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Introduction & Problem Definition 
   Established in 1835, the Chicago Police Department has 
existed longer than Chicago has been recognized as a city 
(Chicago Police Department - History). Over almost 2 centuries, 
the city of Chicago has created districts and built police stations 
in response to their growing population and expanding city 
bounds. With historical crime data now available for the city and 
given that the city has not expanded their boundaries since the 
1960’s (Population & Annexation), we believe there is a more 
sophisticated way of determining where Chicago’s police 
stations should be located.  
 
   We will use Chicago’s crime data to find ideal locations for 
their police stations. We intend to cluster the crime data to show 
the city’s predicted crime hotspots relative to where the existing 
police stations are. By visualizing the distance, we can clearly 
see if the existing stations are optimized to be in the center of 
the crime zones. We aim to give Chicago’s municipal 
government, urban planners and the Superintendent of Police 
a tool that will show them where they should consider placing 
police stations given the existing and predicted crime hotspots. 
By building stations closer to where crime occurs, they can 
deploy their forces in a more timely and efficient manner and in 
turn, reduce their overall crime rate. 
 
Literature Survey  
   Liberatore et al. introduce the objective of the Police 
Districting Problem (PDP) as the “optimal grouping of blocks 
into ‘homogeneous’ patrol sectors in such a way that all the 
territory is partitioned and that no sector is empty.” Our project 
objective is similar but we want group crime, not patrol sectors. 
This paper provides a generalized problem definition and 
references other literature to summarize possible approaches. 
It does not present a new solution of their own. 
 
   Chow et al. views PDP as an optimization problem and 
proposes using the maximum coverage and p-median 
approach as a way to minimize the distances and maximize the 
coverage of police stations over potential crime spots. This 
approach heavily relies on ward boundaries and other GIS input 
that are specific to the region they chose; thus, the solution 
cannot be extended beyond the chosen region.  
 
   Similarly, Curtin et al. also views PDP as an optimization 
problem but includes a geographic optimization approach, 
borrowing concepts from the Maximal Covering Location 
Problem where the objective is to maximize the number of calls 
covered by a fixed number of patrol areas that are limited to a 

specified size. It uses the number of calls as an estimate of 
officer workload and does not consider response time. It also 
assumes the number of patrol areas are known in advance, 
rather than provide feedback on how many patrol areas there 
should be. 
 
   De Gusmão et al. propose a solution to PDP that uses k-
means clustering. This solution closely aligns with our project 
objective and provides us with a framework we can use to 
evaluate the performance of our model. However, their solution 
input parameters were tailored specifically for Brazil and is not 
a scalable solution we can easily apply to other geographies.  
 
   Liao & Guo use an adapted k-means algorithm and frames 
PDP as a Capacitated Facility Location Problem where facilities 
are police stations and capacity is the number of police officers 
at a station. Their solution requires that all facilities be movable 
and swappable and that each demand has the same cost in 
capacity. In real life, this is not the case - police stations are 
not easily movable or swappable and the type of crime 
(demand) may require more than once police officer (capacity).  
 
   Hochstetler et al. also uses k-means to find crime hotspots 
on an hourly basis. They thoroughly explain issues with the data 
set (i.e. invalid coordinates, incomplete data), which gives us 
insight into what kind of issues we could encounter with our 
own data. They do not consider existing police departments 
and use real-time traffic data to calculate distance between 
crimes. This data is very hard and expensive to obtain.  
 
   Mitchell uses clustering to define police patrol areas (beats) 
for a city and compares his results with real police beats. The 
comparison between police and computer designed beats 
proved that computers outperform police officers in reducing 
travel distance. We can use a similar approach in our solution, 
comparing the algorithm results vs the existing locations of 
police stations. Mitchell’s solution, however, does not use 
longitude and latitude coordinates which are more precise and 
can likely yield better results.  
 
   D’Amico et al., used queuing models and simulation as part 
of their solution and provided a stochastic optimization method 
that could help inform our team’s approach. The objective of 
this paper, however, was to minimize workload disparity among 
policing districts and does not necessarily maximize response 
time or coverage as we aim to provide as part of our solution.  
 



   The machine learning application of predicting crime hotspots 
have been extensively reviewed with several works exploring 
ways to identify crime patterns and map crime density. A more 
modern approach to use deep learning and advanced analytics 
was discussed by Zhang et al. (2020), Kang et al. and Kennedy 
et al. The common approach was to use advanced techniques 
like Risk Terrain Modeling, Long Short-Term Memory Neural 
Networks and Deep Neural Networks to identify crime hotspots 
and used non-conventional data such as Google images and 
social, physical and behavioural aspects of neighbourhoods to 
create features for these models. Although these data sources 
can enhance the final results of our project, they do require a 
great deal of complexity in terms of data collection. The 
complexity of these advanced techniques also makes it difficult 
to explain our methodology to our potential stakeholders. 
 
   Zhang et al. (2010) & Garima & Alaid provide history and 
background on existing methods like spatial mining and k-
means clustering for crime spot detection. Garima & Alaid 
concluded that spatial clustering is indeed a useful method 
while Zhang et al. (2010) discussed its limitations and 
suggested new attribute-oriented clustering to overcome them. 
Both approaches are useful in providing us background 
information, however the real-world effectiveness of their 
methodologies is not measurable. Wang et al. introduces a 
solution that uses spatial mining and includes crime related 
factors using geospatial discriminative patterns to predict crime 
hotspots. They provide a heatmap which can be useful for our 
visualization but their methodology is very complex and difficult 
to scale. 
 
   Nath used k-means to identify crime patterns or crime sprees 
within a police jurisdiction. Some of the attributes used required 
crime analyst input and recommendations from subject matter 
experts on the importance of different attributes which is not 
possible in our application.  
 
   Zhu & Xie provided a novel approach using natural language 
processing to extract features from raw text in police data to 
identify crime patterns. Those features were then mapped to 
measure similarities among crimes and could predict if such 
crimes are being committed by the same criminals. This 
approach relies on clear, written descriptions of crime in order 
for us to accurately extract patterns from data. 
 
Proposed Method 
   In our proposed method, crime data is used in a novel 
weighted K-Means algorithm that takes user input into 
consideration as parameters to the algorithm. Our approach 
assumes that all locations within Chicago city bounds are 
available and that the crime location distribution stays constant 

over time. The user is able to select the number of desired 
police stations, specify the date range of the data used to 
create the clusters and assign weights to different crime types 
based on how important it is to have police present at the crime 
scene. They can also pin certain locations if there are locations 
they want to fix and have as part of the suggested police station 
list returned to them.  
 
Innovation #1 
   The ability for our solution to consider user input is unique 
among the solutions presented in our literature review; it allows 
our solution to be interactive and flexible based on the 
expertise of the person using it. The dynamic time frame 
selection also gives the user the ability to see what the locations 
would be like at different points in time, instead of static 
snapshots that the analyses in the papers we reviewed had 
given. Furthermore, the ability to apply weights to certain 
crimes types and pin locations were not explored in related 
works, making our solution truly innovative. 
 
   The user interface is a website built using React.js and the 
Mapbox library. Once the user sets their parameters, they are 
sent to a Flask app hosted on an EC2 instance in AWS. The 
Flask app runs the customized k-means algorithm using crime 
data housed in a MySQL database. Once completed, a list of 
latitude/longitude coordinates are passed to the front end and 
are rendered on the map.  
 
Innovation #2 
   By hosting our back-end in AWS, we can easily package our 
entire solution in a single EC2 instance and leverage the 
scalable computing power that it offers. Having the crime data 
stored in a MySQL database in the EC2 instance also makes it 
simple to add new data, making it possible to get a real time 
assessment of where crime hotspots are. 
 
User Interface 
   The final user interface can be seen in Figure 1 and Figure 2. 
In the settings menu under “Select Date Range”, the user can 
drag the pins to indicate which years of crime they want to use 
in the analysis. Under “Number of Departments”, the user can 
drag the pin to indicate how many police stations they want 
returned to them. By clicking “Set Crime Weights”, a pop-up 
menu appears where the user can drag and drop crime types 
into crime weight buckets based on how urgent police presence 
is required at the scene. Crimes not placed in buckets will not 
be considered in the analysis. The user can double click any 
point on the map and a purple pin will be placed, indicating that 
the location has been pinned. To unpin the location, the user 
can simply double click the purple pin the remove it. Once the 
user parameters have been sent, they can hit “Apply” to kick 



off the machine learning algorithm. The suggested locations will 
appear as the blue pins on the map. The user can hover over 
the pins to see its exact longitude/latitude coordinates. Under 
“Layers”, we’ve given the user options to toggle different map 
layers on or off. Users will have the option to see where existing 
police stations are located as red pins, the existing police 
district boundaries and the suggested district boundaries 
returned by the analysis. 
 

 
Figure 1: PLOCCK 

 

 
Figure 2: Crime Weight Menu in PLOCCK 

 
Experiments & Evaluation 
   For the purposes of this analysis, we assume that the 
Manhattan distance between a police station and reported 
crime scene is an accurate proxy for response time; the closer 
a police station is to the reported crime scene, the faster the 
police response time will be. We had initially used the Euclidean 
distance, but decided to use the Manhattan distance since city 
streets are typically organized in a grid. 
 
   Our key performance metric is the average distance of crime 
to the police station. Our solution will be successful if the 
average distance from crimes to our algorithm’s suggested 
police stations is lower than that of existing police stations. To 
find the average distance of crimes to the suggested police 

stations, we set the user parameters to use a sample size of 
almost 72,000 crimes (~1% of the crime data) from all years 
with equal crime weighting and returned 22 locations, the 
number of existing police stations. To find the average distance 
of crimes to existing police stations, we measured the distance 
between the crime location and the location of the police station 
of the ward in which the crime occurred. We assume that if the 
crime occurred in a certain ward, the police station in the same 
ward would dispatch an officer. Based on the average 
Manhattan distances calculated, the stations generated by 
PLOCCK reduce the average distance to crime by 27.2%, from 
2.4 km to 1.7 km. (See Figure 3) 
 

 
Figure 3: Difference in Average Manhattan Distance between 

PLOCCK and Existing Stations to Crime 
 
Testing the User Experience 
   In testing the user experience, we wanted to make sure that 
the results were returned in a reasonable amount of time; the 
less time a user is waiting for results, the better. We had run 
some preliminary tests with the MVP (minimum viable product) 
of our solution that allows for simple k-means clustering that 
uses an EMR instance in AWS. Using the EMR, the user would 
have to wait 2-3 minutes after selecting the number of clusters 
before seeing the results displayed on the map. In an attempt 
to return results faster, we tested a version of our solution 
where we did not use the EMR instance and ran the machine 
learning code directly in the EC2 instance. The second version 
was much faster (See Figure 4), but requires us to increase the 
RAM of the EC2 instance in order to accommodate the size of 
the data, which is around 7 million rows (See Figure 5). 
 



 
Figure 4: Run Time Comparison of EMR vs EC2 RAM 

EC2 RAM takes 1-2 seconds to return results when less than 1 
million records are used. No results were returned for the EC2 RAM 

using 10 million rows because of a memory error. 
 

 
Figure 5: Clustering Time using EC2 RAM 

Using more than 4 million rows results in a memory error. 
 
   At the time, we thought that we needed more time to set up 
a new EC2 instance with more memory and reconfigure all the 
connections to the front end. This would have also meant a 
significant increase in cost if we chose to do this. Using the 
results from our test that uses a sample of the crime data 
instead of using the entire data set (see “Testing the 
Algorithm”), we had determined that we didn’t have to increase 
the amount of data in order to pin locations or implement crime 
weights so we no longer had to consider memory issues when 
choosing between the two implementations.  
 
   When we tested our final algorithm using all the features 
(selecting the number of locations, selecting the start and end 
year, apply weights by crime type, and pinning locations) and a 
sample size of 100,000 appropriate data points, the EMR 
version took 218 seconds to run on average and the EC2 
instance only took 41 seconds (See Figure 6). Based on this 
difference, we decided to use the existing EC2 instance as it 
returns results 5 times faster than the EMR. 
 

 
Figure 5: Run Comparing Run Time and Years of Data Used between 

EC2 and EMR 
 
   Even though we chose the EC2 implementation for the 
purposes of this project, we wanted to extrapolate the run time 
data and see if choosing the EMR implementation would have 
been better at any point in time. Using first year of data as the 
baseline, we plotted the relative percentage increase in run 
time as more years of data is being used (See Figure 6). It’s 
clear from this graph that EMR scales better than EC2 since the 
rate at which run time increases as the quantity of data also 
increases is less than that of EC2. Thus, if more data becomes 
available it will, at some point, be better to use EMR rather than 
EC2. 
 

 
Figure 6: Relative Run Time Increase vs Number of Years since 

2001 
 
Testing the Algorithm 
   In the early stages of developing our algorithm, we had 
thought that in order to emulate a fixed location and to 
implement the crime weights, we needed to add multiples of the 
corresponding crime data in order to force a cluster in the 
chosen spot or increase the impact of certain crimes over 
others. When we tried to implement this, we ran into memory 
errors using both the EMR version and the EC2 version of our 
backend – this was not a feasible implementation for our 
project.  
 



   After more research, we decided to utilize the sample_weight 
parameter in the sklearn.k_means module and gave pinned 
locations a weight of 1,000,000,000 and data points in the "No 
Urgent Response Needed", "Requires Response" and 
"Immediate Response Required" buckets a weight of 1, 2 and 
3, respectively. If a crime type was left out of a bucket, all crimes 
of that type are given a weight of 0. The weight for the pinned 
locations were easy to visually verify; it is harder to test the 
crime type weights as the k-means algorithm handles them by 
itself. Since the weights are passed properly in the code and 
assuming that PySpark and SKLearn have no bugs, we are 
confident that the crime weights are applied properly. 
 
   In an effort to decrease user run time and manage memory 
issues in both versions of our implementation mentioned in 
“Testing the User Experience”, we wanted to test if taking a 
random sample of the crime data would give close enough 
results to using the whole data set. K-means was run on the full 
data set with k=15 to get the best police department locations. 
K-means was then run using 14 different sample sizes with 
k=15 and centers initialized at the best locations determined 
by the entire data set. 1000 trials were executed for each 
sample size. In each trial, the distance error – the distance 
between the centers found in the full data set and the centers 
found for the sampled data set – was calculated. These 
distance errors were then averaged across all 15 stations to 
get an average distance error from the ideal location for each 
trial in each sample size. Detailed results for this test are seen 
in Figure 7 and 8. We assume that that similar results would be 
achieved by executing this study with different centroid 
initializations or different number of cluster centers when 
running the initial algorithm on the full dataset. 
 
   In our final results, we found that a sample size of 5000 will 
result in sampled cluster centers to be within 500 meters of the 
population cluster centers. Sample clusters generated with 
sample size of 100,000 with be within 100 meters. We also 
tested different sample sizes and measured their run time (See 
Figure 9). A sample size of 100,000 results in a run time of 54 
seconds. Increasing the sample size to 250,000 may increase 
the accuracy of the cluster center but significantly increases the 
run time to 143 seconds. We felt comfortable using a sample 
size of 100,000 in our algorithm because the difference 
between sample and population cluster centers is quite small 
and the return time to the user is not too long.  
 

 
Figure 7: Average Distance Error for a Tested Sample Size 

The histogram shows non-normality so we used the 95th percentile 
to represent an upper error limit, as opposed to using standard 

deviation. 
 

 
Figure 8: Final Results of Sample Size Tests 

A sample size of 5000 will result in sampled cluster centers to be 
within 500 meters of the population cluster centers. Sample clusters 
generated with sample size of 100,000 with be within 100 meters. 

 

 
Figure 9: Sample Size vs Runtime 

There is a significant increase in run time when the sample size is 
250,000. Any sample size greater than 1,000,000 will results in 

memory errors in our existing infrastructure. 



Conclusion and Discussion 
   PLOCCK is truly the first solution of its kind, combining 
scalable computing, machine learning and the expertise of the 
user to reduce crime in Chicago. It successfully combines an 
underlying k-means based algorithm with an intuitive user 
interface. The tool can be deployed as a web app, operating off 
of a low cost (free tier) AWS EC2 instance, requiring only a 
browser. More importantly, using the tool does not require 
background knowledge on how it works or is set up. While there 
are other factors like budget, location size and site availability 
that are important to consider when deciding where to place 
police stations, PLOCCK provides invaluable insights that would 
be rather difficult or complex to collect and/or understand 
without it.  
 
Future Considerations 
   Given more time, we would have liked explore different 
machine learning methods (i.e. – different clustering methods 
or optimization implementations) that are more 
accommodating of the data we have. In the front-end 
visualization, we would have liked to add more detail in the tool 
tip that appears when the user hovers over a pin. It would be 
useful to add insights like the top types of crime in the district 
or notable crimes that may have happened in the given 
timeframe. To improve the user experience, it would have been 
ideal to include a step-by-step tutorial when a user first uses 
the tool. In the interest of time, we have included a help menu 
in the top right corner with instructions on how to use PLOCCK 
instead. 
 
   For the purposes of this project, we felt comfortable taking a 
sample of the data as it allows for a faster run time without 
impacting accuracy too much. Should more financial resources 
and more data become available, it may be worth it to further 
test the EMR implementation with different configurations as it 
scales better and provides better precision. The EMR 
implementation could also be useful should the stakeholders 
want to connect to real time data. Should a connection to real 
time data become available, this would slightly change the 
objective of PLOCCK; perhaps it would instead provide the 
optimal police officer location as it would be able to predict 
crime hotspots based on crimes in the last 24 hours or even 
the last hour. 
 
Project Work Distribution 
   All team members have contributed a similar amount of effort 
to the project in its entirety. David was responsible for the 
development of the user interface. Jovan led the development 
of the customized k-means algorithm and worked closely with 

David to ensure seamless communication between the front 
and back ends of our solution. Jack was responsible for the data 
cleaning and storage and provided the sample size analysis. 
He worked closely with David and Jovan to build the project 
infrastructure in AWS. Sara provided the initial designs of the 
user interface, assisted Inah in writing the proposal document 
and provided the project’s key performance metric analysis of 
the average distance to crime. Inah wrote and submitted all the 
project deliverables, including the proposal document, 
proposal presentation, progress report, poster and final report.   
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