
PLOCCK: Police Location Optimization of Chicago Crimes using K-Means
Sara Awid, Inah Canlapan, Jovan El Hoayek, Jack Moore, David Natta

Introduction & Problem Definition
 Established in 1835, the Chicago Police Department has
existed longer than Chicago has been recognized as a city
(Chicago Police Department - History). Over almost 2 centuries,
the city of Chicago has created districts and built police stations
in response to their growing population and expanding city
bounds. With historical crime data now available for the city and
given that the city has not expanded their boundaries since the
1960’s (Population & Annexation), we believe there is a more
sophisticated way of determining where Chicago’s police
stations should be located.

 We will use Chicago’s crime data to find ideal locations for
their police stations. We intend to cluster the crime data to show
the city’s predicted crime hotspots relative to where the existing
police stations are. By visualizing the distance, we can clearly
see if the existing stations are optimized to be in the center of
the crime zones. We aim to give Chicago’s municipal
government, urban planners and the Superintendent of Police
a tool that will show them where they should consider placing
police stations given the existing and predicted crime hotspots.
By building stations closer to where crime occurs, they can
deploy their forces in a more timely and efficient manner and in
turn, reduce their overall crime rate.

Literature Survey
 Liberatore et al. introduce the objective of the Police
Districting Problem (PDP) as the “optimal grouping of blocks
into ‘homogeneous’ patrol sectors in such a way that all the
territory is partitioned and that no sector is empty.” Our project
objective is similar but we want group crime, not patrol sectors.
This paper provides a generalized problem definition and
references other literature to summarize possible approaches.
It does not present a new solution of their own.

 Chow et al. views PDP as an optimization problem and
proposes using the maximum coverage and p-median
approach as a way to minimize the distances and maximize the
coverage of police stations over potential crime spots. This
approach heavily relies on ward boundaries and other GIS input
that are specific to the region they chose; thus, the solution
cannot be extended beyond the chosen region.

 Similarly, Curtin et al. also views PDP as an optimization
problem but includes a geographic optimization approach,
borrowing concepts from the Maximal Covering Location
Problem where the objective is to maximize the number of calls
covered by a fixed number of patrol areas that are limited to a

specified size. It uses the number of calls as an estimate of
officer workload and does not consider response time. It also
assumes the number of patrol areas are known in advance,
rather than provide feedback on how many patrol areas there
should be.

 De Gusmão et al. propose a solution to PDP that uses k-
means clustering. This solution closely aligns with our project
objective and provides us with a framework we can use to
evaluate the performance of our model. However, their solution
input parameters were tailored specifically for Brazil and is not
a scalable solution we can easily apply to other geographies.

 Liao & Guo use an adapted k-means algorithm and frames
PDP as a Capacitated Facility Location Problem where facilities
are police stations and capacity is the number of police officers
at a station. Their solution requires that all facilities be movable
and swappable and that each demand has the same cost in
capacity. In real life, this is not the case - police stations are
not easily movable or swappable and the type of crime
(demand) may require more than once police officer (capacity).

 Hochstetler et al. also uses k-means to find crime hotspots
on an hourly basis. They thoroughly explain issues with the data
set (i.e. invalid coordinates, incomplete data), which gives us
insight into what kind of issues we could encounter with our
own data. They do not consider existing police departments
and use real-time traffic data to calculate distance between
crimes. This data is very hard and expensive to obtain.

 Mitchell uses clustering to define police patrol areas (beats)
for a city and compares his results with real police beats. The
comparison between police and computer designed beats
proved that computers outperform police officers in reducing
travel distance. We can use a similar approach in our solution,
comparing the algorithm results vs the existing locations of
police stations. Mitchell’s solution, however, does not use
longitude and latitude coordinates which are more precise and
can likely yield better results.

 D’Amico et al., used queuing models and simulation as part
of their solution and provided a stochastic optimization method
that could help inform our team’s approach. The objective of
this paper, however, was to minimize workload disparity among
policing districts and does not necessarily maximize response
time or coverage as we aim to provide as part of our solution.

 The machine learning application of predicting crime hotspots
have been extensively reviewed with several works exploring
ways to identify crime patterns and map crime density. A more
modern approach to use deep learning and advanced analytics
was discussed by Zhang et al. (2020), Kang et al. and Kennedy
et al. The common approach was to use advanced techniques
like Risk Terrain Modeling, Long Short-Term Memory Neural
Networks and Deep Neural Networks to identify crime hotspots
and used non-conventional data such as Google images and
social, physical and behavioural aspects of neighbourhoods to
create features for these models. Although these data sources
can enhance the final results of our project, they do require a
great deal of complexity in terms of data collection. The
complexity of these advanced techniques also makes it difficult
to explain our methodology to our potential stakeholders.

 Zhang et al. (2010) & Garima & Alaid provide history and
background on existing methods like spatial mining and k-
means clustering for crime spot detection. Garima & Alaid
concluded that spatial clustering is indeed a useful method
while Zhang et al. (2010) discussed its limitations and
suggested new attribute-oriented clustering to overcome them.
Both approaches are useful in providing us background
information, however the real-world effectiveness of their
methodologies is not measurable. Wang et al. introduces a
solution that uses spatial mining and includes crime related
factors using geospatial discriminative patterns to predict crime
hotspots. They provide a heatmap which can be useful for our
visualization but their methodology is very complex and difficult
to scale.

 Nath used k-means to identify crime patterns or crime sprees
within a police jurisdiction. Some of the attributes used required
crime analyst input and recommendations from subject matter
experts on the importance of different attributes which is not
possible in our application.

 Zhu & Xie provided a novel approach using natural language
processing to extract features from raw text in police data to
identify crime patterns. Those features were then mapped to
measure similarities among crimes and could predict if such
crimes are being committed by the same criminals. This
approach relies on clear, written descriptions of crime in order
for us to accurately extract patterns from data.

Proposed Method
 In our proposed method, crime data is used in a novel
weighted K-Means algorithm that takes user input into
consideration as parameters to the algorithm. Our approach
assumes that all locations within Chicago city bounds are
available and that the crime location distribution stays constant

over time. The user is able to select the number of desired
police stations, specify the date range of the data used to
create the clusters and assign weights to different crime types
based on how important it is to have police present at the crime
scene. They can also pin certain locations if there are locations
they want to fix and have as part of the suggested police station
list returned to them.

Innovation #1
 The ability for our solution to consider user input is unique
among the solutions presented in our literature review; it allows
our solution to be interactive and flexible based on the
expertise of the person using it. The dynamic time frame
selection also gives the user the ability to see what the locations
would be like at different points in time, instead of static
snapshots that the analyses in the papers we reviewed had
given. Furthermore, the ability to apply weights to certain
crimes types and pin locations were not explored in related
works, making our solution truly innovative.

 The user interface is a website built using React.js and the
Mapbox library. Once the user sets their parameters, they are
sent to a Flask app hosted on an EC2 instance in AWS. The
Flask app runs the customized k-means algorithm using crime
data housed in a MySQL database. Once completed, a list of
latitude/longitude coordinates are passed to the front end and
are rendered on the map.

Innovation #2
 By hosting our back-end in AWS, we can easily package our
entire solution in a single EC2 instance and leverage the
scalable computing power that it offers. Having the crime data
stored in a MySQL database in the EC2 instance also makes it
simple to add new data, making it possible to get a real time
assessment of where crime hotspots are.

User Interface
 The final user interface can be seen in Figure 1 and Figure 2.
In the settings menu under “Select Date Range”, the user can
drag the pins to indicate which years of crime they want to use
in the analysis. Under “Number of Departments”, the user can
drag the pin to indicate how many police stations they want
returned to them. By clicking “Set Crime Weights”, a pop-up
menu appears where the user can drag and drop crime types
into crime weight buckets based on how urgent police presence
is required at the scene. Crimes not placed in buckets will not
be considered in the analysis. The user can double click any
point on the map and a purple pin will be placed, indicating that
the location has been pinned. To unpin the location, the user
can simply double click the purple pin the remove it. Once the
user parameters have been sent, they can hit “Apply” to kick

off the machine learning algorithm. The suggested locations will
appear as the blue pins on the map. The user can hover over
the pins to see its exact longitude/latitude coordinates. Under
“Layers”, we’ve given the user options to toggle different map
layers on or off. Users will have the option to see where existing
police stations are located as red pins, the existing police
district boundaries and the suggested district boundaries
returned by the analysis.

Figure 1: PLOCCK

Figure 2: Crime Weight Menu in PLOCCK

Experiments & Evaluation
 For the purposes of this analysis, we assume that the
Manhattan distance between a police station and reported
crime scene is an accurate proxy for response time; the closer
a police station is to the reported crime scene, the faster the
police response time will be. We had initially used the Euclidean
distance, but decided to use the Manhattan distance since city
streets are typically organized in a grid.

 Our key performance metric is the average distance of crime
to the police station. Our solution will be successful if the
average distance from crimes to our algorithm’s suggested
police stations is lower than that of existing police stations. To
find the average distance of crimes to the suggested police

stations, we set the user parameters to use a sample size of
almost 72,000 crimes (~1% of the crime data) from all years
with equal crime weighting and returned 22 locations, the
number of existing police stations. To find the average distance
of crimes to existing police stations, we measured the distance
between the crime location and the location of the police station
of the ward in which the crime occurred. We assume that if the
crime occurred in a certain ward, the police station in the same
ward would dispatch an officer. Based on the average
Manhattan distances calculated, the stations generated by
PLOCCK reduce the average distance to crime by 27.2%, from
2.4 km to 1.7 km. (See Figure 3)

Figure 3: Difference in Average Manhattan Distance between

PLOCCK and Existing Stations to Crime

Testing the User Experience
 In testing the user experience, we wanted to make sure that
the results were returned in a reasonable amount of time; the
less time a user is waiting for results, the better. We had run
some preliminary tests with the MVP (minimum viable product)
of our solution that allows for simple k-means clustering that
uses an EMR instance in AWS. Using the EMR, the user would
have to wait 2-3 minutes after selecting the number of clusters
before seeing the results displayed on the map. In an attempt
to return results faster, we tested a version of our solution
where we did not use the EMR instance and ran the machine
learning code directly in the EC2 instance. The second version
was much faster (See Figure 4), but requires us to increase the
RAM of the EC2 instance in order to accommodate the size of
the data, which is around 7 million rows (See Figure 5).

Figure 4: Run Time Comparison of EMR vs EC2 RAM

EC2 RAM takes 1-2 seconds to return results when less than 1
million records are used. No results were returned for the EC2 RAM

using 10 million rows because of a memory error.

Figure 5: Clustering Time using EC2 RAM

Using more than 4 million rows results in a memory error.

 At the time, we thought that we needed more time to set up
a new EC2 instance with more memory and reconfigure all the
connections to the front end. This would have also meant a
significant increase in cost if we chose to do this. Using the
results from our test that uses a sample of the crime data
instead of using the entire data set (see “Testing the
Algorithm”), we had determined that we didn’t have to increase
the amount of data in order to pin locations or implement crime
weights so we no longer had to consider memory issues when
choosing between the two implementations.

 When we tested our final algorithm using all the features
(selecting the number of locations, selecting the start and end
year, apply weights by crime type, and pinning locations) and a
sample size of 100,000 appropriate data points, the EMR
version took 218 seconds to run on average and the EC2
instance only took 41 seconds (See Figure 6). Based on this
difference, we decided to use the existing EC2 instance as it
returns results 5 times faster than the EMR.

Figure 5: Run Comparing Run Time and Years of Data Used between

EC2 and EMR

 Even though we chose the EC2 implementation for the
purposes of this project, we wanted to extrapolate the run time
data and see if choosing the EMR implementation would have
been better at any point in time. Using first year of data as the
baseline, we plotted the relative percentage increase in run
time as more years of data is being used (See Figure 6). It’s
clear from this graph that EMR scales better than EC2 since the
rate at which run time increases as the quantity of data also
increases is less than that of EC2. Thus, if more data becomes
available it will, at some point, be better to use EMR rather than
EC2.

Figure 6: Relative Run Time Increase vs Number of Years since

2001

Testing the Algorithm
 In the early stages of developing our algorithm, we had
thought that in order to emulate a fixed location and to
implement the crime weights, we needed to add multiples of the
corresponding crime data in order to force a cluster in the
chosen spot or increase the impact of certain crimes over
others. When we tried to implement this, we ran into memory
errors using both the EMR version and the EC2 version of our
backend – this was not a feasible implementation for our
project.

 After more research, we decided to utilize the sample_weight
parameter in the sklearn.k_means module and gave pinned
locations a weight of 1,000,000,000 and data points in the "No
Urgent Response Needed", "Requires Response" and
"Immediate Response Required" buckets a weight of 1, 2 and
3, respectively. If a crime type was left out of a bucket, all crimes
of that type are given a weight of 0. The weight for the pinned
locations were easy to visually verify; it is harder to test the
crime type weights as the k-means algorithm handles them by
itself. Since the weights are passed properly in the code and
assuming that PySpark and SKLearn have no bugs, we are
confident that the crime weights are applied properly.

 In an effort to decrease user run time and manage memory
issues in both versions of our implementation mentioned in
“Testing the User Experience”, we wanted to test if taking a
random sample of the crime data would give close enough
results to using the whole data set. K-means was run on the full
data set with k=15 to get the best police department locations.
K-means was then run using 14 different sample sizes with
k=15 and centers initialized at the best locations determined
by the entire data set. 1000 trials were executed for each
sample size. In each trial, the distance error – the distance
between the centers found in the full data set and the centers
found for the sampled data set – was calculated. These
distance errors were then averaged across all 15 stations to
get an average distance error from the ideal location for each
trial in each sample size. Detailed results for this test are seen
in Figure 7 and 8. We assume that that similar results would be
achieved by executing this study with different centroid
initializations or different number of cluster centers when
running the initial algorithm on the full dataset.

 In our final results, we found that a sample size of 5000 will
result in sampled cluster centers to be within 500 meters of the
population cluster centers. Sample clusters generated with
sample size of 100,000 with be within 100 meters. We also
tested different sample sizes and measured their run time (See
Figure 9). A sample size of 100,000 results in a run time of 54
seconds. Increasing the sample size to 250,000 may increase
the accuracy of the cluster center but significantly increases the
run time to 143 seconds. We felt comfortable using a sample
size of 100,000 in our algorithm because the difference
between sample and population cluster centers is quite small
and the return time to the user is not too long.

Figure 7: Average Distance Error for a Tested Sample Size

The histogram shows non-normality so we used the 95th percentile
to represent an upper error limit, as opposed to using standard

deviation.

Figure 8: Final Results of Sample Size Tests

A sample size of 5000 will result in sampled cluster centers to be
within 500 meters of the population cluster centers. Sample clusters
generated with sample size of 100,000 with be within 100 meters.

Figure 9: Sample Size vs Runtime

There is a significant increase in run time when the sample size is
250,000. Any sample size greater than 1,000,000 will results in

memory errors in our existing infrastructure.

Conclusion and Discussion
 PLOCCK is truly the first solution of its kind, combining
scalable computing, machine learning and the expertise of the
user to reduce crime in Chicago. It successfully combines an
underlying k-means based algorithm with an intuitive user
interface. The tool can be deployed as a web app, operating off
of a low cost (free tier) AWS EC2 instance, requiring only a
browser. More importantly, using the tool does not require
background knowledge on how it works or is set up. While there
are other factors like budget, location size and site availability
that are important to consider when deciding where to place
police stations, PLOCCK provides invaluable insights that would
be rather difficult or complex to collect and/or understand
without it.

Future Considerations
 Given more time, we would have liked explore different
machine learning methods (i.e. – different clustering methods
or optimization implementations) that are more
accommodating of the data we have. In the front-end
visualization, we would have liked to add more detail in the tool
tip that appears when the user hovers over a pin. It would be
useful to add insights like the top types of crime in the district
or notable crimes that may have happened in the given
timeframe. To improve the user experience, it would have been
ideal to include a step-by-step tutorial when a user first uses
the tool. In the interest of time, we have included a help menu
in the top right corner with instructions on how to use PLOCCK
instead.

 For the purposes of this project, we felt comfortable taking a
sample of the data as it allows for a faster run time without
impacting accuracy too much. Should more financial resources
and more data become available, it may be worth it to further
test the EMR implementation with different configurations as it
scales better and provides better precision. The EMR
implementation could also be useful should the stakeholders
want to connect to real time data. Should a connection to real
time data become available, this would slightly change the
objective of PLOCCK; perhaps it would instead provide the
optimal police officer location as it would be able to predict
crime hotspots based on crimes in the last 24 hours or even
the last hour.

Project Work Distribution
 All team members have contributed a similar amount of effort
to the project in its entirety. David was responsible for the
development of the user interface. Jovan led the development
of the customized k-means algorithm and worked closely with

David to ensure seamless communication between the front
and back ends of our solution. Jack was responsible for the data
cleaning and storage and provided the sample size analysis.
He worked closely with David and Jovan to build the project
infrastructure in AWS. Sara provided the initial designs of the
user interface, assisted Inah in writing the proposal document
and provided the project’s key performance metric analysis of
the average distance to crime. Inah wrote and submitted all the
project deliverables, including the proposal document,
proposal presentation, progress report, poster and final report.

References

Chicago Police Department - History. (n.d.). Retrieved March 08, 2021, from https://home.chicagopolice.org/about/history/

Chow, A. H., Cheung, C. Y., & Yoon, H. T. (2015). Optimization of police facility locationing. Transportation research record, 2528(1), 60-
68.

Curtin, K. M., Hayslett-McCall, K., & Qiu, F. (2010). Determining optimal police patrol areas with maximal covering & backup covering
location models. Networks & spatial economics, 10(1), 125-145.

D'Amico, S. J., Wang, S. J., Batta, R., & Rump, C. M. (2002). A simulated annealing approach to police district design. Computers &
Operations Research, 29(6), 667-684.

De Gusmão, A. P., Da Costa Borba, B. F., & Clemente, T. R. (2020). Management information system for POLICE facility location. Decision
Support Systems X: Cognitive Decision Support Systems & Technologies, 86-98

Garima, A., & Alaiad, A. (2019, June). Crime analysis in Chicago city. In 2019 10th International Conference on Information & Communication
Systems (ICICS) (pp. 166-172). IEEE.

Hochstetler, J., Hochstetler, L., & Fu, S. (2016, December). An optimal police patrol planning strategy for smart city safety. In 2016 IEEE
18th International Conference on High Performance Computing & Communications; IEEE 14th International Conference on Smart
City; IEEE 2nd International Conference on Data Science & Systems (HPCC/SmartCity/DSS) (pp. 1256-1263). IEEE.

Kang, H. W., & Kang, H. B. (2017). Prediction of crime occurrence from multi-modal data using deep learning. PloS one, 12(4), e0176244.

Kennedy, L. W., Caplan, J. M., & Piza, E. (2011). Risk clusters, hotspots, & spatial intelligence: risk terrain modeling as an algorithm for
police resource allocation strategies. Journal of quantitative criminology, 27(3), 339-362

Liao, K., & Guo, D. (2008). A Clustering-Based Approach to the Capacitated Facility Location Problem 1. Transactions in GIS, 12(3), 323-
339.

Liberatore, F., Camacho-Collados, M., & Vitoriano, B. (2020). Police districting problem: Literature review & annotated bibliography. Optimal
Districting & Territory Design, 9-29.

Mitchell, P. S. (1972). Optimal selection of police patrol beats. J. Crim. L. Criminology & Police Sci., 63, 577.

Nath, S. V. (2006, December). Crime pattern detection using data mining. In 2006 IEEE/WIC/ACM International Conference on Web
Intelligence & Intelligent Agent Technology Workshops (pp. 41-44). IEEE.

Population & Annexation. (2003, March 17). Retrieved March 09, 2021, from https://chicagology.com/population/

Wang, D., Ding, W., Lo, H., Stepinski, T., Salazar, J., & Morabito, M. (2013). Crime hotspot mapping using the crime related factors—a
spatial data mining approach. Applied intelligence, 39(4), 772-781.

Zhang, X., Hu, Z., Li, R., & Zheng, Z. (2010, June). Detecting & mapping crime hot spots based on improved attribute oriented induce
clustering. In 2010 18th International Conference on Geoinformatics (pp. 1-5). IEEE.

Zhang, X., Liu, L., Xiao, L., & Ji, J. (2020). Comparison of Machine Learning Algorithms for Predicting Crime Hotspots. IEEE Access, 8,
181302-181310.

Zhu, S., & Xie, Y. (2018, April). Crime incidents embedding using restricted boltzmann machines. In 2018 IEEE International Conference
on Acoustics, Speech & Signal Processing (ICASSP) (pp. 2376-2380). IEEE.

