Week 9a:

Deep Learning
and
Convolutional Neural Networks

G6061: Fundamentals of Machine Learning [23/24]

US

UNIVERSITY
OF SUSSEX

Dr. Johanna Senk

What /s deep learning

» Deep learning is the set of multi-layer neural network based
approaches for machine learning.

= Multi-layer perceptrons are one form of deep learning.

= The deep part comes from having intermediate “hidden” layers
that form a key part of the processing.

= This week we will talk about deep convolutional neural
networks.

Deep architectures

Defintion: Deep architectures are composed of multiple levels of non-linear
operations, such as neural nets with many hidden layers.

Examples of non-linear

Output layer activations:

tanh(x)

o(x)=1+e™)"

max(0,x) - today

Hidden layers

Input layer

O In practice, NN with multiple hid. layers work better than with a single hid. layer.
3

Goal of Deep architectures

Goal: Deep learning methods aim at

= |earning feature hierarchies, where features from higher levels of
the hierarchy are formed by lower level features

= |earning guided by the machine learning task (e.g. classification)

RELU RELU RELU RELU| RELU RELU
CONV CONVJCONVl

m

=

i

L FE T EVE AW
el Y B

s /:

=

=
= pe

=

=

il

Learning Outcomes

Identify the building blocks of convolutional neural networks,
and how they can be combined together to create flexible
models.

Understand the purpose and benefit of CNNs for image based
tasks.

Real world input

Convolutional network

Model
Input

[124]

140
156
128
142
157

Image Classification

Model

output

Real world output

Supervised learning
model

Multiclass classification problem (discrete classes, >2 possible classes)

Bicycle

Object Detection

Image Segmentation

Real world input Model Model

=

iInput

[183]
204
231
185
204

model

232 Deep Iearng

Model Real world output

* Multivariate binary classification problem (many outputs, two discrete classes)

* Convolutional encoder-decoder network

What is special about image data?

= Dimensionality!
= A 224x224 RGB image = 150,528 dimensions
= Hidden layers generally larger than inputs
= One hidden layer = 150,520x150,528 weights -- 22 billion

= Pixels have a spatial relationship - nearby pixels statistically
related.

= We want consistent predictions under transformations.

= Today we will introduce convolutional neural networks that
recognize patterns of pixels in patches of the image.

= These are only suitable for machine learning tasks on a
regularly structured domain, e.g. images, video, audio.

Invariance

= A function f[x] is invariant to a transformation t[] if:

= j.e., the function output is the same even after the
transformation is applied.

10

Invariance Example

= e.g., Image classification

= Image has been translated, but we want our classifier to
give the same result

11

Equivariance

= A function f[x] is equivariant to a transformation t[] if:

= j.e., the output is transformed in the same way as the input

12

Equivariance Example

= e.g., Image segmentation

= Image has been translated and we want segmentation to
translate with it

13

Software Packages

« Lots of useful software tools:

= TensorFlow, via the Keras interface

= PyTorch, with things like PyTorch lightning.

= SciKitLearn also has some MLP things for
classification/regression, but these are much less flexible.

= For the purposes of the lecture and lab, I will talk about
TensorFlow, as it has excellent documentation and I think is
easier for beginners.

= PyTorch seems to be preferred by researchers at the moment.

= If you run things on Colab, enable the TPU session for faster
runtime.

14

Deep Convolutional Networks

Q Convolutional layer

O Non-linear activation function ReLU
O Max pooling layer

Q Fully connected layer

15

Convolutional layer

32x32x3 image

16

Convolutional layer

Filters always extend the full

e —— depth of the input volume
32x32x3 image /

5x5x3 filter

II'

17

Convolutional layer

Filters always extend the full

e —— depth of the input volume

32x32x3 image /
oxox3 filter
(7
I' Convolve the filter with the image

l.e. “slide over the image spatially,
computing dot products”

18

Convolutional layer

__— 32x32x3 image
oxox3 filter w

V
l=-o

32

~ 1 number:
the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image X

T
w X (in general, WTx + bias)

19

Convolutional layer

e

V
——0

32

32x32x3 image
ox5x3 filter W,

convolve (slide) over all
spatial locations

activation map

£

.

28

20

Convolutional layer

consider a second, green filter

el 32x32x3 image activation maps

5x5x3 filter w, %
B
@>@ ”

convolve (slide) over all

spatial locations
32 / 28

21

Convolutional layer

For example, if we use 6 5x5x3 filters, we’'ll get 6 separate activation maps:

Convolution Layer

activation maps

v 4

4

We stack these up to get a “new image” of size 28x28x6!

28

22

Spatial dimensions

A closer look at spatial dimensions

7

/X7x1 image
3x3x1 filter w

23

Spatial dimensions

A closer look at spatial dimensions

7

/X7x1 image
3x3x1 filter w

7

Slide over all locations using stride 1
horizontally and vertically, S=1

24

Spatial dimensions

A closer look at spatial dimensions

7

/X7x1 image
3x3x1 filter w

7

Slide over all locations using stride 1
horizontally and vertically, S=1

25

Spatial dimensions

A closer look at spatial dimensions

7

/X7x1 image
3x3x1 filter w

7

Slide over all locations using stride 1
horizontally and vertically, S=1

26

Spatial dimensions

A closer look at spatial dimensions

7

/X7x1 image
3x3x1 filter w

7

Slide over all locations using stride 1
horizontally and vertically, S=1

27

Spatial dimensions

A closer look at spatial dimensions

7

/X7x1 image
3x3x1 filter w

7

Slide over all locations using stride 1
horizontally and vertically, S=1

28

Spatial dimensions

A closer look at spatial dimensions

7

/X7x1 image
3x3x1 filter w

7

Slide over all locations using stride 1
horizontally and vertically, S=1

29

Spatial dimensions

A closer look at spatial dimensions

7

/X7x1 image

3x3x1 filter w
7 stride S=1

= 9x95 output
activation map

30

Spatial dimensions

A closer look at spatial dimensions

7

/X7x1 image
3x3x1 filter w

7

Slide over all locations using stride 2
horizontally and vertically, S=2

31

Spatial dimensions

A closer look at spatial dimensions

7

/X7x1 image
3x3x1 filter w

7

Slide over all locations using stride 2
horizontally and vertically, S=2

32

Spatial dimensions

A closer look at spatial dimensions

7

/X7x1 image
3x3x1 filter w

7

Slide over all locations using stride 2
horizontally and vertically, S=2

33

Spatial dimensions

A closer look at spatial dimensions

7

/X7x1 image
3x3x1 filter w

7

Slide over all locations using stride 2
horizontally and vertically, S=2

34

Spatial dimensions

A closer look at spatial dimensions

7

/X7x1 image
3x3x1 filter w

7

Slide over all locations using stride 2
horizontally and vertically, S=2

35

Spatial dimensions

A closer look at spatial dimensions

7

/X7x1 image
3x3x1 filter w

Slide over all locations using stride 2
horizontally and vertically, S=2

=> ? output

36

Spatial dimensions

A closer look at spatial dimensions

7

/X7x1 image

3x3x1 filter w
7 stride S=2

= 3x3 output
activation map

37

Spatial dimensions

A closer look at spatial dimensions

7

/X7x1 image

3x3x1 filter w
7 stride S=3

38

Spatial dimensions

A closer look at spatial dimensions

7

/X7x1 image

3x3x1 filter w
7 stride S=3

39

Spatial dimensions

A closer look at spatial dimensions

7

/X7x1 image

3x3x1 filter w
7 stride S=3

doesn’t fit!
cannot apply 3x3x1 filter on
7x7x1 1mage with stride 3

40

Spatial dimensions

A closer look at spatial dimensions

7

/X7x1 image

3x3x1 filter w
7 stride S=3

‘)

41

Spatial dimensions

A Add zero padding around the border

O 0O 0Ol o000 | o|lo| ©o| ©

OO0 0|O0|O

o |l alolalole e la

/X7x1 image

3x3x1 filter w
stride S=3
padding = 1

= 3x3 output

activation
map

42

Spatial dimensions

Q Spatial dimension of the output [-F+2P "

I S
IXIxd input
F FxFxd filter w
F L stride s
padding P

Q If width 1,4, and height I, Of the input differ, this
formula is applied independently for I g, and Ipeignt -

1

43

Back to convolutional layer

For example, if we use 6 5x5x3 filters, we’'ll get 6 separate activation maps:

activation maps

v 4

28
Convolution Layer
A
S—
We stack these up to get a “new image” of size 28x28x6!
[-F+2P o | 32-5+2-0
+1 Spatial dimension: +1=28

Y 1

44

Deep Convolutional Networks CNNs

= CNNs have much fewer connections to the previous layer (and
therefore parameters)

= Inductive bias towards spatial patterns.

= Convolutions allow us to learn spatial filters that are a applied
everywhere in the image

= the result is equivariant to translation.

= CNNs typically have more than five hidden layers (a number of
layers which makes fully-connected neural networks almost
impossible to train properly when initialized randomly)

LeNet, 1998 LeCun Y, Bottou L, Bengio Y, Haffner P: Gradient-Based Learning Applied to
Document Recognition, Proceedings of the IEEE 1998

AlexNet, 2012 Krizhevsky A, Sutskever I, Hinton G: ImageNet Classification with Deep
Convolutional Neural Networks, NIPS 2012

45

Convolutional layers in Code

from tensorflow import keras

Build a simple model that takes a 32x32 RGB 1im
img _input = keras.Input(shape=(32, 32, 3))

create a convolutional layer as an object
conv_layer = Kkeras.layers.Conv2D(n_channels,
filter width, activation=activation fn,
padding={‘valid’, ‘same},

strides=(x_stride, y stride))

Pass the image through the convolution

img output = conv_layer(img_input)

Create a model (using the keras functional API)
model = keras.Model(img 1input, 1img output)

46

Convolutional layer: summary

[Accepts an input of size IxIxd Often in practice:

0 Requires four specifications: 5 IS gogerl OI‘; 2,1 €.g. 32, 64, 128
. N.umbe'r of filters K F=5 5=1 p=2
" Filter size FxFxd F = 5, S=2, P is set accordingly
» The stride S F=1,5=1, P=0
= Padding P | I_Faop

3 Outputs a volume of size OxOxK, where O = 5 +1

A In the output volume, the i-th activation map is the result of a
convolution of the i-th filter over the input with a stride S and
padding P.

O Local connectivity and parameter sharing:

each convolutional layer has (FxFxd)xK weight parameters to be
learned (the fully connected layer would have IxIxdxOxOxK par.)

47

Convolutional layer: summary

[Convolutions are interesting for a number of reasons

A They are are trivial to parallelise, each output pixel is
independent of the others. This is why they can be made to
run very fast on GPUs.

[Because they only perform operations in a local
neighbourhood they require far fewer parameters than a full
matrix multiplication. E.g. convolutional layer has (FxFxd)xK
weight parameters to be learned (the fully connected layer
would have IXIxdxOxOxK par.)

O Convolutions can be thought of as a big matrix multiplication,
but where the matrix has lots of Os and repeating patterns.

48

Deep Convolutional Networks

\M Convolutional layer

@ Non-linear activation function (ReLU)
O Max pooling layer

Q Fully connected layer

49

Non-linearities

O Why do we need non-linear activation functions?
O Where do they go?

50

Where are the non-linearities?

RELU RELU RELU RELU RELU RELU

CONV lCONVl CONV lCONVl CONV lCONVl FC

bbb b

= || - ==
= |- | [frlick
. § : - E -alréplane
= - —— (Ship
1=l= | ﬂ L orse
- = e =

Where is ReLU?

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with
activation functions

32 28 24
CONYV, CONV, CONV,
RelLU RelLU RelLU
e.g. 6 e.g. 10
SXbX3 5x5x6
32 filters 28 filters 24
3 S=1,P=0 6 S=1,P=0 10

52

A Non-linear activation function are applied per-element

Rectified Linear Unit, RelLU

O Rectified linear unit (ReLU):

max(0,x)

makes learning faster (in practice x6)

avoids saturation issues (unlike sigmoid, tanh)
simplifies training with backpropagation

preferred option (works well)

tanh(x)

Other examples:

tanh(x)

0 5
X

53

[Activation functions: extra]

O State-of-the-art

.....................

Leaky RelLU
f(z) = max(0.01z, z)
Parametric Rectifier (PReLU)
f(z) = max(az, x)

[Mass et al., 2013]
[He et al., 2015]

f(x)

Exponential Linear Units (ELU)

[Clevert et al., 2015]

54

Activations Code

from tensorflow import keras

Build a simple model that takes a 32x32 RGB 1im
img _input = keras.Input(shape=(32, 32, 3))

create a convolutional layer and pass the image
convl op = keras.layers.Conv2D(..,
activation="relu’) (img_1input)

you can also create a keras activation layer
keras.layers.Activation(‘relu’)

Create a model (using the keras functional API)

model = keras.Model(img 1input, resid op)

95

Deep Convolutional Networks

\M Convolutional layer

\M Non-linear activation function RelLU
\\21 Max pooling layer

Q Fully connected layer

56

Dimensionality

O As we apply convolutional filters we increase the number of nhumbers at
each pixel.

O This means we are increasing the dimensionality (complexity) of our already
high dimensional data!

O What could we do to reduce the dimensionality?

Y

Where is the pooling?

RELU RELU RELU RELU RELU RELU

CONVlCONVl CONVlCONVl CONVlCONVl FC

. R 'y l

o = - B -l
1=1l= | |]
= = = Imle car
? = i . |- Iﬁ! truck
Al - g il o Nl =
g == ;‘f = a dliplane
B > B = Ship
= =|m|= |l =l |=|=h
ZlEl= 4o

Two more layers to go: pooling and fully connected layers ©

Spatial pooling

d Pooling layer:
O Makes the representations smaller (downsampling)

O Operates over each activation map (channel) independently
O Role: invariance to small geometric transformations (i.e. translations)

O Reduces the effects of noise by keeping the strongest signals

224x224x64
112x112x64

pool

o

|

P
downsampling
112

224

224

59

Max pooling

Single activation map

A

11112 4

max pool with 2x2 filters
5 6|7 |8 and stride 2 6 | 8
3/2(1]0 3|4
112 (3] 4

d Alternatives:
= Sum/average pooling
= overlapping pooling

60

Pooling Code

from tensorflow import keras

Build a simple model that takes a 32x32 RGB 1im
img _input = keras.Input(shape=(32, 32, 3))

create a convolutional layer and pass the 1image

convl op = keras.layers.Conv2D(..,
activation=‘relu’) (img_input)
make a max pool layer

max_pooled op =
keras.layers.MaxPool2D(pool size=(2,2),
strides=(1,1)) (convl op)

Create a model (using the keras functional API)
model = keras.Model(img 1input, max pooled op)

61

Deep Convolutional Networks

\M Convolutional layer

\M Non-linear activation function RelLU
\Q Max pooling layer

Q Fully connected layer

62

Where is a fully connected layer?

RELU RELU RELU RELU RELU RELU

CONV lCONVl CONV lCONVl CONV lCONVl FC

bbb b

= || - ==
= |- | [frlick
. § : - E -alréplane
= - —— (Ship
1=l= | ﬂ L orse
- = e =

Fully connected layer

Each neuron is connected to the entire set of input neurons, as in
ordinary Neural Networks or Multilayer Pereceptron.

Output layer

Hidden layer

Hidden layer

64

Fully connected layer

= Each hidden neuron is a linear combination of the input layers

neurons...
= This means we can define fully connected layers using matrix
multiplication, just like in linear regression

= To make it more complex the output of this linear combination is put
through a non-linear (activation) function.

= O=f(iW+b)

= Neurons between two adjacent layers are fully pairwise connected,
but neurons within a single layer share no connections

65

Output layer

In classification problems:

= the output layer is often fully connected with number of neurons
equal to number of classes

= followed by softmax non-linear activation, this means the sum of the
ouput neurons sums to 1.

Pr(classl) Pr(class2) Pr(class3)

Output layer

Last hidden layer

66

Fully Connected Code

from tensorflow import keras

Build a simple model that takes a 32x32 RGB 1im
img _input = keras.Input(shape=(32, 32, 3))

create a convolutional layer and pass the image

convl op = keras.layers.Conv2D(..,
activation=‘relu’) (img_input)
make a max pool layer

max_pooled op =
keras.layers.MaxPool2D(pool size=(2,2),
strides=(1,1)) (convl op)

model op = keras.layers.Dense(no _op_units,
activation="softmax’) (max_pooled op)

Create a model (using the keras functional API)
model = keras.Model(img 1input, model op)

67

Do we need fully connected layers?

« Fully connected (or dense) layers allow every neuron in an input
layer to influence a neuron in the output layer.

This means the neuron has a global “receptive field” and all
the information can be used to make predictions.

It also means the input images must all be the same size,
otherwise the matrix dimensions will not match.

« Convolutional neural networks can exist without fully connected
layers, which means they can operate on images with variable
resolutions.

Such networks are referred to as fully convolutional.

Each output neuron will have a more local receptive field, as
information is not shared across the whole image.

The models are typically used for tasks where spatial
resolution is important, such as segmentation.

68

Take Home Messages

O Understanding the structure of convolutional neural networks
A Convolutional layer
O Relu
O Max pooling layer
Q Fully connected layer
0 How to compute spatial dimensions
O How to compute number of parameters

69

A Convolutional Neural Networks provide a flexible approach to
build very deep neural networks.

O Convolutions learn function that look at a neighbourhood of pixels, only
suitable for spatial / spatiotemporal data

O CNNs often use max pooling, and fully-connected layers to solve tasks

O Next time we'll talk about some more details for how to learn the parameters of
these models.

70

