import platform import random import pandas as pd if platform.system() != 'Windows': import resource def dataTest(Data): datatest = Data() data = 'data/pima-indians-diabetes.csv' try: x_data,y_data = datatest.dataAllocation(data) print("dataAllocation Function Executed") except: print("Data not imported correctly") try: x_train, x_test, y_train, y_test = datatest.trainSets(x_data,y_data) print("trainSets Function Executed") except: print("Data not imported correctly") def linearTest(Data,LinearRegression): dataset = Data() linear = LinearRegression() data = 'data/pima-indians-diabetes.csv' x_data,y_data = dataset.dataAllocation(data) x_train, x_test, y_train, y_test = dataset.trainSets(x_data,y_data) try: y_predict_train, y_predict_test = linear.linearClassifier(x_train,x_test, y_train) print("linearClassifier Function Executed") except: print("Failed to execute linearClassifier()") try: print("Linear Regression Train Accuracy: ", linear.lgTrainAccuracy(y_train,y_predict_train)) except: print("Failed to execute lgTrainAccuracy()") try: print("Linear Regression Test Accuracy: ", linear.lgTestAccuracy(y_test,y_predict_test)) except: print("Failed to execute lgTestAccuracy()") def RandomForestTest(Data,RFClassifier): dataset = Data() rf = RFClassifier() data = 'data/pima-indians-diabetes.csv' x_data,y_data = dataset.dataAllocation(data) x_train, x_test, y_train, y_test = dataset.trainSets(x_data,y_data) try: rf_clf,y_predict_train, y_predict_test = rf.randomForestClassifier(x_train,x_test, y_train) print("randomForestClassifier Function Executed") except: print("Failed to execute randomForestClassifier()") try: print("Random Forest Train Accuracy: ",rf.rfTrainAccuracy(y_train,y_predict_train)) except: print("Failed to execute rfTrainAccuracy()") try: print("Random Forest Test Accuracy: ",rf.rfTestAccuracy(y_test,y_predict_test)) except: print("Failed to execute rfTrainAccuracy()") try: print("Random Forest Feature Importance: ",rf.rfFeatureImportance(rf_clf)) except: print("Failed to execute rfFeatureImportance()") try: print("Random Forest Sorted Feature Importance: ",rf.sortedRFFeatureImportanceIndicies(rf_clf)) except: print("Failed to execute sortedRFFeatureImportanceIndicies()") try: gscv_rfc = rf.hyperParameterTuning(rf_clf,x_train,y_train) print("HyperParameterTuning Function Executed") except: print("Failed to execute hyperParameterTuning()") #try: print("Random Forest Best Parameters: ",rf.bestParams(gscv_rfc)) #except: #print("Failed to execute bestParams()") try: print("Random Forest Best Score: ",rf.bestScore(gscv_rfc)) except: print("Failed to execute bestScore()") def SupportVectorMachineTest(Data,SupportVectorMachine): dataset = Data() svm = SupportVectorMachine() data = 'data/pima-indians-diabetes.csv' x_data,y_data = dataset.dataAllocation(data) x_train, x_test, y_train, y_test = dataset.trainSets(x_data,y_data) try: scaled_x_train, scaled_x_test = svm.dataPreProcess(x_train,x_test) print("dataPreProcess Function Executed") except: print("Failed to execute dataPreProcess()") try: y_predict_train,y_predict_test = svm.SVCClassifier(scaled_x_train,scaled_x_test, y_train) print("SVCClassifier Function Executed") except: print("Failed to execute SVCClassifier()") try: print("Support Vector Machine Trian Accuracy: ",svm.SVCTrainAccuracy(y_train,y_predict_train)) except: print("Failed to execute SVCTrainAccuracy()") try: print("Support Vector Machine Test Accuracy: ",svm.SVCTestAccuracy(y_test,y_predict_test)) except: print("Failed to execute SVCTestAccuracy()") try: svm_cv, best_score = svm.SVMBestScore(scaled_x_train, y_train) print("Support Vector Machine Best Score: ", best_score) except: print("Failed to execute SVMBestScore()") try: y_predict_train,y_predict_test = svm.SVCClassifierParam(svm_cv,scaled_x_train,scaled_x_test,y_train) print("SVCClassifierParam Function Executed") except: print("Failed to execute SVCClassifierParam()") try: print("Support Vector Machine Trian Accuracy: ",svm.svcTrainAccuracy(y_train,y_predict_train)) except: print("Failed to execute SVCTrainAccuracy()") try: print("Support Vector Machine Test Accuracy: ",svm.svcTestAccuracy(y_test,y_predict_test)) except: print("Failed to execute SVCTestAccuracy()") try: print("Support Vector Machine Rank Test Score: ",svm.SVMRankTestScore(svm_cv)) except: print("Failed to execute SVCTestAccuracy()") try: print("Support Vector Machine Mean Test Score: ",svm.SVMMeanTestScore(svm_cv)) except: print("Failed to execute SVCTestAccuracy()") def PCATest(Data,PCAClassifier): dataset = Data() pc = PCAClassifier() data = 'data/pima-indians-diabetes.csv' x_data,y_data = dataset.dataAllocation(data) #x_train, x_test, y_train, y_test = dataset.trainSets(x_data,y_data) try: pca = pc.pcaClassifier(x_data) print("pcaClassifier Function Executed") except: print("Failed to execute pcaClassifier()") try: print("PCA Explained Variance Ratio: ",pc.pcaExplainedVarianceRatio(pca)) except: print("Failed to execute pcaExplainedVarianceRatio()") try: print("PCA Singular Values: ",pc.pcaSingularValues(pca)) except: print("Failed to execute pcaSingularValues()")