import numpy as np from scipy.special import gamma from scipy.stats import norm import matplotlib.pyplot as plt np.random.RandomState(1) #Set the number of iterations n = 197 #Set the empty lists to hold the updated values for theta and tau for each variable (i.e 1,2) thetas1 = [] y = [] a = 35 b = 39 # start, initial values y0 = 0 theta1 = 0 for i in np.arange(1,n+1).reshape(-1): #Determine the value of updated value updatedTheta1 = np.random.beta(theta1+a,b, size=1)[0] p = updatedTheta1 / (2+updatedTheta1) updatedY0 = np.random.binomial(n, p, 1)[0] thetas1.append(updatedTheta1) theta1 = updatedTheta1 print(np.mean(thetas1)) n, bins, patches = plt.hist(x=thetas1,density=True, bins='auto', color='#0504aa',alpha=0.7, rwidth=0.85) #Produce the 97.5 to generate the 95% equitable set print(f"Our 95 percent equitable set is: {np.percentile(thetas1, [2.5,97.5])}")