
WEEK 7
AMBIENT:

RANDOM, NOISE, MATHS

A genre of music that puts an emphasis on
tone and atmosphere over traditional
musical structure or rhythm.

"Ambient music must be able to accommodate
many levels of listening attention without
enforcing one in particular; it must be as
ignorable as it is interesting.”

- According to Brian Eno, one of its
pioneers

Music: Interstellar by Tamaki Tso

Ambient Music

https://tamakitso.bandcamp.com/track/interstellar

“…focused on the creation of a
representation of what might be termed the
‘mood’ of a place, and in the modifications
that occur as users interact indirectly
with the artefact.”
Beale, Russell. "Ambient art: information without attention." HCI
International. 11th International Conference on Human-Computer
Interaction, Las Vegas, Nevada, USA. 2005.

Ambient Art

Properties of Ambient Art

- No fixed end point, runs continuously

- Never static, constantly changing

- Does not require continual attention from
audience

- Seeks to create a mood / environment

- May explore relationships between
multiple senses, or modalities, e.g.,
sight/sound

Structure of Ambient Art

- Uses a dynamic or fluid structure, often
via mathematical functions, generative
systems, external data sources, or user
interaction

- Structure is not immediately recognizable,
but perceived subconsciously, or over
longer durations of time

- Maintains a loose mapping between data and
representation

- May explore emergent behavior to create
interest or surprise

Techniques for Ambient Art

- Randomness

- Mathematical functions: noise, sin/cos,
modulo

- Generative algorithms / systems, often
derived from natural systems: flocking/
schooling, automata, physical simulation,
evolutionary systems

- Emergent behaviors

let’s play follow the mouse…

Example 1a

Natural Motion

float x=0, y=0;

void setup() {
 size(400, 400);
}

void draw() {
 background(230);
 // now follow the mouse naturally
 x = lerp(x, mouseX, .05);
 y = lerp(y, mouseY, .05);
 ellipse(x, y, 30, 30);
}

// find a location between two numbers
lerp(0, 100, .1); // 10
lerp(0, 100, .2); // 20
lerp(0, 100, .9); ?
lerp(0, 100, 1); ?

lerp(start, stop, amt)

-Linear Interpolation

-calculates a number between
two numbers at a specific
increment

-amt: float between 0.0 and 1.0

Example 1b

What if we want the color
of our circle to change as
we near the mouse…

How can we tell when we are close?

Example 1c

 // dist() takes 2 points (x1, y1, x2, y2)

float d = dist(x, y, mouseX, mouseY);

- Use lerp() and dist() to move a circle
smoothly around the screen, from random
point to random point

- The circle’s color should gradually change,
getting brighter as it nears its
destination each time

- Start with Example 1c

Exercise 1

Example 1d

Random numbers: a series of numbers with no
perceptible pattern and no relationship
between them (independent of each other)

Perlin noise: a naturally ordered (i.e.,
“smooth”) sequence of random numbers
- Invented by Ken Perlin for producing
procedure textures

Random Numbers vs Perlin Noise

Random numbers
over time

Perlin noise
over time

Noise
Dimension

Raw Noise
(Grayscale) Use Case

1

Using noise as an offset to create
handwritten lines.

2

By applying a simple gradient, a
procedural fire texture can be created.

3

Perhaps the quintessential use of Perlin
noise today, terrain can be created with

caves and caverns using a modified
Perlin Noise implementation.

http://adrianb.io/2014/08/09/perlinnoise.html

Applications of Perlin Noise in different dimensions

http://adrianb.io/2014/08/09/perlinnoise.html

A virtual landscape An organic surface

Generated with Perlin noise...

float t = 0.0;

void draw() {
 float noisevalue = noise(t);
 println(noisevalue);

 t += 1;
// t += 0.01;
// t += 0.0001;
}

Perlin Noise in Processing

noise() function:
“a random sequence generator producing a more
natural ordered, harmonic succession of numbers
compared to the standard random() function…”

1D Perlin noise noise(t): a
linear sequence of values
(between 0 and 1) over time t

Example 2

Numbers move up and down
randomly but stay close to the
value of their predecessor

The smaller the increment, the
smoother the resulting noise
sequence

0 t

1

https://processing.org/reference/noise_.html
https://processing.org/reference/noise_.html

Perlin Noise in Processing

- The initial value of t doesn’t matter. What it matters is
the step size (i.e., the change to t).

- If we make large jumps in time, then we are skipping
ahead and the values will be more random.

- Steps of 0.005-0.03 work best for most applications

https://processing.org/reference/noise_.html

void setup() {
 size(400, 400);
}

void draw() {
 background(230);

 float x = random(0, width);
 line(x, 0, x, height);
}

float num = 0;

void setup() {
 size(400, 400);
}

void draw() {
 background(230);

 float x = noise(num) * width;
 line(x, 0, x, height);
 num = num + 0.01;
}

Natural Movement of Line
Random vs Noise

Example 3bExample 3a

Example 4

void draw() {
 fill(255, 32);
 rect(0, 0, width, height);

 stroke(0);

 float x = noise(num) * width;
 if (y > lastY)
 line(lastX, lastY, x, y);

 noStroke();
 fill(0, 32);
 ellipse(x, y, 15, 15);

 lastX = x;
 lastY = y;

 y = (y + 5) % height;
 num = num + 0.01;
}

(lastX, lastY)

(x, y)

Random Walk with Natural Motion

 x2 = x1 + random(-5, 5);
 y2 = y1 + random(-5, 5);

 x2 = (noise(t)) * width;
 y2 = (noise(t + 100)) * width;

Example 5a Example 5b

to avoid x2 always being equal to y2

Noise Space in Example 5b

0

1

t

 x2 = noise(t)* width;
 y2 = noise(t+100)* width;

100
Why does x2 start at 0 and y2 at 100? While these numbers are
arbitrary choices, we have very specifically initialized our two
time variables with different values. This is because the noise
function is deterministic (once it is initialized every time): it
gives you the same result for a specific time t each and every time.
If we ask for a noise value at the same time t for both x and y,
then x2 and y2 would always be equal, meaning that the Walker object
would only move along a diagonal. Instead, we simply use two
different parts of the noise space, starting at 0 for x2 and 100 for
y2 so that x2 and y2 can appear to act independently of each other.

Based on Exercise 2 Template, make the
square move (rotate and translate) more
smoothly by using noise().

Exercise 2

Example 6

- every parameter has its own noise space and
step size (update rate).

float t_x = 10, t_y = 20, t_r=30, t_g=40, t_b=50, t_a=60;

.

.

.

t_x += 0.005;
t_y += 0.005;
t_r += 0.01;
t_g += 0.005;
t_b += 0.005;
t_a += 0.0001;

Example 6

To use noise in multiple dimensions, we create
one variable for each dimension that starts at
some fixed number and increases by a small
amount each loop/frame.

float n1, n2;

void draw()
{
 background(230);

 float result = noise(n1, n2);
 ...
 n1 = n1 + 0.01;
 n2 = n2 + 0.02;
}

noise() in More
Dimensions

Body Level One
Body Level Two
Body Level Three
Body Level Four
Body Level Five

// lets draw points across the screen with noise

size(600, 400);

background(255);

float x = 0; // change with horizontal position
for (int i = 0; i < width; i++) {
 point(i, 150 + noise(x) * 200);
 x += 0.01;
}

Compare Example 7a & Example 7b

n oise() in More
Dimensions

noise() in More
Dimensions

float x = 0;
for (int i = 0; i < width; i++) {
 point(i, 150 + noise(x, y) * 200);
 x += 0.01;
}
y += 0.003; Example 7c & 7d

shape

time

