
WEEK 2

OBJECT ORIENTED

PROGRAMMING (OOP)

What is object?
How does this relate to programming?

For example, Human object:

Human data

Height

Weight

Gender

Eye color

Hair color

Human functions

Sleep

Wake up

Eat

Jump

Walk

The properties of an object are data/variables;

and the things an object can do are functions.

It is exactly what we use for programming.

I am a human object.
You are a human object.

In the world of Object-Oriented Programming,

we are created by a human template (Class)

EXAMPLE 1A NON-OOP CAR

What if i want to create many cars?

OBJECT-ORIENTED PROGRAMMING
- Object-oriented programming (OOP): a programming
paradigm based on the concept of objects, which may
contain

- data, in the form of fields, often known as
attributes; and

- code, in the form of procedures, often known as
methods

CLASS AND OBJECT
- A class: a group of related methods (functions) and
fields (variables and constants)

- Your customised data type

- Objects are instances of classes

- Variables of classes

CLASS DEFINITION
- All classes must include four elements:

- class Name — syntax “class ClassName”.

- Follow variable naming rules

- Traditionally capitalized (to
distinguish them from variable names,
which traditionally are lowercase)

- Attributes — a collection of variables

- Often referred to as instance variables
since each instance of an object
contains this set of variables

- Constructor — a special function inside
of a class

- For creating the instance of the object

- Always has the same name as the class,
with no return type	

- Can have multiple constructors (example
and Example 1D)

- Methods — a collection of functions

https://processing.org/examples/multipleconstructors.html

CREATE INSTANCES OF A CLASS
1.Declare an instance name of a

particular class

2. Construct the instance using the

new operator

class Car {

 // Variables.

 color c;

 float xpos;

 float ypos;

 float xspeed;

 // A constructor

 Car() {

 c = color(175);

 xpos = width/2;

 ypos = height/2;

 xspeed = 1;

 }

 // Function

 void display() {

 rectMode(CENTER);

 stroke(0);

 fill(c);

 rect(xpos, ypos, 20, 10);

 }

 // Function

 void move() {

 xpos = xpos + xspeed;

 if (xpos > width) {

 xpos = 0;

 }

 }

}

// Declare an instance of car object

Car myCar;

// It currently holds a special value called null

// Construct an instance via new operator

myCar = new Car();

// You can Declare and Construct in the same statement

Car myCar2 = new Car();

DOT (.) OPERATOR
-To reference a member variable or method

-anInstance.aVariable: anInstance’s aVariable

-anInstance.aMethod(): anInstance’s aMethod()

-Example

- Calling move() or display without the instance is
meaningless

Car myCar = new car();

// Reference member variables for instance myCar via dot operator

myCar.c = color(255, 0, 0);

myCar.xspeed = 2.0;

// Invoke member methods for the instance myCar via dot operator

myCar.move();

myCar.display();

EXAMPLE 1B OOP CAR
// From Learning Processing 2nd

// Edition by Daniel Shiffman

// Example 8-1: A Car class and a Car object

// Declare an instance of car object

// as a global variable

Car myCar;

void setup() {

 size(480, 270);

 // Construct an car object in setup()

 // by calling the constructor

 myCar = new Car();

}

void draw() {

 background(255);

 // Operate Car object in draw() by calling

 // object methods using the dot operator

 myCar.move();

 myCar.display();

}

// Define a class outside of setup and draw

class Car {

 // Variables

 color c;

 float xpos;

 float ypos;

 float xspeed;

 // A constructor

 Car() {

 c = color(175);

 xpos = width/2;

 ypos = height/2;

 xspeed = 1;

 }

 // Function

 void display() {

 rectMode(CENTER);

 stroke(0);

 fill(c);

 rect(xpos, ypos, 20, 10);

 }

 // Function

 void move() {

 xpos = xpos + xspeed;

 if (xpos > width) {

 xpos = 0;

 }

 }

}

MULTIPLE TABS
1. Create a new tab 2. Name the tab/file as the name of the class

3. New file “Car.pde” is created 4. Move (cut & paste) the class to the Car tab

-Class code can be in a
separate .pde file and
shown in a separate tab

-File name == Class name

MULTIPLE TABS

Step 1. Create a new tab

Step 2. Name the tab/file as the

 name of the class

Step 3. New file “Car.pde” is created

Step 4. Move (cut & paste) the class

 to the Car tab

EXAMPLE 1C TWO CARS

Each car has its
own color, x and y
positions and speed

Need to match the
datatype of each
parameter of the
constructor

EXAMPLE 1D MULTIPLE CONSTRUCTORS

EXERCISE 1
- Create a “Circle” class which consists of

- Attributes:

- Centre coordinates x and y, and

- Diameter dia

- A constructor

- A display() method

- Declare two instances of Circle objects

- Construct the two circles in setup() function

- Display the two circles in draw() function

EXAMPLE 1E MANY CARS

Declare an array of Car

Car[] myCars = new Car[num];

Construct each new car

using a for loop

Move and display each car

using a for loop again!

EXERCISE 2
- Based on Exercise 1 and Example 1E, create a sketch
with multiple circles using array (i.e. an array of
circle instances)

- Each circle should have a different position and size.

- (optional) Add a move() method to the Circle class so
that each circle can move within the display area at a
different speed.

EXAMPLE 1F ADD CARS WITH MOUSE

EXAMPLE 1F ADD CARS WITH MOUSE
- Create one car at a time with mouseClick

- Start with an empty array and use append() function to
expand the array by one position

- When using an array of objects, the data returned from
the function must be cast to the object array's data
type. For example:

SomeClass[] items =
(SomeClass[])append(originalArray, element)

- Use mouse to define the initial position of each car

- Allow users to control the direction and speed of each
car using the distance between the mouse-pressed and
mouse-released positions

- mousePressed() & mouseReleased()

- dist()

- use the map() function to re-map the distance to speed

- construct the car only when the mouse button is released

- Press any key to remove all cars

Reading/Resources
- https://processing.org/tutorials/objects

- Object-Oriented Programming - Processing Tutorial by
The Coding Train (Daniel Shiffman)

 https://youtube.com/playlist?list=PLRqwX-
V7Uu6bb7z2IJaTlzwzIg_5yvL4i

https://processing.org/tutorials/objects
https://youtube.com/playlist?list=PLRqwX-V7Uu6bb7z2IJaTlzwzIg_5yvL4i
https://youtube.com/playlist?list=PLRqwX-V7Uu6bb7z2IJaTlzwzIg_5yvL4i

