library(kknn) library(caret) library(tidyverse) credit_data <- read.table("C:/Users/mjpearl/Downloads/data 2.2/credit_card_data.txt", stringsAsFactors = FALSE, header = FALSE) head(credit_data) #Utilize cross validation to # Split the data into training and test set set.seed(123) #Initialize the training dataset with a sample of an 80% partition using random split sample <- sample.int(n = nrow(credit_data), size = floor(.75*nrow(credit_data)), replace = F) train <- credit_data[sample, ] test <- credit_data[-sample, ] #Build the knn model using cross validation model <- lm(Fertility ~., data = train.data) # Make predictions and compute the R2, RMSE and MAE predictions <- model %>% predict(test.data) data.frame( R2 = R2(predictions, test.data$Fertility), RMSE = RMSE(predictions, test.data$Fertility), MAE = MAE(predictions, test.data$Fertility))