Week 9b:

Deep Learning
and
Convolutional Neural Networks

G6061: Fundamentals of Machine Learning [23/24]

US

UNIVERSITY
OF SUSSEX

Dr. Johanna Senk



Learning Objectives

[ Be able to select appropriate losses to use neural
networks to solve particular tasks

d Know some approaches to train effective deep neural
networks




O Providing supervision
A Mean squared error
O Binary Cross-entropy
d Training Deep Convolutional Neural Networks
O Stochastic gradient descent
O Backpropagation
O Training
d Preventing overfitting
O Dropout and other regularizations
O Data augmentation

[ Feature extraction and Fine-tuning

A Visualization of CNNs
A Neural Style Transfer




Loss Functions

O Mean Squared error
O Binary Cross-entropy



Loss Functions

d An important thing to remember about Neural networks is that
the architecture (set of layers) only defines the flow of
information through the system.

A In order to learn any useful values for the parameters of these
layers, we need to ask it to achieve a task.

d We specify the task by providing a loss function on our model
output.

A In supervised learning scenarios, this loss function measures
the difference between the model’s predictions given the
input and the labelled data.



Continuous Predictions

A What kind of task involves predicting continuous values?
O What loss function can we use for this?



Mean Squared Error

[ As we've seen for regression type tasks, the squared residual
error: (f(x) — f(x))? is a useful function to minimize.

A This loss is often used in deep learning for predicting continuous
values.

A It's sometimes referred to as the MSE (mean squared error)
or L2

from tensorflow import keras

model = keras.Model(...)

Model.compile(..,
loss=(keras.losses.MeanSquaredError))



Discrete Predictions

A What kind of task involves predicting discrete values?
O What loss function can we use for this?



Binary Cross-Entror

A In classification tasks, we need to use an alternative loss function
to account for the discrete nature of the data.

A Binary classification labels follow a Bernoulli distribution
QF @/~ f)T

A In binary classification, we try to maximise the log probability for
predicting the correct class.

A This loss function is called the Binary Cross Entropy.

Q @) log (f()) + (1 — £()) log (1 — F(x))



Binary Cross-Entror

A This loss function can be calculated either before/after sigmoid,
and it's worth checking what the framework you're using expects.

from tensorflow import keras

# We need a model that only contains a single
value as the output

model = keras.Model(...)

Model.compile(..,
loss=(keras.losses.BinaryCrossEntropy))

10



Cateqgorical Cross-Entror

O When you're predicting between more than 2 classes, you need
to use the Categorical Cross Entropy.

A Labels follow a categorical distribution

A This assumes your model predicts a probability for each of the
classes

A to ensure the probabilities sum to 1 we use a softrmax
activation function after the final layer.

A Note that the training data often needs to be converted to a 1-
hot encoding. E.g. instead of saying this image is class 2, we
have a binary vector[O0, 0O, 1]

from tensorflow import keras

# We need a model that outputs a vector of class
probabilities

model = keras.Model(...)

Model.compile(..,
loss=(keras.losses.CategoricalCrossEntropy)) 11



Multiple Losses

A It's quite common for your model to want to make multiple
predictions of different types of data.

A This is referred to as multi-task learning

A You need to assign a weight (importance) to the model solving
each of these tasks

from tensorflow import keras

# We need a model that outputs a vector of class
probabilities

model = keras.Model(...)

Model.compile(..,
loss=(keras.losses.CategoricalCrossEntropy,

keras.losses.MeanSquaredError), loss weights=(0.5,
10.0))

12



Losses

0 The idea of losses is fundamental to neural network models.

A To learn a model for a different type of task, we need to choose
the right loss.

A You can use losses to make your model self-, semi-, or weakly
supervised.

d As well as losses, you can also print metrics, these are useful
measures of performance that you perhaps cannot directly
optimize for

model.compile(..,
metrics=["sparse categorical accuracy"])

13



Training CNNs

O Stochastic gradient descent
O Backpropagation
O Training

14



Stochastic gradient descent (SGD

(Mini-batch) SGD

Initialize the parameters
Loop over the whole training data (multiple times):
d Sample a datapoint (a batch of data)

O Forward propagate the data through the network, compute
the classification loss.

O Backpropagate the gradient of the loss w.r.t. parameters
through the network

O Update the parameters using the gradient

15



Stochastic gradient descent (SGD

(Mini-batch) SGD

Initialize the parameters randomly but smartly
Loop over the whole training data (multiple times):
d Sample a datapoint (a batch of data)

O Forward propagate the data through the network, compute
[l . [l : 1
the classification loss. For example: . _ > Voo = Youe )

O Backpropagate the gradient of the loss w.r.t. parameters
through the network

O Update the parameters using the gradient

SGD: w™=w' —a-d—E(w’)
dw

16



SGD Code

A You need to specify which SGD type optimizer to use
A Very importantly, you also need to choose the learning rate!

d This can make a huge difference to whether your model
learns anything useful or not!

from tensorflow import keras
model = keras.Model(..)

Model.compile(.., loss=¢(..)
optimizer=keras.optimizers.Adam(learning rate=0.001

)

17



O Backpropagation is recursive application of the chain rule along a
computational flow of the network to compute gradients of the
loss function w.r.t. all parameters/intermediate variables/inputs in
the network

18



O Implementations typically maintain a modular structure, where the
nodes/bricks implement the forward and backward procedures

Sequential brick

B =

Propagation

“Apply propagation rule to B4, By, Bs, ..., By.-
Back-propagation

“Apply back-propagation rule to By, ..., B3, B>, B;.

19



Q Last layer used for classification

Square loss brick

Propagation

1
:M Ty
2
y
d

Back-propagation

OF OF
O (v — AT ZE — (v _ AT
T2 (x—d) 3y (x—d)

20



O Typical choices

Loss bricks

Square y =%(x—d)2

y =log(1+ e™%%)
y = max(0,m —cx)
LogSoftMax y =log(}, e*k) —x,

MaxMargin y = [r,?gé({xk + m} — xc]

aE_ _ Ta_E
—=(x-d) %

0x
OF _ _—c_OF

dx  1+e* dy

OE OE
Friai [{cx <m}@

a_E —_ X xk _ a_E
axL = (e¥s /T e — 85) 5

9E] 9E
[515 = (8 = O5c) HE > 0} 5

21



Q Fully connected layers, convolutional layers (dot product)

Linear brick

Propagation

y=Wx

Back-propagation

OF _OF
w dx 0y
0FE 0E

22



@ Non-linear activations

Activation function brick

Propagation

Vs = f(xs)
Back-propagation

= - 3—5] F(xs)

23



Q Typical non-linear activations

Activation functions

1 [OE] [OE] 1
Sigmoid Vs = The*s lox] - _5_8 (1+eXs)(1+e~%s)
Tanh Yy, = tanh(x;) g—i . = Z—i . COS:IZ o
RelLu ¥, = max(0, x,) :Z—i:s = :Z—i:s [{x; > 0}
Ramp y, = min(—1,max(1, x)) g_is - g_is =l = ot L

24



Recap: RelLU

A Non-linear activation function are applied per-element

[ Rectified linear unit (ReLU):

= max(0,x)

= makes learning faster (in practice x6)

= avoids saturation issues (unlike sigmoid, tanh)
= simplifies training with backpropagation

= preferred option (works well)

Other examples:

tanh(x)

tanh(x)
[=]

-5 0 5

25



A Saturation of the gradient of logistic sigmoid ?

: "-" S i /

= = I

< - . “-/;
O0F B Odo OF

OF //
9x Oz Oo do F b g e s g

—10 -5 5 10

What happens when x = -107?
What happens when x = 07
What happens when x = 107?

JdO
Hint 1: Think about the gradient ax

26



A Saturation of the gradient of logistic sigmoid ?

1 " "
—10 -5 5 10

What happens when x = -107?
What happens when x = 07
What happens when x = 107?

Hint 2: 299 - ag(x)(1- o(x))

ax

27



A Saturation of the gradient of ReLU max(0,x) ?

O0E _ 0o OE %
dxr Oz Oo oo

What happens when x = -107?
What happens when x = 07
What happens when x = 107?

28



A Saturation of the gradient of ReLU max(0,x) ?

O0E _ 0o OE %
dxr Oz Oo oo

What happens when x = -107?
What happens when x = 07
What happens when x = 107?

= gradient does not saturate in positive region (x>0)
=  what happens when x<=0 ?

29



A Saturation of the gradient of ReLU max(0,x) ?

O0E _ 0o OE %
dxr Oz Oo oo

What happens when x = -107?
What happens when x = 07
What happens when x = 107?

= gradient does not saturate in positive region (x>0)
= gradient is 0 when x<0, so ReLU “dies” ?

30



A Saturation of the gradient of ReLU max(0,x) ?

O0E _ 0o OE %
dxr Oz Oo oo

What happens when x = -107?
What happens when x = 07
What happens when x = 107?

= gradient does not saturate in positive region (x>0)
= gradient is 0 when x<0, so ReLU “dies”
Good that we have many data points, so it can come back “alive”

31



A Saturation of the gradient of ReLU max(0,x) ?

O0E _ 0o OE %
dxr Oz Oo oo

What happens when x = -107?
What happens when x = 07
What happens when x = 107?

= gradient does not saturate in positive region (x>0)
= gradient is 0 when x<0, so ReLU “dies”
= what happens to gradient when x=07?

32



Subgradient

O RelLU gradient is not defined at x=0, use a subgradient instead
A

Omax(0,x) =1

0max(0,x) =0

0:max(0,z) € [0,1]

O Practice note: during training, when a ‘kink’ point was crossed, the
numerical gradient will not be exact.

33



[Leaky RelLU: extra]

A In practice, people like to use Leaky RelLU, f(x) = max(0.01x, x)
to avoid saturation of the gradient and this ReLU will not “die”

Leaky ReLU
f(z) = max(0.01z, x)

34



Stochastic gradient descent
\M Backpropagation
O Training

35



Traininc

A Initialization of the (filter) weights

don't initialize with zero
don't initialize with the same value
sample from uniform distribution U[-b,b] around zero or from Normal distribution

d Decay of the learning rate o

as we get closer to the optimum, take smaller update steps JdE
start with large learning rate (e.g. 0.1) wl=w—a- —(w")
maintain until validation error stops improving dw

divide learning rate by 2 and go back to previous step

36



Traininc

O Data preprocessing: normalization/standardization

original data zero-centered data normalized data

O Inimages you might:

O Subtract the mean of RGB intensities of the whole dataset
from each pixel

O Scale between -1 and 1.
O Crop/resize the images.
Q It's also important to shuffle your training data.

37



Fitting Code

A You need to have your data in the right format (check
documentation)

from tensorflow import keras

model = keras.Model(..)

model.compile(...)

model.fit(input _data, label data, epochs=1)

38



Preventing overfitting

O Dropout regularization
O Data augmentation

39



-
O
)

(O

N
g
O

-

O
Y

d
-
o
Q.
o
-

o
C

O

—
©

N
| -

©
)
(@)
)

Y

0
o
®
S

o
| -
=

O
)

<

e

C
@
| -
O
N
@)
P
0
c
o
|
S
)
c
O
-
@)
N

e
O
N

=
&
@)

Lo
c
©

lr

ith probability 0.5)

(w

%

R0
(/

¢

.\
-y

[Srivastava et al., 2014]

(b) After applying dropout.

(a) Standard Neural Net

40



Reqgularization

Regqularization: Dropout

“‘randomly set some neurons to zero in the forward pass”
(with probability 0.5)

(a) Standard Neural Net (b) After applying dropout. [Srivastava et al., 2014]

O The neurons which are “dropped out” do not contribute to the forward pass
and do not participate in backpropagation.

O So every time an input is presented, the neural network samples different
architecture, but all these architectures share weights. 4



Reqgularization

Regqularization: Dropout

“‘randomly set some neurons to zero in the forward pass”
(with probability 0.5)

(a) Standard Neural Net (b) After applying dropout. [Srivastava et al., 2014]

O Dropout could be seen as training a large ensemble of models (each model
gets trained on one datapoint or on a batch of data)
42



Reqgularization

Regqularization: Dropout

“‘randomly set some neurons to zero in the forward pass”
(with probability 0.5)

(a) Standard Neural Net (b) After applying dropout. [Srivastava et al., 2014]

O Dropout could be seen as training a large ensemble of models (each model
gets trained on one datapoint or on a batch of data)

O At test time, use average predictions over all models (weighted with 0.5) 43



Dropout: set the output of each hidden neuron to zero w.p. 0.5.

= This technique reduces complex co-adaptations of neurons, since a
neuron cannot rely on the presence of particular other neurons.

= [t is, therefore, forced to learn more robust features that are useful in
conjunction with many different random subsets of the other neurons.

=  Without dropout, CNNs exhibits substantial overfitting.

= Dropout roughly doubles the number of iterations required to converge.

Alternatives:

standard L, regularization of weights

44



BatchNormalizaton

Batch Normalization is a fairly recent (2015) approach to improve the
training speed and performance of convolutional neural networks.

The basic idea is to calculate the mean and variance of each neural
activation map (channel) in a mini-batch.

We then subtract the batch-wise mean and divide by the batch-wise
standard deviation.

We can optionally then apply a new translation and scaling to the data,
which is learned.

BatchNorm layers are typically applied after every set of convolutions.
BatchNorm (amongst other recent deep learning approaches) has been
referred to as alchemy! It's taken several years to try and understand why
it works, although it does seem to be quite effective!

45



Data Augmentation

The easiest and most common method to reduce overfitting on image
data is to artificially enlarge the dataset using superV|5|on preservmg
transformations. | -

Forms of data augmentation:
= horizontal reflections
= random crop
= changing RGB intensities

= image translation




Feature extraction & Fine-tuning



Feature extraction

1. Use AlexNet architecture pre- 2. Extract features (from the fc6 or fc7 layer)
trained on ImageNet using your own data and train a classifier

N\

ImageNet data

J Donahue et al, DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition, ICML 2014 48



Feature extraction

Outdoor-Man-Made
SRS PN . QOutdoor-Natural
Wiy Outdoor-Both
Indoor

AlexNet fc6 features (trained on ImageNet) generalize to SUN-397 scene dataset
when considering semantic groupings of labels
J Donahue et al, DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition, ICML 2014 49



1. Train on ImageNet 2. Finetune network on

your own data

N\

ImageNet data

your
data

50



Take Home Messages

A Understanding training and testing of convolutional neural networks
A How to prevent overfitting in CNNs

A Visualizing CNNs

68




Credits

Many of the pictures, results, and other materials are taken from:
Ruslan Salakhutdinov
Joshua Bengio
Geoffrey Hinton
Yann LeCun
Barnabas Poczos
Aarti Singh
Fei-Fei Li
Andrej Karpathy
Justin Johnson
Rob Fergus
Adriana Kovashka
Leon Bottou

69



Appendix

Fast-forward to today: ConvNets are everywhere

Classification Retrieval

amphibian
fireboat
drilling platform

agaric

mushroom 'ZBTd-r monkey
pickup jelly fungus titi
beach wagen gill fungus dshire bullterrier indri

fire engine || dead-man's-fingers currant howler monkey e gk BT o et - "_':.':‘-' i o \ile ) ) Lo

[Krizhevsky 2012]

70



Appendix

Fast-forward to today: ConvNets are everywhere

[Faster R-CNN: Ren, He, Girshick, Sun 2015] [Farabet et al., 2012]

71



Appendix

Fast-forward to today: ConvNets are everywhere

&
El\A S
"1 |I. J E
— \
= ¥ |
wml Ao
# rn' \ L
sl /B
(TH] )
o
C1: M2: 3 L4: L5: LB: F7: F&
Calista_Flockhart_0002.jpg Frontalization 32x11x11x3 EPSEREER) 16x9%9%32 16x9x9x16 16x7xTnle  16x5x5x16 4096d 4030d

Detection & Localization @152X152x3 @142x142 @71x71 6363 ({55055 @25x25 @21x21

Spat'i'a'i stream ConvNet

conv1 || conv2 || conv3 || convd || convs fulleé full? ||softma: X
TxTx96 ||5x5x256 || 3x3x512 || 3x3x512 || 3x3x512 || 4096 2048
siride 2 || sfride 2 || stride 1 sfride 1 || stride 1 || dropout (| dropout

norm. nonm. pool 2x2
pool 2x2 || pool 2x2 class
score
Temporal stream ConvNet [esion
conv1 || conv2 || conv3 || convd || conv5 || fullé full?7 ||softmax |_a

4096 2048
dropout || dropout

Tx7x96 || 5x5x256 || 3x3x512 || 3x3x512 || 3x3x512

stride 2 || stride 2 || stride 1 || sfride 1 || stride 1
norm. || pool 2x2 pool 2x2

pool 2x2

[Simonyan et al. 2014]

[Goodfellow 2014]

72



Image
Captioning

A person riding a A skateboarder does a trick
motorcycle on a dirt road. on a ramp. frisbee.

enainh

A group of young people Two hockey players are fighting A little girl in a pink hat is

playing a game of frisbee, over the puck. blawing bubbles. A Teirigersior [iNed witkh Jois Of

food and drinks.

A herd of elephants walking A close up of a cat laying A red motorcycle parked on the A yellow school bus parked in  [Vinyals et al., 2015]
across a dry grass field. on a couch. side of the road. a parking lot.

73



Appendix

Fast-forward to today: ConvNets are everywhere

[Mnih 2013]

74



Appendix

Fast-forward to today: ConvNets are everywhere

[Ciresan et al. 2013] [Sermanet et al. 2011]
[Ciresan et al.]

75



2X
5
-
o,
Q
Q
<C

reddit.com/r/deepdream




Appendix

] Resources

L Deep Learning course at Stanford:
http://cs231n.stanford.edu/syllabus.html

[ Course at Universite de Sherbrooke:
http://info.usherbrooke.ca/hlarochelle/neural networks/content.html

L Deep Learning summer school 2015:
http://videolectures.net/deeplearning2015 montreal/

(1 Deep learning resources:
http://deeplearning.net/

77


http://cs231n.stanford.edu/syllabus.html
http://info.usherbrooke.ca/hlarochelle/neural_networks/content.html
http://videolectures.net/deeplearning2015_montreal/
http://deeplearning.net/

