2/assignments/ass2/index.html 3/17

http://man7.org/linux/man-pages/man3/fopen.3.html
http://man7.org/linux/man-pages/man3/fputc.3.html
http://man7.org/linux/man-pages/man3/fwrite.3.html
http://man7.org/linux/man-pages/man3/fgetc.3.html
http://man7.org/linux/man-pages/man3/fread.3.html
http://man7.org/linux/man-pages/man2/stat.2.html
http://man7.org/linux/man-pages/man7/inode.7.html

$ # [continued from subset 1 example]
$ cd ../bbb
$../../rbuoy --stage-2 ../out.tbbi ../out.tabi
$ 1521 rbuoy-show ../out.tbbi
Field name Offset Bytes ASCII/Numeric

magic 0x00000000 54 42 42 49 chr TBBI
num records 0x00000004 02 dec 2
============================= Record 0 ==============================
pathname len 0x00000005 0a 00 dec 10
pathname 0x00000007 65 6d 6f 6a 69 73 2e 74 chr emojis.t
 0x0000000f 78 74 chr xt
num blocks 0x00000011 03 00 00 dec 3
matches[0] 0x00000014 a0 bin 10100000
============================= Record 1 ==============================
pathname len 0x00000015 05 00 dec 5
pathname 0x00000017 65 6d 70 74 79 chr empty
num blocks 0x0000001c 00 00 00 dec 0

NOTE:

Remember that stage 2 will typically be invoked in a different working directory to the directory in which stage 1 was invoked.

HINT:

You will need to detect invalid TABI files being supplied to stage 2, and handle them appropriately. You may find it handy to refer to
the section on error handling below.

Use C bitwise operations such as << and | to construct the matches field.

You may find the provided num_tbbi_match_bytes function to be helpful.

Subset 3
In subset 3, you will need to complete the provided stage_3 function, you will need to produce a TCBI file given a TBBI file as input.

The TCBI file should contain the appropriate header, as outlined in the format of the TCBI file section below. It should also contain a TCBI record
for each file in the given TBBI file, containing the data for the blocks the receiver didn't already have an up-to-date copy of.

7/29/24, 4:49 PM COMP1521 24T2 — Assignment 2: a file synchroniser

https://web.cse.unsw.edu.au/~cs1521/24T2/assignments/ass2/index.html 4/17

$ # [continued from subset 2 example]
$ cd ../aaa
$../../rbuoy --stage-3 ../out.tcbi ../out.tbbi
$ 1521 rbuoy-show ../out.tcbi
Field name Offset Bytes ASCII/Numeric

magic 0x00000000 54 43 42 49 chr TCBI
num records 0x00000004 02 dec 2
============================= Record 0 ==============================
pathname len 0x00000005 0a 00 dec 10
pathname 0x00000007 65 6d 6f 6a 69 73 2e 74 chr emojis.t
 0x0000000f 78 74 chr xt
file type 0x00000011 2d chr -
owner perms 0x00000012 72 77 2d chr rw-
group perms 0x00000015 72 2d 2d chr r--
other perms 0x00000018 2d 2d 2d chr ---
file size 0x0000001b 01 02 00 00 dec 513
num updates 0x0000001f 01 00 00 dec 1
(0) block num 0x00000022 01 00 00 dec 1
(0) update len 0x00000025 00 01 dec 256
(0) update data 0x00000027 54 68 65 20 73 65 63 6f chr The seco
 0x0000002f 6e 64 20 62 6c 6f 63 6b chr nd block
 [... omitted for brevity ...]
 0x00000117 73 20 61 73 74 65 72 69 chr s asteri
 0x0000011f 73 6b 20 2d 2d 3e 20 2a chr sk --> *
============================= Record 1 ==============================
pathname len 0x00000127 05 00 dec 5
pathname 0x00000129 65 6d 70 74 79 chr empty
file type 0x0000012e 2d chr -
owner perms 0x0000012f 72 77 2d chr rw-
group perms 0x00000132 72 2d 2d chr r--
other perms 0x00000135 2d 2d 2d chr ---
file size 0x00000138 00 00 00 00 dec 0
num updates 0x0000013c 00 00 00 dec 0

HINT:

You may find the stat system call to be useful here - in particular, the st_mode field of the struct stat supplied.

Subset 4
So far, we've created several types of rbuoy indices files in order to communicate the current state of the receiver's files to the sender, and to
communicate updated blocks from the sender to the receiver. In this subset, you will need to complete the provided stage_4 function, which
will be invoked with a TCBI file as input. You will then need to apply the changes described in the TCBI file to the receiver's files. This includes
updating the contents of the receiver's files, and creating any new files that are required. You will also need to update the mode of the receiver's
files such that the permissions match those described in the TCBI file.

$ # [continued from subset 3 example]
$ cd ../bbb
$../../rbuoy --stage-4 ../out.tcbi
$ diff ../aaa/empty ../bbb/empty # identical
$ diff ../aaa/emojis.txt ../bbb/emojis.txt # identical
$ # we have now synchronised `empty` and `emojis.txt` from aaa/ to bbb/

HINT:

You may find chmod and fseek to be useful here.

Subset 5
Subset 5 requires you to add support for directories. You will need to update your stage_1 , stage_2 , stage_3 and stage_4 implementations
to complete subset 5:

In stage_1 , if the value of num_in_filenames is zero, then you should create a TABI file containing the contents of the entire current
working directory. When num_in_filenames is non-zero you can still make the assumption that all paths in in_filenames are either
regular files or don't exist.

7/29/24, 4:49 PM COMP1521 24T2 — Assignment 2: a file synchroniser

https://web.cse.unsw.edu.au/~cs1521/24T2/assignments/ass2/index.html 5/17

http://man7.org/linux/man-pages/man2/stat.2.html
http://man7.org/linux/man-pages/man2/chmod.2.html
http://man7.org/linux/man-pages/man3/fseek.3.html

When creating a TABI file for the current directory, you should include a record for every directory, as well as every file. Records for
directories should have their number of blocks as zero. The record for a parent directory should be placed in the TABI file before any
records for files or sub-directories in that parent directory. Apart from that restriction, you may choose any order for records in the
generated TABI file.
In stage_2 , a record with a path which is a directory for the receiver should result in all match bits being set to zero.

In stage_3 , a record with a path which is a directory for the sender should be treated as an empty file. That is, the number of blocks
should be checked to be zero, and a record with no updates should be generated. Note that the file type of the mode should be a d
rather than a - .

In stage_4 , you should create directories for directory records if they do not exist. You should also set the correct permissions for
directories. If a record for a file has the path of an existing directory, or a record for a directory has the path of an existing file, then you
should output an appropriate error message and exit with status 1.

Additionally, you must add checks in stage_2 , stage_3 and stage_4 to detect if any paths referenced in the input rbuoy indices reference
files outside the current working directory. When that occurs, you should output an appropriate error message and exit with status 1. In real
code, it is important that untrusted user input such as paths cannot be used to do damage to the wider system. You may assume that if any
initial segment of the path exits the current working directory then the whole path will exit the current working directory.

You are encouraged to use the reference implementation to check that your understanding of the above subset 5 requirements are correct.

HINT:

You may find opendir, readdir, closedir to be useful here.

Error handling
Error checking is an important part of this assignment. Automarking will test error handling.

Error messages should be one line (only) and be written to stderr (not stdout).

rbuoy should exit with status 1 after an error.

You do not have to free memory or close files before exiting in the event of an error.

rbuoy should check all file operations for errors.

As much as possible match the reference implementation error messages exactly.

The reference implementation uses perror to report errors from file operations and other system calls.

It is not necessary to remove files and directories already created or partially created when an error occurs.

You may leave any created rbuoy indices in an indeterminate state.

Where multiple error messages could be produced, rbuoy may produce any one of the error messages.

In stages 2, 3, and 4 you cannot assume that the input rbuoy indices are in a valid format. If your program is given an invalid Buoy Index file,
you must output an appropriate error message to stderr and exit with status 1.

During automarking to be awarded marks for the error handling tests you'll need to also have passed a sufficient proportion of the non-error
tests for that subset.

Reference implementation
A reference implementation is a common, efficient, and effective method to provide or define an operational specification; and it's something
you will likely work with after you leave UNSW.

We've provided a reference implementation, 1521 rbuoy , which you can use to find the correct outputs and behaviours for any input:

$ 1521 rbuoy-examples
$ cd examples
$ cd aaa
$ 1521 rbuoy --stage-1 ../out.tabi short.txt
$ 1521 rbuoy-show ../out.tabi
Field name Offset Bytes ASCII/Numeric

magic 0x00000000 54 41 42 49 chr TABI
num records 0x00000004 01 dec 1
============================= Record 0 ==============================
pathname len 0x00000005 09 00 dec 9
pathname 0x00000007 73 68 6f 72 74 2e 74 78 chr short.tx
 0x0000000f 74 chr t
num blocks 0x00000010 01 00 00 dec 1
hashes[0] 0x00000013 15 b8 4c 98 fe c3 b7 d6 chr ..L.....

7/29/24, 4:49 PM COMP1521 24T2 — Assignment 2: a file synchroniser

https://web.cse.unsw.edu.au/~cs1521/24T2/assignments/ass2/index.html 6/17

https://en.wikipedia.org/wiki/Directory_traversal_attack
http://man7.org/linux/man-pages/man3/opendir.3.html
http://man7.org/linux/man-pages/man3/readdir.3.html
http://man7.org/linux/man-pages/man3/closedir.3.html
http://man7.org/linux/man-pages/man3/perror.3.html

Every concrete example shown below is runnable using the helper utilities; run 1521 rbuoy instead of ./rbuoy .

The command 1521 rbuoy-show <name of index> display the contents of TABI, TBBI and TCBI files in a human readable format. It is useful for
understanding the output of both the reference implementation and your own implementation.

Where any aspect of this assignment is undefined in this specification, you should match the behaviour exhibited by the reference
implementation. Discovering and matching the reference implementation's behaviour is deliberately a part of this assignment.

If you discover what you believe to be a bug in the reference implementation, please report it in the class forum. If it is a bug, we may fix the
bug; or otherwise indicate that you do not need to match the reference implementation's behaviour in that specific case.

Helper utilities
Alongside 1521 rbuoy-show , which was used above, we have also provided you two additional utilities - 1521 rbuoy-dump-blocks and
1521 rbuoy-hash-block . These utilities have been provided to assist you in understanding the requirements of the assignment, and to help you

debug your program.

1521 rbuoy-dump-blocks takes a file as input and splits it into 256 (BLOCK_SIZE) byte blocks, and outputs it to stdout either in hex format or
raw bytes. This is useful for ensuring that your program is correctly splitting files into blocks.

7/29/24, 4:49 PM COMP1521 24T2 — Assignment 2: a file synchroniser

https://web.cse.unsw.edu.au/~cs1521/24T2/assignments/ass2/index.html 7/17

$ 1521 rbuoy-dump-blocks ---raw examples/aaa/emojis.txt
=== block 0 ===
This file should be broken up by your program into three blocks: the
first 256 bytes spans lines one to four (and includes the newline on line
four), the second 256 bytes is from line 5 to the asterisk (inclusive), and
the final block is only 1 byte long!

=== block 1 ===
The second block started on this line. Now for an assortment of emoji:
✨ ✨ ✨ � � � � ✨ ✨ ✨
📚 🎓 📈 📈 💾 💽 💿 🖥 💻 🚀 🌌 🤯 🎉 🥳
The last character of this block is this asterisk --> *
=== block 2 ===
a
[... no newline after output ...]
$ 1521 rbuoy-dump-blocks --hex examples/aaa/emojis.txt
=== block 0 ===
 54 68 69 73 20 66 69 6c 65 20 73 68 6f 75 6c 64
 20 62 65 20 62 72 6f 6b 65 6e 20 75 70 20 62 79
 20 79 6f 75 72 20 70 72 6f 67 72 61 6d 20 69 6e
 74 6f 20 74 68 72 65 65 20 62 6c 6f 63 6b 73 3a
 20 74 68 65 0a 66 69 72 73 74 20 32 35 36 20 62
 79 74 65 73 20 73 70 61 6e 73 20 6c 69 6e 65 73
 20 6f 6e 65 20 74 6f 20 66 6f 75 72 20 28 61 6e
 64 20 69 6e 63 6c 75 64 65 73 20 74 68 65 20 6e
 65 77 6c 69 6e 65 20 6f 6e 20 6c 69 6e 65 0a 66
 6f 75 72 29 2c 20 74 68 65 20 73 65 63 6f 6e 64
 20 32 35 36 20 62 79 74 65 73 20 69 73 20 66 72
 6f 6d 20 6c 69 6e 65 20 35 20 74 6f 20 74 68 65
 20 61 73 74 65 72 69 73 6b 20 28 69 6e 63 6c 75
 73 69 76 65 29 2c 20 61 6e 64 0a 74 68 65 20 66
 69 6e 61 6c 20 62 6c 6f 63 6b 20 69 73 20 6f 6e
 6c 79 20 31 20 62 79 74 65 20 6c 6f 6e 67 21 0a

 === block 1 ===
 54 68 65 20 73 65 63 6f 6e 64 20 62 6c 6f 63 6b
 20 73 74 61 72 74 65 64 20 6f 6e 20 74 68 69 73
 20 6c 69 6e 65 2e 20 4e 6f 77 20 66 6f 72 20 61
 6e 20 61 73 73 6f 72 74 6d 65 6e 74 20 6f 66 20
 65 6d 6f 6a 69 3a 0a e2 9c a8 20 e2 9c a8 20 e2
 9c a8 20 31 ef b8 8f e2 83 a3 20 35 ef b8 8f e2
 83 a3 20 32 ef b8 8f e2 83 a3 20 31 ef b8 8f e2
 83 a3 20 20 e2 9c a8 20 e2 9c a8 20 e2 9c a8 0a
 f0 9f 93 9a 20 f0 9f 8e 93 20 f0 9f 93 88 20 f0
 9f 93 88 20 f0 9f 92 be 20 f0 9f 92 bd 20 f0 9f
 92 bf 20 f0 9f 96 a5 ef b8 8f 20 f0 9f 92 bb 20
 f0 9f 9a 80 20 f0 9f 8c 8c 20 f0 9f a4 af 20 f0
 9f 8e 89 20 f0 9f a5 b3 0a 54 68 65 20 6c 61 73
 74 20 63 68 61 72 61 63 74 65 72 20 6f 66 20 74
 68 69 73 20 62 6c 6f 63 6b 20 69 73 20 74 68 69
 73 20 61 73 74 65 72 69 73 6b 20 2d 2d 3e 20 2a

 === block 2 ===
 61

Additionally, 1521 rbuoy-dump-blocks is able to only output a single block, specified by the --index option. For example, to only output the
first block of the file examples/aaa/emojis.txt as hex, you would run:

7/29/24, 4:49 PM COMP1521 24T2 — Assignment 2: a file synchroniser

https://web.cse.unsw.edu.au/~cs1521/24T2/assignments/ass2/index.html 8/17

$ 1521 rbuoy-dump-blocks --index 0 --hex rbuoy/examples/aaa/emojis.txt
=== block 0 ===
 54 68 69 73 20 66 69 6c 65 20 73 68 6f 75 6c 64
 20 62 65 20 62 72 6f 6b 65 6e 20 75 70 20 62 79
 20 79 6f 75 72 20 70 72 6f 67 72 61 6d 20 69 6e
 74 6f 20 74 68 72 65 65 20 62 6c 6f 63 6b 73 3a
 20 74 68 65 0a 66 69 72 73 74 20 32 35 36 20 62
 79 74 65 73 20 73 70 61 6e 73 20 6c 69 6e 65 73
 20 6f 6e 65 20 74 6f 20 66 6f 75 72 20 28 61 6e
 64 20 69 6e 63 6c 75 64 65 73 20 74 68 65 20 6e
 65 77 6c 69 6e 65 20 6f 6e 20 6c 69 6e 65 0a 66
 6f 75 72 29 2c 20 74 68 65 20 73 65 63 6f 6e 64
 20 32 35 36 20 62 79 74 65 73 20 69 73 20 66 72
 6f 6d 20 6c 69 6e 65 20 35 20 74 6f 20 74 68 65
 20 61 73 74 65 72 69 73 6b 20 28 69 6e 63 6c 75
 73 69 76 65 29 2c 20 61 6e 64 0a 74 68 65 20 66
 69 6e 61 6c 20 62 6c 6f 63 6b 20 69 73 20 6f 6e
 6c 79 20 31 20 62 79 74 65 20 6c 6f 6e 67 21 0a

We have also provided a 1521 rbuoy-hash-block command that reads up to 256 (BLOCK_SIZE) bytes from standard input and outputs the 64-
bit hash of the data as a hex string, using the same hash_block function as provided for the assignment. We've also provided you the source
code for this command in rbuoy_hash_block.c for your reference.

You can combine these commands to check the hash of any given block of an input file, for example:

$ 1521 rbuoy-dump-blocks --index 0 --raw examples/aaa/emojis.txt | 1521 rbuoy-hash-block
900ae76e14e33090

It is important to use the --raw option and specify a block index in order to produce the expected hash for that block.

Formats of rbuoy indices
The rbuoy indices emitted by your implementation must follow the exact format produced by the reference implementation.

Type A Buoy Index format
When a sender wants to send files, it first creates a TABI file. This file contains a record for each file that is going to be sent. In each record is the
pathname of the file, the number of blocks in the file (computed by number_of_blocks_in_file), and the hash of each block in the file.

A TABI file consists of a header, followed by 0 or more records. The format of the header is:

name length type description

magic number 4 B
(byte)

characters
sequence

The magic number for TABI files, which is the sequence of bytes 0x54, 0x41, 0x42, 0x49
(ASCII TABI).

number of
records

1 B
(byte)

unsigned, 8-bit The number of records in this TABI file.

The TABI header is followed by the specified number of records. Each TABI record has the following format:

name length type description

pathname
length

2 B (byte) unsigned, 16-bit, little-endian The length of the pathname of this record.

pathname pathname-length character sequence The pathname of the file of this record. It is not nul-terminated.

number of
blocks

3 B (byte) unsigned, 24-bit, little-endian The number of 256-byte blocks in the sender's version of the file (the
final block may be shorter than 256 bytes).

hashes 8 B (byte) × num-blocks sequence of unsigned, 64-
bit, little-endian integers

The hashes the sender has computed for their version of the file (using
the hash_block function), with one 64-bit hash for each block.

An example TABI file, displayed using 1521 rbuoy-show :

7/29/24, 4:49 PM COMP1521 24T2 — Assignment 2: a file synchroniser

https://web.cse.unsw.edu.au/~cs1521/24T2/assignments/ass2/index.html 9/17

$ 1521 rbuoy-examples
$ cd examples
$ 1521 rbuoy-show tabi/my_text_files.tabi
Field name Offset Bytes ASCII/Numeric

magic 0x00000000 54 41 42 49 chr TABI
num records 0x00000004 03 dec 3
============================= Record 0 ==============================
filename len 0x00000005 09 00 dec 9
filename 0x00000007 73 68 6f 72 74 2e 74 78 chr short.tx
 0x0000000f 74 chr t
num blocks 0x00000010 01 00 00 dec 1
hashes[0] 0x00000013 15 b8 4c 98 fe c3 b7 d6 chr ..L.....
============================= Record 1 ==============================
filename len 0x0000001b 0a 00 dec 10
filename 0x0000001d 65 6d 6f 6a 69 73 2e 74 chr emojis.t
 0x00000025 78 74 chr xt
num blocks 0x00000027 03 00 00 dec 3
hashes[0] 0x0000002a 90 30 e3 14 6e e7 0a 90 chr .0..n...
hashes[1] 0x00000032 91 90 5c 46 fc 07 b3 93 chr ..\F....
hashes[2] 0x0000003a 8c ec 01 86 4c dc 63 af chrL.c.
============================= Record 2 ==============================
filename len 0x00000042 05 00 dec 5
filename 0x00000044 65 6d 70 74 79 chr empty
num blocks 0x00000049 00 00 00 dec 0

The above example shows that the sender is sending three files: short.txt , emojis.txt , and empty . The file short.txt has one block of
data (so its length must be between 1 and 256), and that block has a hash 0xd6b7c3fe984cb815 .

The second file emojis.txt has 3 blocks, so its length must be between 513 and 768. The first block (bytes at indices 0..255) hashes to
0x900ae76e14e33090 , the second block (bytes and indices 256..511) has a hash of 0x93b307fc465c9091 and the final block (bytes from index

512 to the end of the file) has a hash of 0xaf63dc4c8601ec8c .

The final record is for the file named empty . Since it has zero blocks it must be, as its name suggests, empty.

Type B Buoy Index format
After a receiver receives a TABI file, it responds with a TBBI file, containing information about which blocks the receiver already has a copy of. A
TBBI file contains a header, followed by zero or more records. The format for the header is:

name length type description

magic number 4 B
(byte)

characters
sequence

The magic number for TBBI files, which is the sequence of bytes 0x54, 0x42, 0x42, 0x49
(ASCII TBBI).

number of
records

1 B
(byte)

unsigned, 8-bit The number of records in this TBBI file.

Following the TBBI header are the records. The receiver creates one record for each record in the TABI file. Each TBBI record has the following
format:

name length type description

pathname
length

2 B (byte) unsigned, 16-
bit, little-endian

The length of the pathname of this record.

pathname pathname-length character
sequence

The pathname of the file of this record. It is not nul-terminated.

number of
blocks

3 B (byte) unsigned, 24-
bit, little-endian

The number of blocks in the sender's version of the file. This is the same value as
the number of blocks in the TABI file.

7/29/24, 4:49 PM COMP1521 24T2 — Assignment 2: a file synchroniser

https://web.cse.unsw.edu.au/~cs1521/24T2/assignments/ass2/index.html 10/17

name length type description

matches ceil(num-blocks ÷ 8)
(num_tbbi_match_bytes)

bit sequence A sequence of bits, with a single bit for each hash in the TABI file. For each hash in
the TABI file, the receiver computes the hash for the corresponding block in their
own copy of the file.

If the two hashes match, then the corresponding match bit is a 1. Otherwise (if the
hashes don't match, there is no corresponding block because the receiver's file is
too small, or the file doesn't exist) the corresponding bit is 0.

This means that if the file doesn't exist for the receiver, all the bits in the matches
field will be 0.

The first bit is the most significant bit of the first byte. In the case where the number
of blocks is not a multiple of 8, the last byte of the matches field is right-padded
with 0 bits.

An example TBBI file, displayed using 1521 rbuoy-show :

$ 1521 rbuoy-examples
$ cd examples
$ 1521 rbuoy-show tbbi/bbb_text_files.tbbi
Field name Offset Bytes ASCII/Numeric

magic 0x00000000 54 42 42 49 chr TBBI
num records 0x00000004 03 dec 3
============================= Record 0 ==============================
pathname len 0x00000005 09 00 dec 9
pathname 0x00000007 73 68 6f 72 74 2e 74 78 chr short.tx
 0x0000000f 74 chr t
num blocks 0x00000010 01 00 00 dec 1
matches[0] 0x00000013 00 bin 00000000
============================= Record 1 ==============================
pathname len 0x00000014 0a 00 dec 10
pathname 0x00000016 65 6d 6f 6a 69 73 2e 74 chr emojis.t
 0x0000001e 78 74 chr xt
num blocks 0x00000020 03 00 00 dec 3
matches[0] 0x00000023 a0 bin 10100000
============================= Record 2 ==============================
pathname len 0x00000024 05 00 dec 5
pathname 0x00000026 65 6d 70 74 79 chr empty
num blocks 0x0000002b 00 00 00 dec 0

The above example file shows a response to the tabi/my_text_files.tabi TABI file. The first file, short.txt has only one block. Since the first
bit of matches is a 0 , this means that either the first block of the receiver's version of short.txt didn't have a hash of 0xd6b7c3fe984cb815 ,
or the receiver didn't have the file short.txt at all. The remaining 7 bits are padding bits, and so are all zero.

The second file, emojis.txt has 3 blocks. The first of the 3 match bits is a 1 . This means that the the first block of the receiver's emojis.txt
had a hash which matched the hash of the first block in the TABI record (0x900ae76e14e33090). The second bit is a 0, meaning that the
receiver's second block didn't match the second hash in the TABI record. The third bit is a 1, so the third block did match. The remaining 5 bits
are padding bits, and so are all zero.

The final file, empty , has zero blocks. Since num_tbbi_match_bytes(0) == 0 , this means that there are no match bytes included in the TBBI file.

Type C Buoy Index format
After the sender receives the TBBI file, it responds with a TCBI file, containing the data for the blocks which the receiver didn't already have a
copy of. A TCBI file contains a header, followed by zero or more records. The format for the header is:

name length type description

magic number 4 B
(byte)

characters
sequence

The magic number for TCBI files, which is the sequence of bytes 0x54, 0x43, 0x42, 0x49
(ASCII TCBI).

number of
records

1 B
(byte)

unsigned, 8-bit The number of records in this TCBI file.

Following the TCBI header are the records. The sender creates one record for each record in the TBBI file. Each TCBI record has two sections. The
first section has the following format:

7/29/24, 4:49 PM COMP1521 24T2 — Assignment 2: a file synchroniser

https://web.cse.unsw.edu.au/~cs1521/24T2/assignments/ass2/index.html 11/17

name length type description

pathname length 2 B (byte) unsigned, 16-bit, little-
endian

The length of the pathname of this record.

pathname pathname-
length

character sequence The pathname of the file of this record. It is not nul-terminated.

mode 10 B (byte) characters The type and permissions as a ls-like character array; e.g., "-rwxr-xr-x" . It is
not nul-terminated.

file size 4 B (byte) unsigned, 32-bit, little-
endian

The size of the sender's version of the file, in bytes.

number of
updates

3 B (byte) unsigned, 24-bit, little-
endian

The number of updates in this record.

The second section of the record contains the updates for that file. An update contains a block of data which the receiver needs. The number of
updates for a record is equal to the number of non-padding 0 bits in the TBBI record. Each non-padding 0 bit creates an update. An update has
the following format:

name length type description

block
index

3 B (byte) unsigned, 24-bit,
little-endian

The index of the block that this update is for. This is zero-indexed - the first block in a file has an
index of 0, the second block has an index of 1, and so on.

update
length

2 B (byte) unsigned, 16-bit,
little-endian

The number of bytes in the block that is being updated. For any block apart from the trailing
block, this is equal to 256. But the final block in a file might be shorter than that.

update
data

update-
length

bytes The block at block-index from the sender's version of the file.

An example TCBI file, displayed using 1521 rbuoy-show :

7/29/24, 4:49 PM COMP1521 24T2 — Assignment 2: a file synchroniser

https://web.cse.unsw.edu.au/~cs1521/24T2/assignments/ass2/index.html 12/17

https://manpages.debian.org/jump?q=ls.1

$ 1521 rbuoy-examples
$ cd examples
$ 1521 rbuoy-show tcbi/bbb_text_files.tcbi
Field name Offset Bytes ASCII/Numeric

magic 0x00000000 54 43 42 49 chr TCBI
num records 0x00000004 03 dec 3
============================= Record 0 ==============================
pathname len 0x00000005 09 00 dec 9
pathname 0x00000007 73 68 6f 72 74 2e 74 78 chr short.tx
 0x0000000f 74 chr t
file type 0x00000010 2d chr -
owner perms 0x00000011 72 77 2d chr rw-
group perms 0x00000014 72 2d 2d chr r--
other perms 0x00000017 2d 2d 2d chr ---
file size 0x0000001a 40 00 00 00 dec 64
num updates 0x0000001e 01 00 00 dec 1
(0) block num 0x00000021 00 00 00 dec 0
(0) update len 0x00000024 40 00 dec 64
(0) update data 0x00000026 54 68 69 73 20 74 65 78 chr This tex
 0x0000002e 74 20 66 69 6c 65 20 68 chr t file h
 0x00000036 61 73 20 73 69 78 74 79 chr as sixty
 0x0000003e 20 66 6f 75 72 20 62 79 chr four by
 0x00000046 74 65 73 2c 20 74 77 65 chr tes, twe
 0x0000004e 6c 76 65 20 77 6f 72 64 chr lve word
 0x00000056 73 20 61 6e 64 20 6f 6e chr s and on
 0x0000005e 65 20 6c 69 6e 65 2e 0a chr e line..
============================= Record 1 ==============================
pathname len 0x00000066 0a 00 dec 10
pathname 0x00000068 65 6d 6f 6a 69 73 2e 74 chr emojis.t
 0x00000070 78 74 chr xt
file type 0x00000072 2d chr -
owner perms 0x00000073 72 77 2d chr rw-
group perms 0x00000076 72 2d 2d chr r--
other perms 0x00000079 2d 2d 2d chr ---
file size 0x0000007c 01 02 00 00 dec 513
num updates 0x00000080 01 00 00 dec 1
(0) block num 0x00000083 01 00 00 dec 1
(0) update len 0x00000086 00 01 dec 256
(0) update data 0x00000088 54 68 65 20 73 65 63 6f chr The seco
 0x00000090 6e 64 20 62 6c 6f 63 6b chr nd block
 0x00000098 20 73 74 61 72 74 65 64 chr started
 [... omitted for brevity ...]
 0x00000170 6b 20 69 73 20 74 68 69 chr k is thi
 0x00000178 73 20 61 73 74 65 72 69 chr s asteri
 0x00000180 73 6b 20 2d 2d 3e 20 2a chr sk --> *
============================= Record 2 ==============================
pathname len 0x00000188 05 00 dec 5
pathname 0x0000018a 65 6d 70 74 79 chr empty
file type 0x0000018f 2d chr -
owner perms 0x00000190 72 77 2d chr rw-
group perms 0x00000193 72 2d 2d chr r--
other perms 0x00000196 2d 2d 2d chr ---
file size 0x00000199 00 00 00 00 dec 0
num updates 0x0000019d 00 00 00 dec 0

The above example file shows a response to the tbbi/bbb_text_files.tbbi TBBI file.

Since the receiver indicated that it didn't have the first block of shorts.txt , a single update is sent containing the contents of that first block.
Since the first block (which is also the last block) has a length of 64 bytes, the update length is also 64 bytes.

The second file, emojis.txt has 3 blocks. But since the receiver indicated it had the first and third block, only the second block needs to be
sent across, so there is only one update. The second block (since it's not the final block) has a length of 256 bytes.

The final file, empty , does not require any updates (there are no non-padding zero bits in the TBBI file), so the number of updates is zero.

The file type (- for file and d for directory), as well as the permissions, are also included in every record, even if there are no updates.

Hashing and the hash_block function
A hash function is a function which takes a sequence of bytes and returns a fixed-length value called a hash. The hash is usually much smaller
than the input, and is often used to verify that the input has not been modified without having to store the entire input. For example, if you
download a file from the internet, you can verify that the file hasn't been corrupted by comparing the hash of the file you downloaded to the

7/29/24, 4:49 PM COMP1521 24T2 — Assignment 2: a file synchroniser

https://web.cse.unsw.edu.au/~cs1521/24T2/assignments/ass2/index.html 13/17

hash of the file published by the author. If the hashes are the same, then the file is almost certainly the same as well, as hash functions are
designed to produce different hashes for even slightly different inputs, and be very unlikely to produce the same hash for two given inputs.

The supplied hash_block function takes a sequence of bytes and returns a hash. The hash produced is a 64-bit integer regardless of the size of
the input. You are not required to understand how the hash_block function works, but you are required to use it in your implementation of
rbuoy to compute the hashes of blocks.

rbuoy vs rsync (optional extra information)
WARNING:

This section merely contains some extra information about the differences between the rbuoy algorithm and the real rsync algorithm.
It's not necessary to know this to complete this assignment, nor is it in scope for this course. If you just want to work on the
assignment, you can safely scroll down to the Assumptions and Clarifications section.

Click here to view more

Assumptions and Clarifications
Like all good programmers, you should make as few assumptions as possible. If in doubt, match the output of the reference implementation.

Your submitted code must be a single C program only. You may not submit code in other languages.

You can call functions from the C standard library available by default on CSE Linux systems: including, e.g., stdio.h , stdlib.h ,
string.h , math.h , assert.h , as well as any C POSIX libraries used in lectures or lecture slides such as unistd.h , sys/types.h ,
sys/stat.h , fcntl.h , dirent.h .

We will compile your code with dcc when marking. Run-time errors from illegal or invalid C will cause your code to fail automarking (and
will likely result in you losing marks).

Your program must not require extra compile options. It must compile successfully with:

$ dcc *.c -o rbuoy

You may not use functions from other libraries. In other words, you cannot use the dcc -l flag.

If your program prints debugging output, Make sure you disable any debugging output before submission. it will fail automarking tests.

You may not create or use temporary files.

You may not create subprocesses: you may not use posix_spawn, posix_spawnp, system, popen, fork, vfork, clone, or any of the exec* family
of functions, like execve.

rbuoy only has to handle ordinary files and directories.

rbuoy does not have to handle symbolic links, devices or other special files.

rbuoy will not be run in directories containing symbolic links, devices or other special files.

rbuoy does not have to handle hard links.

Outside of the cases of errors or early termination, rbuoy must make a reasonable attempt to free all memory it has allocated and close
any open files.
rbuoy will never need to delete any files.
You may not make any assumptions based off file extensions.
You must not assume that your program is being run on a system using little-endian byte ordering - you will be assessed on portability
with respect to byte ordering.

If you need clarification on what you can and cannot use or do for this assignment, ask in the class forum.

You are required to submit intermediate versions of your assignment. See below for details.

Subset weighting
The weighting of each subset in the performance mark is as follows:

Subset 1: 40%
Subset 2: 25%
Subset 3: 15%
Subset 4: 12%
Subset 5: 8%

Change Log
Version 1.0.0
(2024-07-12 11:00:00)

Initial release.

7/29/24, 4:49 PM COMP1521 24T2 — Assignment 2: a file synchroniser

https://web.cse.unsw.edu.au/~cs1521/24T2/assignments/ass2/index.html 14/17

http://man7.org/linux/man-pages/man3/posix_spawn.3.html
http://man7.org/linux/man-pages/man3/posix_spawnp.3.html
http://man7.org/linux/man-pages/man3/system.3.html
http://man7.org/linux/man-pages/man3/popen.3.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/vfork.2.html
http://man7.org/linux/man-pages/man2/clone.2.html
http://man7.org/linux/man-pages/man2/execve.2.html

Assessment
Testing
When you think your program is working, you can use autotest to run some simple automated tests:

$ 1521 autotest rbuoy [optionally: any extra .c or .h files]

You can also run autotests for a specific subset. For example, to run all tests from subset 1:

$ 1521 autotest rbuoy S1 [optionally: any extra .c or .h files]

Some tests are more complex than others. If you are failing more than one test, you are encouraged to focus on solving the first of those failing
tests. To do so, you can run a specific test by giving its name to the autotest command:

$ 1521 autotest rbuoy S1_0 [optionally: any extra .c or .h files]

1521 autotest will not test everything.
Always do your own testing.

Automarking will be run by the lecturer after the submission deadline, using a superset of tests to those autotest runs for you.

WARNING:

Whilst we can detect errors have occurred, it is often substantially harder to automatically explain what that error was. As you continue
into later subsets. the errors from 1521 autotest will become less and less clear or useful. You will need to do your own debugging
and analysis.

Submission
When you are finished working on the assignment, you must submit your work by running give :

$ give cs1521 ass2_rbuoy rbuoy.c [optionally: any extra .c or .h files]

You must run give before Week 10 Friday 20:00:00 to obtain the marks for this assignment. Note that this is an individual exercise, the work
you submit with give must be entirely your own.

You can run give multiple times.
Only your last submission will be marked.

If you are working at home, you may find it more convenient to upload your work via give's web interface.

You cannot obtain marks by emailing your code to tutors or lecturers.

You can check your latest submission on CSE servers with:

$ 1521 classrun check ass2_rbuoy

You can check the files you have submitted here.

Manual marking will be done by your tutor, who will mark for style and readability, as described in the Assessment section below. After your
tutor has assessed your work, you can view your results here; The resulting mark will also be available via give's web interface.

Due Date
This assignment is due Week 10 Friday 20:00:00 (2024-08-02 20:00:00).

The UNSW standard late penalty for assessment is 5% per day for 5 days - this is implemented hourly for this assignment.

Your assignment mark will be reduced by 0.2% for each hour (or part thereof) late past the submission deadline.

For example, if an assignment worth 60% was submitted half an hour late, it would be awarded 59.8%, whereas if it was submitted past 10 hours
late, it would be awarded 57.8%.

Beware - submissions 5 or more days late will receive zero marks. This again is the UNSW standard assessment policy.

Assessment Scheme
This assignment will contribute 15 marks to your final COMP1521 mark.

Version 1.1.0
(2024-07-19 10:00:00)

Specified performance weight of each subset.
7/29/24, 4:49 PM COMP1521 24T2 — Assignment 2: a file synchroniser

https://web.cse.unsw.edu.au/~cs1521/24T2/assignments/ass2/index.html 15/17

https://cgi.cse.unsw.edu.au/~give/Student/give.php
https://web.cse.unsw.edu.au/~cs1521/24T2/student/
https://web.cse.unsw.edu.au/~cs1521/24T2/student/
https://cgi.cse.unsw.edu.au/~give/Student/sturec.php

80% of the marks for assignment 2 will come from the performance of your code on a large series of tests.

20% of the marks for assignment 2 will come from hand marking. These marks will be awarded on the basis of clarity, commenting, elegance
and style. In other words, you will be assessed on how easy it is for a human to read and understand your program.

An indicative assessment scheme for style follows. The lecturer may vary the assessment scheme after inspecting the assignment submissions,
but it is likely to be broadly similar to the following:

100% for style perfect style

90% for style great style, almost all style characteristics perfect.

80% for style good style, one or two style characteristics not well done.

70% for style good style, a few style characteristics not well done.

60% for style ok style, an attempt at most style characteristics.

≤ 50% for style an attempt at style.

An indicative style rubric follows:

Formatting (6/20):
Whitespace (e.g. 1 + 2 instead of 1+2)
Indentation (consistent, tabs or spaces are okay)
Line length (below 80 characters unless very exceptional)
Line breaks (using vertical whitespace to improve readability)

Documentation (8/20):
Header comment (with name and zID)
Function comments (above each function with a good description)
Descriptive variable names (e.g. char *home_directory instead of char *h)
Descriptive function names (e.g. get_home_directory instead of get_hd)
Sensible commenting throughout the code (don't comment every single line; leave comments when necessary)

Elegance (5/20):
Does this code avoid redundancy? (e.g. Don't repeat yourself!)
Are helper functions used to reduce complexity? (functions should be small and simple where possible)
Are constants appropriately created and used? (magic numbers should be avoided)

Portability (1/20):
Would this code be able to compile and behave as expected on other POSIX-compliant machines? (using standard libraries without
platform-specific code)
Does this code make any assumptions about the endianness of the machine it is running on?

Note that the following penalties apply to your total mark for plagiarism:

0 for asst2 knowingly providing your work to anyone
and it is subsequently submitted (by anyone).

0 FL for
COMP1521

submitting any other person's work; this includes joint work.

academic
misconduct

submitting another person's work without their consent;
paying another person to do work for you.

Intermediate Versions of Work
You are required to submit intermediate versions of your assignment.

Every time you work on the assignment and make some progress you should copy your work to your CSE account and submit it using the give
command above. It is fine if intermediate versions do not compile or otherwise fail submission tests. Only the final submitted version of your
assignment will be marked.

Assignment Conditions
Joint work is not permitted on this assignment.

This is an individual assignment. The work you submit must be entirely your own work: submission of work even partly written by any
other person is not permitted.

Do not request help from anyone other than the teaching staff of COMP1521 — for example, in the course forum, or in help sessions.

7/29/24, 4:49 PM COMP1521 24T2 — Assignment 2: a file synchroniser

https://web.cse.unsw.edu.au/~cs1521/24T2/assignments/ass2/index.html 16/17

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

COMP1521 24T2: Computer Systems Fundamentals is brought to you by
the School of Computer Science and Engineering

at the University of New South Wales, Sydney.
For all enquiries, please email the class account at cs1521@cse.unsw.edu.au

CRICOS Provider 00098G

Do not post your assignment code to the course forum. The teaching staff can view code you have recently submitted with give, or
recently autotested.

Assignment submissions are routinely examined both automatically and manually for work written by others.

Rationale: this assignment is designed to develop the individual skills needed to produce an entire working program. Using code written
by, or taken from, other people will stop you learning these skills. Other CSE courses focus on skills needed for working in a team.

The use of generative tools such as Github Copilot, ChatGPT, Google Bard is not permitted on this assignment.

Rationale: this assignment is designed to develop your understanding of basic concepts. Using synthesis tools will stop you learning these
fundamental concepts, which will significantly impact your ability to complete future courses.

Sharing, publishing, or distributing your assignment work is not permitted.

Do not provide or show your assignment work to any other person, other than the teaching staff of COMP1521. For example, do not
message your work to friends.

Do not publish your assignment code via the Internet. For example, do not place your assignment in a public GitHub repository.

Rationale: by publishing or sharing your work, you are facilitating other students using your work. If other students find your assignment
work and submit part or all of it as their own work, you may become involved in an academic integrity investigation.

Sharing, publishing, or distributing your assignment work after the completion of COMP1521 is not permitted.

For example, do not place your assignment in a public GitHub repository after this offering of COMP1521 is over.

Rationale: COMP1521 may reuse assignment themes covering similar concepts and content. If students in future terms find your
assignment work and submit part or all of it as their own work, you may become involved in an academic integrity investigation.

Violation of any of the above conditions may result in an academic integrity investigation, with possible penalties up to and including a mark of
0 in COMP1521, and exclusion from future studies at UNSW. For more information, read the UNSW Student Code, or contact the course
account.

7/29/24, 4:49 PM COMP1521 24T2 — Assignment 2: a file synchroniser

https://web.cse.unsw.edu.au/~cs1521/24T2/assignments/ass2/index.html 17/17

https://www.cse.unsw.edu.au/
https://www.unsw.edu.au/
mailto:cs1521@cse.unsw.edu.au
https://www.gs.unsw.edu.au/policy/documents/studentcodepolicy.pdf
mailto:cs1521@cse.unsw.edu.au
mailto:cs1521@cse.unsw.edu.au

