{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "5600f60e", "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "import time\n", "import gc\n", "import random\n", "from sklearn.model_selection import cross_val_score, GridSearchCV, cross_validate, train_test_split\n", "from sklearn.metrics import accuracy_score, classification_report\n", "from sklearn.svm import SVC\n", "from sklearn.linear_model import LinearRegression\n", "from sklearn.neural_network import MLPClassifier\n", "from sklearn.ensemble import RandomForestClassifier\n", "from sklearn.preprocessing import StandardScaler, normalize\n", "from sklearn.decomposition import PCA\n", "from sklearn.impute import SimpleImputer\n", "\n", "df = pd.read_csv(\"data/pima-indians-diabetes.csv\")" ] }, { "cell_type": "code", "execution_count": 2, "id": "ba9ed7e8", "metadata": {}, "outputs": [], "source": [ "x_data = df.filter(regex='x\\d')\n", "y_data = df.filter(regex='y')" ] }, { "cell_type": "code", "execution_count": 3, "id": "4e150ff2", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | y | \n", "
---|---|
0 | \n", "1 | \n", "
1 | \n", "0 | \n", "
2 | \n", "1 | \n", "
3 | \n", "0 | \n", "
4 | \n", "1 | \n", "
... | \n", "... | \n", "
763 | \n", "0 | \n", "
764 | \n", "0 | \n", "
765 | \n", "0 | \n", "
766 | \n", "1 | \n", "
767 | \n", "0 | \n", "
768 rows × 1 columns
\n", "