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A Framework for Adapting DNN Speaker
Embedding Across Languages

Weiwei Lin, Man-Wai Mak, Na Li, Dan Su and Dong Yu

Abstract—Language mismatch remains a major hindrance
to the extensive deployment of speaker verification (SV) sys-
tems. Current language adaptation methods in SV mainly rely
on linear projection in embedding space; i.e., adaptation is
carried out after the speaker embeddings have been created,
which underutilizes the powerful representation of deep neural
networks. This paper proposes a maximum mean discrepancy
(MMD) based framework for adapting deep neural network
(DNN) speaker embedding across languages, featuring multi-
level domain loss, separate batch normalization, and consistency
regularization. We refer to the framework as MSC. We show that
(1) minimizing domain discrepancy at both frame- and utterance-
levels performs significantly better than at utterance-level alone;
(2) separating the source-domain data from the target-domain in
batch normalization improves adaptation performance; and (3)
data augmentation can be utilized in the unlabelled target-domain
through consistency regularization. By combining these findings,
we achieve an EER of 8.69% and 7.95% in NIST SRE 2016
and 2018, respectively, which are significantly better than the
previously proposed DNN adaptation methods. Our framework
also works well with backend adaptation. By combining the
proposed framework with backend adaptation, we achieve an
11.8% improvement over the backend adaptation in SRE18.
When applying our framework to a 121-layer Densenet, we
achieved an EER of 7.81% and 7.02% in NIST SRE 2016 and
2018, respectively.

Keywords—Speaker verification; domain adaptation; data aug-
mentation; maximum mean discrepancy; transfer learning

Code: https://github.com/enmwmak/msc-domain-adaptation

I. INTRODUCTION

The success of machine learning relies on the assumption
that training data and test data are sampled from the same
distribution [1], [2]. In practice, a lot of factors can undermine
this assumption. This is especially the case when we want
to deploy an existing system to a new environment, where
the data have different properties than the training data.
For speaker verification, this could happen when the new
environment has some specific noise and channel conditions
or involves speakers speaking different languages than the
training speakers do. Directly using the existing systems in
these situations could result in poor performance. Fortunately,
it is often possible to collect a small amount of data from
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the new environment. These data are typically referred to as
the target-domain data in the literature [3]. The other data are
referred to as the source-domain data. The process of adapting
a model to the production environment is referred to as domain
adaptation (DA). Depending on whether or not the target-
domain data are labeled, DA can be divided into supervised
DA and unsupervised DA. As the labeling process is time-
consuming and expensive, unsupervised DA is more attractive
in real-world applications.

The domain mismatch investigated in this paper is language
mismatch. In NIST speaker recognition evaluation 2016 (or
SRE16 in short) [4], the language mismatch problem was
brought to SV researchers for the first time. The evaluation
introduces various new challenges to speaker recognition [4],
[5], among which the multilingual setup brought the most
attention. Unlike previous SREs, both development (Dev) and
evaluation (Eval) data in SRE16 comprise utterances spoken
in non-English languages. Table I shows the composition of
SRE16 data. Because all of the SRE16 data are non-English,
systems trained on previous years’ SRE data perform poorly
on this evaluation set. Training using only SRE16 data is also
not feasible, as there are only 2,472 segments in total and a
very small number of them are labelled. Besides, the languages
of the labelled development data are different from that of the
evaluation data.

Table I. THE COMPOSITION OF SRE16 DATA. “LABELLED” MEANS
SPEAKER LABELS ARE PROVIDED. “UNLABELLED” MEANS SPEAKER

LABELS ARE NOT PROVIDED.

Dataset Category Language

Dev Unlabelled Cantonese and Tagalog
Dev Unlabelled Mandarin and Cebuano
Dev labelled Mandarin and Cebuano
Eval Enrollment Cantonese and Tagalog
Eval Test Cantonese and Tagalog

State-of-the-art SV systems are comprised of a deep neural
network and a backend model [6]. DA is typically carried
out in the backend. In the Kaldi’s SRE16 recipe, adaptation
is carried out in the PLDA model’s mean and covariance
matrix. It is very effective and adopted by many researchers
[7], [8]. Another very popular DA method for the backend
is correlation alignment (CORAL), which essentially whitens
the source-domain data and recolors them with a whitening
matrix estimated from the target-domain data [9]. In [10],
the author proposed a hybrid method combining PLDA model
adaptation and CORAL and showed that it is superior to the
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Table II. SUMMARY OF THE X-VECTOR NETWORK. THE KERNEL IS SPECIFIED AS KERNEL SIZE, STRIDE, AND DILATION.

X-vector network Large x-vector network

l Layer Kernel Channel in × Channel out Kernel Channel in × Channel out

1 Conv 5,1,1 23 × 512 5,1,1 23 × 1024
2 Conv 3,1,2 512 × 512 3,1,2 1024 × 1024
3 Conv 3,1,3 512 × 512 3,1,3 1024 × 1024
4 Conv 1,1,1 512 × 512 1,1,1 1024 × 1024
5 Conv 1,1,1 512 × 1536 1,1,1 1024 × 2000
– Statistics pooling – 1536 × 3072 – 2000 × 4000
6 FC – 3072 × 512 – 4000 × 512
7 FC – 512 × 512 – 512 × 512
– Softmax – 512 × N – 512 × N

Table III. SUMMARY OF THE NUMBER OF PARAMETERS AND THE
NUMBER OF FLOATING-POINT OPERATIONS IN A FORWARD PASS FOR OUR

DENSENET121, THE X-VECTOR NETWORK AND THE LARGE X-VECTOR
NETWORK FOR AN INPUT SIZE OF 23× 400.

Model # of flops # of parameters

X-vector network 1000.043M 4.276M
Large x-vector network 3000.705M 11.639M
Densenet80 572.172M 5.256M
Densenet121 958.143M 10.334M

individual methods. A more complicated backend adaptation
was proposed in [11]–[13]. The authors proposed to use an
auto-encoder to minimize the maximum mean discrepancy
between the source-domain data and the target-domain data.
The method can also address multi-source domain mismatch.
In [14], the author proposed to combine a variational auto-
encoder (VAE) [15] with a domain adversarial neural network
(DANN) for x-vectors domain adaptation. The DANN [16]
part aims to retain speaker identity information and learn a
feature space that is robust against domain mismatch, while the
VAE part is to impose variational regularization on the learned
features so that they follow a Gaussian distribution. In [17],
the authors extended their variational DANN by incorporating
an information maximization criterion [18] into the objective
function.

DA also has numerous applications in automatic speech
recognition (ASR). For Gaussian mixture model–hidden
Markov models (GMM–HMMs), well known effective adap-
tation techniques include maximum-likelihood linear regres-
sion (MLLR) [19]–[21], constrained MLLR (cMLLR)] [22],
and vector Taylor series (VTS) expansion [23]. Many of
these techniques can be used for tackling environment and
speaker mismatches. There are also numerous techniques for
adapting DNNs for ASR, which can be divided into three
categories: linear transformation, conservative training, and
subspace methods. A detailed discussion of DNN adaptation
methods for ASR can be found in [24].

More recently, domain adversary learning and variational
auto-encoders have been explored for ASR adaptation. For
instance, the authors in [25] framed robust speech recognition
as a domain adaptation problem. They used DA to suppress
the training–test mismatch in real-world speech recognition.
Specifically, the DNNs were trained with two discriminative
tasks (main and auxiliary tasks). The main task aims to

Table IV. DENSENET ARCHITECTURE FOR SPEAKER EMBEDDING. THE
GROWTH RATE FOR THE NETWORKS IS 40. NOTE THAT EACH “CONV”

LAYER SHOWN IN THE TABLE CORRESPONDS TO THE SEQUENCE
BN-RELU-CONV. “CONV 3” DENOTES 1-D CONVOLUTION WITH KERNEL

SIZE 3.

Layers Densenet-80 Densenet-121
Convolution conv 3 conv 3

Dense Block (1)

[
conv 1

conv 3

]
× 6

[
conv 1

conv 3

]
× 6

Transition Layer (1) conv 2 stride 2 conv 2 stride 2

Dense Block (2)

[
conv 1

conv 3

]
× 10

[
conv 1

conv 3

]
× 12

Transition Layer (2) conv 2 stride 2 conv 2 stride 2

Dense Block (3)

[
conv 1

conv 3

]
× 14

[
conv 1

conv 3

]
× 24

Transition Layer (3) conv 2 stride 2 conv 2 stride 2

Dense Block (4)

[
conv 1

conv 3

]
× 10

[
conv 1

conv 3

]
× 16

Stats-pooling Layer - -
FC1 492× 512 Linear 2560× 512 Linear
FC2 512× 256 Linear 512× 256 Linear

Softmax Layer 256× # of classes 256× # of classes

predict phoneme labels and the auxiliary task is to discriminate
between the source-domain and target-domain data. The net-
works were trained to minimize the phoneme classification loss
while maximizing the domain confusion. The authors in [26]
trained variational auto-encoders on both source- and target-
domain data to learn latent representations. The representations
of source-domain data are modified such that they match the
target domain without changing the attributes related to the
recognition task. The modified source-domain data were used
to train a speech recognizer.

DNN adaptation is relatively new in SV. Because DNN
provides a larger parameter space to explore, it is potentially
more powerful than backend adaptation. Most of the DA
methods aim to minimize the divergence between the source-
domain data and the target-domain data. In the context of
speaker verification, this means minimizing the discrepancy
between the source-domain speaker embeddings and the target-
domain speaker embeddings. In [27], the authors proposed
to use adversarial learning to adapt the speaker embeddings.
Specifically, Wasserstein GANs [28] were used to minimize the
discrepancy between the source-domain and the target-domain
speaker embeddings. The authors also explored using other
information such as language labels and phone numbers and
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found that they are beneficial. However, their method requires
speaker labels to perform well, which limits the method’s
applicability. In [29], several GAN variants were proposed.
Both adaptation and verification were carried out end-to-end.
However, the performance of the system is not as good as the
x-vector system with PLDA adaptation in Kaldi.

Most of the previous works in DNN adaptation focus
on utterances-level adaptation; i.e., the domain divergence is
estimated from the speaker embeddings. Although backprop-
agation could tune the parameters of the whole network to
minimize the domain divergence, we argue that it is still better
to explicitly adapt frame-level features. The reason is that
training data typically only has a fixed duration range. As
a result, adapting utterance-level features may only benefit
a specific duration range. Adapting frame-level features, on
the other hand, are less prone to fit a specific duration range.
Another innovative aspect of our method is making use of unla-
belled target-domain data. Data augmentation is an important
part of DNN-based SV. However, the augmentation is done
only for the labeled data. It was unclear how to apply data
augmentation to unlabelled data. To leverage the unlabelled
data, we propose to add a consistency regularization that
minimizes the divergence between augmented and clean target-
domain data. In this way, the consistency regularization makes
the target speaker embeddings robust to adverse perturbations.

This paper is an extension of our work in [13]. Specifically,
we extended our work in the following regards. First, we
added auxiliary batch normalization to each layer of the neural
networks. This is, to the best of our knowledge, the first use of
separate batch normalization units in domain adaptation. Sec-
ond, we conducted detailed experiments investigating the effect
of target-domain utterance duration on DA. The experiments
show that utterance-level adaptation tends to overfit a specific
duration range, which validates the assumption of our multi-
level adaptation. To the best of our knowledge, the duration
mismatch problem in DA has not been investigated in the
previous research. Third, we conducted a detailed investigation
of the effect of kernels in MMD-based adaptation. In summary,
this paper investigates the use of multilevel domain loss,
separate batch normalization, and consistency regularization
for speaker embeddings. We abbreviate the proposed method
as MSC.

II. DEEP NEURAL NETWORKS FOR SPEAKER EMBEDDING

A. X-vector Architecture
The x-vector network consists of three parts: Frame-level

time-delay neural networks (TDNNs), utterance-level fully-
connected (FC) layers, and a statistics pooling layer that
bridges the frame-level layers and utterance-level layers [6],
[30]. A TDNN is a special form of convolutional neural
networks (CNNs). It skips the computation at chosen temporal
positions while maintaining the same receptive field size as
a CNN. A statistics pooling layer concatenates the mean and
standard deviation of the activations from the last convolutional
layer. The concatenated means and standard deviations are
passed to two FC layers. The network is trained to minimize
the standard cross-entropy loss. The network is trained using

small chunks of acoustic sequences derived from the clean and
augmented utterances. The typical chunk length ranges from
200 ms to 400 ms. After the network is trained, the embedding
of each utterance is extracted from the first affine layer after
the statistics pooling layer. A backend consisting of LDA and
PLDA models is trained using the embeddings as input [31].

B. Densenet Architecture for Speaker Embedding
DenseNets are proposed in [32] for computer vision. A

Densenet comprises two types of blocks, namely, dense block
and transition block. In a dense block, each layer is connected
by all of the outputs from the previous layers. To prevent the
number of feature maps from growing excessively, a transition
block is introduced to reduce the feature map size. Suppose
each convolutional layer produces k feature maps, then the l-th
layer inside the block has k0 +k× (l−1) feature maps, where
k0 is the number of channels in the input layer. The parameter
k is referred to as the growth rate. In this work, we use a
dense network composed of 1-dimensional convolution. We
used the same statistics pooling layer as that of the x-vector
network. Because max-pooling and average pooling do not
work well in speaker recognition, we replaced the max-pooling
by stride-2 convolution layers. Table IV shows our network
architecture. Table III summarizes the number of parameters
and the number of floating-point operations in a forward pass
for our Densenet80 and Densenet121 for an input size of
23 × 400. We also compared our DenseNets with a large x-
vector network in which the numbers of channels per layer
are doubled. The the number of floating-point operations and
model size of the x-vector networks are presented in Table III.

III. PLDA AND BACKEND ADAPTATION

A. Probabilistic Linear Discriminant Analysis
Probabilistic linear discriminant analysis (PLDA) [31] has

been a popular backend for x-vector systems. Given a set of D-
dimensional length-normalized [33] DNN embedding vectors
{xij ; i = 1, . . . , N ; i = 1, . . . ,Hi; } from N speakers, each
with Hi sessions, PLDA assumes that the embedding vectors
can be expressed as the following factor analysis model:

xij = m + Vzi + εij , (1)

where m is the global mean of the embedding, V defines the
speaker subspace, zi is the speaker factor and εij is the residue
whose covariance matrix represents non-speaker variability.

B. Correlation Alignment for Backend Adaptation
Correlation alignment (CORAL) is a popular domain adap-

tation technique and has been very successful in SV [10], [34].
It was introduced to SV in [34]. CORAL aims to minimize
the distance between the second-order statistics (covariance)
of the source features CS and target features CT . When using
with speaker embeddings, CORAL has the advantage of fast
adaptation without re-training the whole network for a new
domain. CORAL aims to find a transformation matrix A that
minimizes the distance:∥∥∥A>CSA−CT

∥∥∥2

F
. (2)
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IV. MAXIMUM MEAN DISCREPANCY

Maximum mean discrepancy is a distance measure on the
space of probability [35]. Given two sets of samples X =
{xi}Ni=1 and Y = {yj}Mj=1 from distributions Px and Py ,
MMD measures the similarity of Px and Py by computing
the mean squared difference of the statistics of the samples:

D(X ,Y) =

∥∥∥∥∥∥ 1

N

N∑
i=1

φ(xi)−
1

M

M∑
j=1

φ(yj)

∥∥∥∥∥∥
2

. (3)

When φ(.) is the identity function, the MMD computes the
mean squared distance between the sample sets. Eq. 3 can be
expanded as:

D(X ,Y) =
1

N2

N∑
i=1

N∑
i′=1

φ(xi)
Tφ(xi′)

− 2

NM

N∑
i=1

M∑
j=1

φ(xi)
Tφ(yj) +

1

M2

M∑
j=1

M∑
j′=1

φ(yj)
Tφ(yj′).

(4)

The dot product terms can be replaced by kernel functions
k(·, ·):

D(X ,Y) =
1

N2

N∑
i=1

N∑
i′=1

k(xi,xi′)

− 2

NM

N∑
i=1

M∑
j=1

k(xi,yj) +
1

M2

M∑
j=1

M∑
j′=1

k(yj ,yj′). (5)

In the case of quadratic (Quad) kernels, we have:

k(x,y) = (xTy + c)2. (6)

The MMD becomes:

D(X ,Y) = c

∥∥∥∥∥∥ 1

N

∑
i

xi −
1

M

∑
j

yj

∥∥∥∥∥∥
F

+

∥∥∥∥∥∥ 1

N

∑
i

xix
T
i −

1

M

∑
j

yjy
T
j

∥∥∥∥∥∥
F

, (7)

where ‖.‖F represents the Frobenius norm. We can see that
with a second-degree polynomial kernel, MMD can match up
to the second-order statistics and c can be adjusted to control
the contribution of the first and the second moments. If we set
c to 0, Eq. 7 becomes

DMMD =

∥∥∥∥∥∥ 1

N

N∑
i=1

xix
T
i −

1

M

M∑
j=1

yjy
T
j

∥∥∥∥∥∥
2

F

. (8)

In deep CORAL [36], the domain discrepancy is defined as:

`CORAL =
1

4d2

∥∥∥∥CS −CT

∥∥∥∥2

F

, (9)

where d is the dimension of the deep-layer’s activations, C is
a covariance matrix, and the subscripts S and T stand for the
source-domain and target-domain, respectively. Eq. 9 can also
be written as:

`CORAL =
1

4d2

∥∥∥∥ 1

N

N∑
i=1

(xi − x̄)(xi − x̄)T

− 1

M

M∑
j=1

(yj − ȳ)(yj − ȳ)T
∥∥∥∥2

F

, (10)

where x̄ and ȳ are the means of source-domain data {x}Ni=1
and target-domain data {y}Mj=1, respectively. Besides the scal-
ing constant, the difference between Eq. 8 and Eq. 10 is
that Eq. 8 uses the difference between the second-moments
while Eq. 10 uses the difference between the centered second
moments (covariances).

Another popular kernel is the radial basis function (RBF)
kernel:

k(x,y) = exp
(
− 1

2σ2
‖x− y‖2

)
, (11)

where σ is the width parameter. With the RBF kernel, the
feature space is of infinite dimension and contains all moments
of data. Minimizing MMD using the RBF kernel is equivalent
to matching all moments of two distributions [37]. It is also
possible to use a mixture of RBF kernels [38]:

k(x,y) =

K∑
q=1

exp
(
− 1

2σ2
q

‖x− y‖2
)
, (12)

where σq is the width parameter of the q-th RBF kernel.
Another popular measure for the discrepancy between prob-

ability distributions is Kullback–Leibler (KL) divergence. Both
MMD and KL divergence measure the distance between two
distributions p(x) and q(x). The main difference is that KL
divergence requires parametric forms for p(x) and q(x), while
MMD only requires the samples from p(x) and q(x). For
example, assume that we have two sets of samples from two
Gaussian distributions. For KL divergence, we must estimate
the parameters of the two distributions (e.g., the means and
covariance matrices for Gaussian distributions) and then com-
pute the KL divergence using the estimated parameters. For
MMD, we can directly compute the distance between the two
distributions using sampled data. In domain adaptation, it is
not easy to find parametric distributions that are significantly
expressive for the target- and source-domain data. MMD solves
this problem nicely because of its non-parametric nature.
More precisely, the distance between any distributions can
be estimated without finding any parameters first. Therefore,
MMD is a better choice than KL divergence for domain
adaptation.

V. THE PROPOSED MSC DOMAIN ADAPTATION
FRAMEWORK

A. Multi-level Adaptation
Assume that we have a labelled dataset {(xsi , ysi )}Ii=1 from

the source-domain. Denote Θ = {Wl,bl}Ll=1 as the set of
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Figure 1. The architecture of our proposed framework. The network is trained to minimize the classification loss and the domain loss with consistency
regularization (see Eq. 18). For target-domain data, no label is required. The dotted lines indicate weight-sharing within individual layers.

Stat-pooling	
and	FCs

MMD	distance

Batch	axis

Temporal	axis
Channel	axis

Batch	axis

Temporal	axis
Channel	axis

Flatten	along
time	axis	

MMD	distance

(a) (b)

Figure 2. Diagrams demonstrate the difference between (a) utterance-level MMD distance D(H7
s,H7

t )) and (b) frame-level MMD distance
D(FLAT(H5

s), FLAT(H5
t ))). Blue and orange cubes represent a batch of 3-dimensional data from two domains. In the case of utterance-level MMD distance,

it is computed after the aggregation along the temporal axis in the stats-pooling layer. In the case of frame-level MMD distance, the temporal axis is flattened
to transform a 3D array into a 2D array for computing the MMD distance.

network parameters. The network parameters can be found by
solving the following optimization problem:

min
Θ

1

I

I∑
i=1

J(pΘ(y|xsi ), ysi ), (13)

where J is the cross-entropy loss and pΘ(y|xsi ) is the con-
ditional probability that the network assigns xsi to class ysi .
Minimizing this objective alone will not guarantee the gen-
eralization to the target-domain. To make generalization to
the target-domain possible, we need to reduce the divergence
between the marginal distribution of the source-domain and

the target-domain. In neural networks, we typically reduce the
divergence in the hidden activations. Let Hl∗ = {hli} denotes
the l-th layer hidden activations for source or target data. The
cross-entropy loss together with MMD distance is

min
Θ

1

I

I∑
i=1

J(pΘ(y|xsi ), ysi ) + λ · D(Hls,Hlt), (14)

where λ is a constant controlling the trade-off between the
two objectives. For how to compute the gradient of MMD
loss, reader may refer to the Appendix.
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Figure 3. T-SNE plots of the hidden activations at the convolutional layers of the x-vector network in Table II. The orange dots correspond to the data from
the source-domain (SRE04–SRE10). The blue dots correspond to the data from the target domain (SRE18 evaluation set.).

As mentioned in [38], deeper layers typically have larger
domain discrepancy gaps. Therefore, it is very common to
minimize the divergence at the network’s last layer. In the
x-vector network in Table II, it is the 7-th layer (i.e., l = 7).
However, the current DNN training scheme typically uses very
short speech segments (200 frames to 400 frames) for training
and relies on the backend to compensate for the duration
discrepancy. The embedding distribution shifts with speech
duration, which results in an inaccurate distribution divergence
estimate. Adapting frame-level activations, on the other hand,
has no such problem. Therefore, we argue that it is important
to adapt frame-level features as well. Here, we choose the
last convolutional layer before statistics pooling, i.e., l = 5
in Table II, for adaptation. However, the MMD distance in
Eq. 3 only works with vectors. Frame-level activations are
represented by tensor with dimension B×T ×C, where B is
the batch size, T is the number of frames in the segment,
and C is the number of channels (filters). We propose to
flatten along the temporal axis to convert the frame-level
activations of speech segments into a batch of 1D vectors and
then compute the MMD distance between the two batches of
flattened vectors:

D(FLAT(H5
s),FLAT(H5

t ))), (15)

where FLAT(.) denotes flattening a 3D tensor along the
temporal axis. Figure 2(b) illustrates the flattening procedure
for frame-level activations. Minimizing Eq. 15 can reduce
domain mismatch even though utterances from the source- and
target-domain are of different contexts. This is because the
filters (feature detectors) in the lower CNN layers can extract
the relevant features irrespective of the location of the features.
The total domain loss is:

λ · D(H7
s,H7

t ) + α · D(H5
s,H5

t )), (16)

where α is a constant controlling the importance of Eq.15.

B. Consistency Regularization Using MMD
Data augmentation is the most important part of x-vector’s

success. However, how to use data augmentation on unlabelled

data has not been explored in SV. Consistency training has
been successfully explored in semi-supervised learning [39].
The idea is to enforce or regularize a network such that the
network predictions are consistent even if the network’s input
is subject to noise perturbation for unlabelled data. In [39],
the regularization is achieved by minimizing the following KL
divergence:

E
q(x̂unlab|xunlab)

[KL(pΘ(y|xunlab)||pΘ(y|x̂unlab))], (17)

where KL(.,.) is the KL divergence, xunlab denotes the clean
unlabelled data, x̂unlab denotes the augmented unlabelled data,
and q(x̂unlab|xunlab) is a data augmentation transformation. For
Eq. 17 to work, pΘ(y|xunlab) has to be very close to the true
class distribution. This is typically achieved by training the
network on a large number of labelled data point {xlabel, y},
where xlabel denotes the labelled data. As a result, the network
is discriminative for the class y and pΘ(y|xunlab) is very close
to the true class distribution. However, if we do not have
labelled data {xlabel, y} to train the network, the softmax output
pΘ(y|xunlab) is less useful.

We propose another form of consistency penalty that does
not require labeled data to work. Instead of minimizing the KL
divergence between the softmax output of the clean unlabelled
data and augmented unlabelled data, we propose minimizing
the discrepancy between the embeddings produced by the clean
data and the embeddings produced by the augmented data.
The motivation is that DNN embedding should be robust to
input perturbation. After all, the goal of the DNN is to create
speaker embedding instead of prediction. We use MMD to
measure the consistency between the two sets of embeddings.
Let H7

t and Ĥ7
t denote the set of Layer-7’s hidden activations

obtained from the clean and the augmented target-domain data,
respectively. The consistency regularization using MMD is
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ReLU
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ReLU
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Figure 4. “One Aux. BN” means that the batch statistics of the source- and target-domains are computed separately. In the case of “Two Aux. BNs”, we further
divided the mini-batch into clean source-domain data, clean target-domain data, and augmented data when computing the mini-batch statistics. The superscripts
“s” and “t” stand for source- and target-domains, respectively. The subscripts “clean“ and “aug” stand for clean original data and augmented data, respectively.
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Combining Eq. 18 with Eq. 13 and Eq. 16, we have the total
loss function:

min
Θ

1

I

I∑
i=1

J(pΘ(y|xsi ), ysi ) + λ · D(H7
s,H7

t )

+ α · D(H5
s,H5

t )) + β · D(H7
t , Ĥ7

t ). (19)

The first term of Eq. 19 is the standard cross-entropy using
speaker labels as supervised signals to minimize classification
loss. The second and third terms are MMD distances using
domain labels as supervised signals to minimize the mismatch
between the source- and the target-domains (Hls and Hls
represent the hidden activations from the source-domain data
and the target-domain data, respectively). The last term is
also an MMD distance but using augmentation information as
supervised signals to enforce consistency between the origin
and the augmented data (H7

t and Ĥ7
t ). Figure 1 summarizes

the architecture and objective functions.

C. Auxiliary BN
Batch normalization (BN) is an essential part of modern

deep neural networks. The input features are normalized using
the mean and variance computed from the mini-batch. The
underlying assumption is that the input data are homogenous.
However, if data are heterogeneous, the statistics used by BN
is inaccurate. In domain adaptation, it is obvious that the
source-domain data and the target-domain data come from
two different distributions, as exemplified by the t-SNE plots

1To simplify notation, the subscript t is omitted in the right side of Eq. 18.

in Figure 3. Thus we argue that we need two separate BNs
to obtain more accurate batch statistics. A similar idea is
proposed in [40], where the authors used two different BNs
for clean and adversary inputs. The heterogeneity could also
come from data augmentation [40]. Thus, we could also use
three BNs per layer, i.e., one for the source-domain data, one
for the target-domain data, and one for the augmentation data.
Figure 4 illustrates the idea of auxiliary BN.

VI. EXPERIMENTS

A. Data Preparation
The training data include NIST SRE 2004–2010 (SRE04–

10 in short) and all of the Switchboard data. We follow the
data augmentation strategy in the Kaldi SRE16 receipt. The
training data were augmented by adding noise, music, reverb,
and babble to the original speech files in the datasets. After
filtering out utterances shorter than 500 frames and speakers
with less than 8 utterances, we are left with 4,808 speakers. 23-
dimensional Mel-frequency cepstral coefficients (MFCC) were
computed from 8kHz speech files. Mean normalization was
applied to the MFCC using a 3-second sliding window. Non-
speech frames were removed using Kaldi’s energy-based voice
activity detector.

B. DNN and Backend Training
The hyper-parameters λ, β and α in Eq. 19 were all set to

1. For the models with vanilla BN and one auxiliary-BN, we
sampled 32 speech segments from the source-domain and the
target-domain, respectively. Therefore, the size of a mini-batch
is 64. For the models with two auxiliary-BNs, we sampled
21 speech segments from the source-domain, the clean target-
domain, and the augmented target-domain, respectively. As
a result, the size of a mini-batch is 63. All samplings are
with replacement. All DNNs were optimized by the Adam
optimizer [41] with a learning rate of 0.001. The networks were
implemented in PyTorch [42]. We used a standard backend
comprised of LDA, length-normalization, and PLDA. Both
LDA and PLDA were trained using embeddings extracted from
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full-length utterances. We used correlation alignment [9] for
domain adaptation in the PLDA backend. For the models with
domain-dependent BNs, the embeddings were extracted using
the BN that was trained on the same domain data.

C. Data Augmentation
In addition to data augmentation in [6], we also used

speech conversion tools in FFmpeg. Every speech file was
accompanied by one of the following augmentations:
• Reverberation: Speech files were reverberated through

convolution with simulated RIRs [43].
• Music: A randomly selected music file from MUSAN

was added to the original speech with SNR ranges from
5–15dB.

• Noise: Noise from MUSAN was added to the recording
intermittently with SNR between 0dB and 10dB.

• Babble: Babble noise was added to the original speech
files with an SNR of 0dB–10dB.

• Speed: the original speech was speeded up by 1.3 times
using FFMpeg.2

Both the target-domain data and the source-domain data were
augmented.

D. Evaluation
All systems were evaluated on the evaluation set of SRE

2016 and 2018. The SRE16 evaluation set is composed of
Tagalog and Cantonese telephone conversations. For SRE18,
we only used the CMN2 portion, which consists of Tunisian
Arabic conversations. We report results in terms of equal
error rate (EER) and minimum cost function (DCF). We used
minDCF as defined in [4]. The minDCF reported in this paper
is the average of the minDCFs with p-target set to 0.01 and
0.005.

VII. RESULTS

A. Comparison with DNN Adaptations and Backend Adapta-
tions

In this section, we compared the proposed framework
(MSC) with the previously proposed DNN adaptation methods.
The latter includes Wasserstein GAN (WGAN) adaptation,
supervised WGAN adaptation in [27] and least square GAN
(LSGAN) in [29]. The results and implementation details are
presented in Table V. All the results in Table V are without
additional backend adaptation. It is clear from the table that
MSC performs significantly better than the existing methods.
It is worth noting that MSC even performs better than the
supervised adaptation in [27].

We also compared the proposed framework with two pop-
ular backend adaptation methods, namely, CORAL [9] and

2The speed perturbation we used is different from the one used in
the Kaldi’s ASR recipe (.../master/egs/wsj/s5/utils/perturb data dir speed.sh).
The Kaldi’s recipe uses the speed option of sox to change the speaking rate
with the speed parameter ranged from 0.8 to 1.2, which also changes the
speaker characteristics in the speech. We used FFmpeg with atempo set to
1.3. Perceptually, we notice that there is no loss in the speaker identities in
the perturbed speech produced by FFmpeg.

Kaldi’s PLDA adaptation [6]. The potential for combining
the proposed framework with backend adaptation was also
investigated. The results are presented in Table VI. As can be
seen from Table VI, in SRE16, CORAL is the most effective
adaptation method. However, in SRE18, MSC has a clear
advantage over backend adaptation methods. This, we believe,
is due to the fact that SRE18 has more data for adaptation
(over 4,000 utterances compared to 2,340 in SRE16). Besides,
it seems that the proposed framework works well with backend
adaptation methods, as combining them improves performance.
More results for SRE16 subsets is presented in Table VII.

B. Ablation Study of Individual Components
To investigate the effect of individual components in our

framework, we conducted an ablation study. Table VIII starts
with only utterance-level adaptation (Utt. Adapt.) in the second
row and incrementally adds frame-level adaptation (Frame
Adapt.), consistency regularization (Consist. Reg.), and aux-
iliary BN (Aux. BN). Here, in the unadapted baseline, we did
not use any in-domain data. A lot of papers, including the
Kaldi SRE16 recipe, reported the unadapted baselines that use
the target-domain data for centering the mean of the PLDA
model.

Table VIII shows that utterance-level adaptation alone al-
ready gives a great improvement over no adaptation. Adding
frame-level adaptation gives a considerable performance gain
for both SRE16 and SRE18. Consistency regularization also
further improves the performance in both SRE16 and SRE18.
The last three rows of Table VIII show the results of the
proposed method with three kinds of batch normalization
schemes. The column “No. of Aux. BN” stands for the
number of auxiliary BNs used in the models. “Zeros” refers
to the vanilla BN (Figure 4 Standard BN) that conflates the
source-domain data and the target-domain data in a mini-
batch; “One” refers to two separate BNs (Figure 4 One Aux.
BN) for the source-domain data and the target-domain data,
respectively; “Two” refers to three BNs (Figure 4 Two Aux.
BN) for clean source-domain data, clean target-domain data,
and augmented data, respectively. We can see from Table VIII
that separating the source-domain data and target-domain data
improves the performance in both SRE16 and SRE18, while
further separating the augmented data from clean data degrades
the performance. One possible explanation is that when using
three separate batch normalizations per layer, there are not
enough data to compute the means and variances reliably. A
similar phenomenon was also reported in [44].

C. Effect of Network Architectures
Generally speaking, large models and better architectures

often improve DNN’s performance. However, it is not clear
whether domain adaptation will benefit from large models and
better architectures. To investigate this, we used two DNN
architectures, namely, the x-vector networks and DenseNets,
with a different number of parameters. The configurations
of the two x-vector networks are shown in Table II and
the configurations of the two DenseNets are shown in Ta-
ble IV. The results are presented in Table IX. It is clear
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Table V. COMPARISON WITH OTHER DNN ADAPTATION METHODS. SUP. WGAN [27] USED THE LABELS OF SRE16 AND SRE18 DEVELOPMENT DATA.
THERE IS NO BACKEND ADAPTATION IN ALL OF THE SYSTEMS.

Adapt Method Front-end Back-end Statistics Pooling Training set Loss SRE16 SRE18
EER minDCF EER minDCF

WGAN X-vector PLDA Mean & STD SRE & SWB Softmax 13.25 0.899 10.35 0.658
Sup. WGAN X-vector PLDA Mean & STD SRE & SWB Softmax 9.59 0.652 8.88 0.619
LSGAN ResNet Cosine Attention SRE & SWB AM-Softmax 11.74 – – –
KALDI X-vector PLDA Mean & STD SRE & SWB Softmax 8.27 0.604 9.6 0.575
MSC X-vector PLDA Mean & STD SRE & SWB Softmax 8.69 0.556 7.95 0.500

Table VI. THE PERFORMANCES OF CORAL, PLDA ADAPTATION AND THE PROPOSED FRAMEWORK MSC.

MSC CORAL PLDA Adapt MSC+CORAL MSC+PLDA Adapt

SRE16 EER 8.690 8.490 8.550 8.130 8.220
minDCF 0.556 0.560 0.556 0.530 0.542

SRE18 EER 7.950 8.740 8.880 7.700 8.120
minDCF 0.500 0.553 0.563 0.486 0.502

Table VII. BREAKDOWN OF DAS’ PERFORMANCE ON SRE16.

Cantonese Tagalog

Male Female Male Female

EER minDCF EER minDCF EER minDCF EER minDCF

CORAL 4.30 0.366 4.76 0.424 11.83 0.703 12.34 0.731
PLDA Adapt 4.35 0.371 4.80 0.437 11.97 0.714 12.33 0.735
MSC 4.39 0.373 4.95 0.440 11.98 0.718 12.54 0.741
MSC+CORAL 3.80 0.316 4.08 0.343 11.05 0.670 12.11 0.722
MSC+PLDA Adapt 3.88 0.317 4.03 0.349 11.14 0.671 12.31 0.724

Table VIII. ABLATION STUDY OF THE INDIVIDUAL COMPONENTS IN THE PROPOSED FRAMEWORK.

SRE16 SRE18

With Utt. Adapt. With Frame Adapt With Consist. Reg. No. of Aux. BN EER(%) DCF EER(%) DCF
× × × Zero 12.02 0.990 11.59 0.720
X × × Zero 9.79 0.621 9.08 0.580
X X × Zero 9.63 0.606 8.77 0.555
X X X Zero 9.03 0.585 8.33 0.520
X X X One 8.69 0.556 7.95 0.500
X X X Two 9.28 0.566 8.33 0.511

from Table IX that increasing the model size improves the
speaker embeddings’ performance. We also observed, with the
same amount of parameters, the DenseNets outperform the x-
vector networks consistently. Besides, DNN domain adaptation
does benefit from larger models. By doubling the number of
channels in the x-vector networks, we achieved 3.68% and
4.02% improvement in SRE16 and SRE18, respectively. Using
larger DenseNets, we achieved 6.01% and 8.23% improvement
on SRE16 and SRE18, respectively. Clearly, DA benefits more
from deep architectures than the swallow ones.

D. Effect of MMD Kernels
The most important component for MMD-based DA is the

kernel. The Gaussian kernel is theoretically more powerful
than the quadratic kernel in that it can match up to infinite
moments of two distributions. However, it is much harder
to find appropriate bandwidth parameters for the Gaussian

kernels, which is still an on-going research area [46]. A
heuristic is to use the median pair-wise distance computed
from data [45]. Another way is to use multiple Gaussian
kernels and hope that some of the kernels are close to the
ideal ones. It is also possible to combine the median heuristic
and the multi-kernel approach. Table X shows the effectiveness
of different Gaussian kernels for DA in SRE16 and SRE18.

For the median heuristic, we randomly sampled 10,000
frames of MFCC vectors from the unlabelled part of SRE16
and SRE18 and used the sampled data to compute the pairwise
median distance. For the multi-kernel approach, we chose
σq = 1 in Eq. 12 and used a multiplicative step-size of 0.1.
Specifically, with 5 Gaussian kernels, the bandwidth parame-
ters range from 10−2σq to 102σq with a multiplicative step-size
of 0.1. With 19 Gaussian kernels, the bandwidth parameters
range from 10−9σq to 109σq with a multiplicative step-size
of 0.1. For combining the median heuristic with multi-kernel,
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Table IX. THE PERFORMANCE OF FOUR DNN SPEAKER EMBEDDINGS WITH AND WITHOUT THE PROPOSED ADAPTATION FRAMEWORK. THE DETAILS
OF X-VECTOR BASED NETWORKS AND DENSENETS ARE PRESENTED IN TABLE II AND TABLE IV, RESPECTIVELY.

Training Protocol EER(%) minDCF

x-vector large-x-vector Densenet61 Densenet121 x-vector large-x-vector Densenet61 Densenet121

SRE 16 w.o. adapt. 12.02 11.90 11.87 11.64 0.985 0.851 0.854 0.820
SRE 16 w. Adapt 8.69 8.37 8.31 7.81 0.556 0.534 0.520 0.515
SRE 18 w.o. adapt. 11.59 10.62 10.73 9.47 0.761 0.692 0.703 0.600
SRE 18 w. adapt. 7.95 7.63 7.65 7.02 0.500 0.482 0.482 0.460

Table X. EFFECT OF THE GAUSSIAN KERNEL CONFIGURATION ON SPEAKER EMBEDDING ADAPTATION. MH MEANS THE BANDWITH PARAMETERS (σq
IN EQ .12) WERE SET USING MEDIAN HEURISTICS (MH) [45]

.

No. of Gaussian Kernels

No Adapt 1 (σq = 1) 1 (MH) 5 (σq = 1) 9 (σq = 1) 19 (σq = 1) 19 (MH)

SRE16 EER(%) 12.02 14.93 10.85 9.69 9.17 8.99 8.69
minDCF 0.990 0.841 0.660 0.569 0.559 0.547 0.556

SRE18 EER(%) 11.59 13.33 10.33 8.77 8.01 8.30 7.950
minDCF 0.720 0.776 0.636 0.529 0.510 0.510 0.500

Table XI. EFFECT OF TARGET-DOMAIN DATA SIZE ON SRE18. THE
RESULTS ARE REPORTED IN EER (%).

No. Utt. 500 1000 2000 3000 4073

CORAL 10.54 9.32 9.12 8.81 8.74
PLDA 10.34 9.44 9.01 8.95 8.88
MSC 11.23 9.82 8.93 8.32 7.95

Table XII. EFFECT OF THE MISMATCH BETWEEN THE DURATION OF
THE TRAINING AND TEST UTTERANCES ON THE MMD-BASED DOMAIN

ADAPTATION. THE RESULTS ARE REPORTED IN EER (%).

Test Dur.
Adapt. Dur.

400 800 1200 1600 Multi-level (400)

400 21.27 20.80 22.80 21.73 21.30
800 19.24 17.29 17.50 17.91 17.11

1200 16.71 15.13 14.55 14.10 14.67
1600 15.80 13.85 12.41 12.84 12.21

the bandwidth parameter σq was set to the median computed
from data and a multiplicative step-size of 0.1 was used. We
can see from Table X that the single kernel with arbitrarily
chosen σq = 1 performs even worse than no adaptation,
which shows that good kernel parameter is essential for MMD
domain adaptation. On the other hand, the median heuristic
performs much better than the single kernel with σq = 1.
With multiple kernels, the performance of the adaptation
improves significantly, even though σq was arbitrarily chosen.
The multiple kernel approach performs significantly better than
the median heuristic with single kernel. Finally, combining
the multi-kernel approach with the median heuristic (19 MH)
achieves the best results.

E. Effect of Target-domain Data Size and Duration
To investigate the effect of target-domain data size on DA

performance, we reduced the number of adaptation utterances
from the target-domain (SRE18) to 3,000, 2,000, 1,000, and

Table XIII. PERFORMANCE OF DIFFERENT DA METHODS ON
VOXCELEB1.

No Adapt CORAL PLDA MSC

EER(%) 8.400 8.750 9.230 8.280
minDCF 0.675 0.592 0.688 0.554

500, respectively. The adaptations were carried out using the
reduced data. The results are presented in Table XI. Unsur-
prisingly, the performance of all DA methods degrades when
the amount of adaptation data decreases. However, it seems
that backend adaptation methods, such as CORAL and PLDA
adaptation, are less affected by the amount of adaptation data
than MSC.

The main assumption of our multi-level adaptation is that
utterance-level adaptation suffers from the training–test du-
ration mismatch. To verify this, we truncated the SRE18
unlabeled data and test data to 400, 800, 1200, and 1600
frames, respectively, and conducted experiments on how the
duration mismatch between train–test affects DNN domain
adaptation. This duration mismatch problem was also investi-
gated thoroughly in [47] for PLDA adaptation. We trained the
x-vector networks to minimize the cross-entropy and utterance-
level MMD distance (Eq. 15) using the truncated target-domain
data and evaluated on the truncated test data. The results are
presented in Table XII. “Test Dur.” stands for the duration
of test data (SRE18). “Adapt. Dur.” stands for the duration
of target-domain data used for training the DNNs. The best
result for each duration is highlighted in bold. We can see
from the table that the duration of adaptation data is very
important for the DA. The EER could increase from 12.41%
to 15.80% when the adaptation data duration decreases from
1,200 frames to 400 frames for test data with 1600 frames.
This shows that utterance-level adaptation tends to overfit to
a specific duration range. Although the multi-level adaptation
only uses 400 frames for adaptation, it produces consistently
good results across all the test sets. This shows that adapting
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both frame-level and utterance-level is beneficial to DA.

F. DA for Cross-channel Problem
To investigate the proposed method’s performance on the

cross-channel problem, we conducted experiments on the
VoxCeleb1 evaluation set. VoxCeleb audio mainly contains in-
terviews recorded using microphones, while SRE and Switch-
board data were recorded through telephones. The evaluation
protocol of VoxCeleb adaptation is similar to that of SRE16
and SRE18. Ten thousand utterances were sampled from the
VoxCeleb2 development set and were treated as unlabeled
target-domain data. The models were trained using labeled
data from SRE and Switchboard, while the target-domain data
are only available in unlabeled form. All VoxCeleb audio was
downsampled to 8kHz. The results are presented in Table XIII.
All DA methods use the 10,000 unlabeled utterances from
the VoxCeleb2 development set as target-domain data. We
can see that in this scenario, the DA methods do not give
significant improvement over models without any adaptation.
The performance of PLDA adaptation is worse than the model
without any adaptation. The results show that MSC works
better than PLDA adaptation and CORAL. It is also worth
noticing that MSC reduces minDCF significantly.

VIII. CONCLUSIONS

In this paper, we presented a framework for adapting DNN
speaker embedding across languages. We studied all three in-
dividual components of our framework (multi-level adaptation,
separate batch normalization, and consistency regularization)
in detail and found that combining them achieves the best
results. We also studied the effect of the kernel parameters
in MMD and found that the multi-kernel approach together
with the median heuristic give the best performance. What’s
more, we found that DNN adaptation also benefits from larger
model size and better network architectures. As we did not
make specific assumptions about the adaptation task in our
framework, the proposed framework should be applicable
to broader types of domain mismatch beyond the language
mismatch studied in this work. It would be interesting to
investigate other factors such as noise and channel induced
domain differences in the future.
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APPENDIX A
GRADIENT OF MMD

To make notation less cluttered, we will use D as a short-
hand for D(X ,Y) in Eq. 5 when deriving the derivative of the
MMD loss. The gradient with respect to weight matrix Wl

and bias vector bl in layer l can be computed using the chain
rule:

∂D
∂Wl

=
∑
q

∂D
∂xq

∂xq
∂Wl

∂D
∂bl

=
∑
q

∂D
∂xq

∂xq
∂bl

, (20)

where xq is the hidden activation of the DNN and q is a sample
index. Eq. 5 can be split into terms that involve xq and terms
that do not:

D =
1

N2

N∑
i′=1

k(xq,xi′) +
1

N2

N∑
i=1

k(xi,xq)

+
1

N2

N∑
i=1,i6=q

N∑
i′=1,i6=q

k(xi,xi′)−
2

NM

M∑
j=1

k(xq,yj)

− 2

NM

N∑
i=1,i6=q

M∑
j=1

k(xi,yj) +
1

M2

M∑
j=1

M∑
j′=1

k(yj ,yj′).

(21)

Differentiating Eq. 21 with respect to xq , we have

∂D
∂xq

=
1

N2

N∑
i′=1

∂k(xq,xi′)

∂xq
+

1

N2

N∑
i=1

∂k(xi,xq)

∂xq

− 2

NM

M∑
j=1

∂k(xq,yj)

∂xq
. (22)

With a Gaussian kernel, Eq. 22 becomes

∂D
∂xq

=
1

N2

N∑
i′=1

[
− 1

σ2
(xq − xi′) exp

(
− 1

2σ2
‖xq − xi′‖2

)]

+
1

N2

N∑
i=1

[
1

σ2
(xi − xq) exp

(
− 1

2σ2
‖xi − xq‖2

)
)

]

− 2

NM

M∑
j=1

[
− 1

σ2
(xq − yj) exp

(
− 1

2σ2

∥∥xq − yj
∥∥2
)]

.

(23)

Substituting Eq. 23 in to Eq. 20, we have the gradient with
respect to the network weights and bias.


	Introduction
	Deep Neural Networks for Speaker Embedding
	X-vector Architecture
	Densenet Architecture for Speaker Embedding

	PLDA and Backend Adaptation
	Probabilistic Linear Discriminant Analysis
	Correlation Alignment for Backend Adaptation

	Maximum Mean Discrepancy
	The Proposed MSC Domain Adaptation Framework
	Multi-level Adaptation
	Consistency Regularization Using MMD
	Auxiliary BN

	Experiments
	Data Preparation
	DNN and Backend Training
	Data Augmentation
	Evaluation

	Results
	Comparison with DNN Adaptations and Backend Adaptations
	Ablation Study of Individual Components
	Effect of Network Architectures
	Effect of MMD Kernels
	Effect of Target-domain Data Size and Duration
	DA for Cross-channel Problem

	Conclusions
	References
	Appendix A: Gradient of MMD

