{ "cells": [ { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# DVA HW4 Q1\n", "## Pagerank Algorithm\n", "\n", "Do not distribute or publish this code \n", "Do not change the `#export` statements or add and other code or comments above them. They are needed for grading." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#export\n", "'''\n", "*** Imports ***\n", " DO NOT EDIT or add anything to this section\n", "'''\n", "import numpy as np\n", "import time\n", "import argparse\n", "import sys" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Update your GT username and Id" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#export\n", "def author(): \n", " return \"gburdell3\" # replace gburdell3 with your Georgia Tech username. \n", " \n", "def gtid(): \n", " return 987654321 # replace with your GT ID number " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "'''\n", "*** Utility function ***\n", " DO NOT EDIT\n", "'''\n", "def dump_results(command, iterations, result):\n", " print(\"Sorting...\", file=sys.stderr)\n", " sorted_result = sorted(enumerate(result), key=lambda x: x[1], reverse=True)\n", " output_result = \"node_id\\tpr_value\\n\"\n", " for node_id, pr_value in sorted_result[:10]:\n", " output_result += \"{0}\\t{1}\\n\".format(node_id, pr_value)\n", " print(output_result)\n", "\n", " with open(command+'_iter'+str(iterations)+\".txt\",\"w\") as output_file:\n", " output_file.write(output_result)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### PageRank Class\n", "Please add your code as indicated below \n", "You do not need to add code outside of the indicated areas" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#export\n", "class PageRank:\n", " def __init__(self, edge_file):\n", "\n", " self.node_degree = {}\n", " self.max_node_id = 0\n", " self.edge_file = edge_file\n", "\n", " def read_edge_file(self, edge_file):\n", " with open(edge_file) as f:\n", " for line in f:\n", " val = line.split('\\t')\n", " yield int(val[0]), int(val[1])\n", "\n", " \"\"\"\n", " Step1: Calculate the out-degree of each node and maximum node_id of the graph.\n", " Store the out-degree in class variable \"node_degree\" and maximum node id to \"max_node_id\".\n", " \"\"\"\n", " def calculate_node_degree(self):\n", " for source,target in self.read_edge_file(self.edge_file):\n", "\n", " ### STEP 1\n", " ### Implement your code here\n", " #############################################\n", " pass\n", "\n", " #############################################\n", "\n", " print(\"Max node id: {}\".format(self.max_node_id))\n", " print(\"Total source number: {}\".format(len(self.node_degree)))\n", "\n", " def get_max_node_id(self):\n", " return self.max_node_id\n", "\n", " def run_pagerank(self, node_weights, damping_factor=0.85, iterations=10):\n", "\n", " pr_values = [1.0 / (self.max_node_id + 1)] * (self.max_node_id + 1)\n", " start_time = time.time()\n", " \"\"\" \n", " Step2: Implement pagerank algorithm as mentioned in lecture slides and the question.\n", "\n", " Incoming Parameters:\n", " node_weights: Probability of each node to flyout during random walk\n", " damping_factor: Probability of continuing on the random walk\n", " iterations: Number of iterations to run the algorithm \n", " check the __main__ function to understand node_weights and max_node_id\n", " \n", " Use the calculated out-degree to calculate the pagerank value of each node\n", " \"\"\"\n", " for it in range(iterations):\n", " \n", " new_pr_values = [0.0] * (self.max_node_id + 1)\n", " for source, target in self.read_edge_file(self.edge_file):\n", "\n", " ### STEP 2\n", " ### Implement your code here\n", " #############################################\n", " pass\n", "\n", " #############################################\n", "\n", " print (\"Completed {0}/{1} iterations. {2} seconds elapsed.\".format(it + 1, iterations, time.time() - start_time))\n", "\n", " return pr_values" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### Simplified Pagerank" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Options\n", "file = 'network.tsv' # Input file of the edge list - DO NOT EDIT\n", "command = 'simplified_pagerank' # Command to run - DO NOT EDIT\n", "damping_factor = 0.85 # Damping factor - submit results for damping_factor = 0.85\n", "iterations = [10,25] # Number of iterations - sumbit results for iterations = [10,25] \n", "\n", "# Run Simplified PageRank\n", "# DO NOT EDIT\n", "for i in iterations:\n", " pr = PageRank(file)\n", " pr.calculate_node_degree()\n", " max_node_id = pr.get_max_node_id()\n", " node_weights = np.ones(max_node_id + 1) / (max_node_id + 1)\n", " result = pr.run_pagerank(node_weights=node_weights, iterations=i, damping_factor=damping_factor)\n", " dump_results(command, i, result )" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### Personalized Pagerank" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Options\n", "file = 'network.tsv' # Input file of the edge list - DO NOT EDIT\n", "command = 'personalized_pagerank' # Command to run - DO NOT EDIT\n", "damping_factor = 0.85 # Damping factor - submit results for damping_factor = 0.85\n", "iterations = [10,25] # Number of iterations - sumbit results for iterations = [10,25] \n", "\n", "# Run Personalized PageRank\n", "# DO NOT EDIT\n", "for i in iterations:\n", " pr = PageRank(file)\n", " pr.calculate_node_degree()\n", " max_node_id = pr.get_max_node_id()\n", " np.random.seed(gtid())\n", " node_weights = np.random.rand(max_node_id + 1)\n", " node_weights = node_weights/node_weights.sum()\n", " result = pr.run_pagerank(node_weights=node_weights, iterations=i, damping_factor=damping_factor)\n", " dump_results(command, i, result)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Submitting your results to gradescope\n", "Submit the following on Gradescope \n", "* This file, Q1.ipynb\n", "* simplified_pagerank_iter10.txt\n", "* simplified_pagerank_iter25.txt\n", "* personalized_pagerank_iter10.txt\n", "* personalized_pagerank_iter25.txt\n" ] } ], "metadata": { "kernelspec": { "display_name": "DVAHW4", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.13" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }