hw3-5.1

Mark Pearl 29/01/2020

uscrime_data <- read.table('C:/Users/mjpearl/Desktop/omsa/ISYE-6501-OAN/hw3/data/uscrime.txt',header = 'head(uscrime_data)</pre>

```
M So
              Ed Po1 Po2
                              LF
                                   M.F Pop
                                             NW
                                                   U1 U2 Wealth Ineq
## 1 15.1
          1 9.1
                  5.8
                       5.6 0.510
                                  95.0
                                       33 30.1 0.108 4.1
                                                            3940 26.1
## 2 14.3
          0 11.3 10.3
                       9.5 0.583 101.2
                                        13 10.2 0.096 3.6
                                                            5570 19.4
## 3 14.2 1 8.9
                 4.5 4.4 0.533
                                  96.9
                                       18 21.9 0.094 3.3
                                                            3180 25.0
## 4 13.6 0 12.1 14.9 14.1 0.577
                                  99.4 157
                                            8.0 0.102 3.9
                                                            6730 16.7
## 5 14.1 0 12.1 10.9 10.1 0.591 98.5 18
                                           3.0 0.091 2.0
                                                            5780 17.4
## 6 12.1 0 11.0 11.8 11.5 0.547 96.4 25 4.4 0.084 2.9
                                                            6890 12.6
##
        Prob
                Time Crime
## 1 0.084602 26.2011
                       791
## 2 0.029599 25.2999
                      1635
## 3 0.083401 24.3006
                       578
## 4 0.015801 29.9012
                      1969
## 5 0.041399 21.2998
                      1234
## 6 0.034201 20.9995
                       682
```

Plots Section

The following plots will conduct exploratory analysis on the data to get a sense of the data's distribution and to see if we can spot any outliers with a visual representation.

```
boxplot(x= uscrime_data$Crime)
```


From the boxplot we can see that there are a few observations above the whisker which indicates values past Q3 are outliers (2 observations closest to a Crime value of 2000). There does not seem to be any observations in the lower quartiles that indicate any outliers.

hist(uscrime_data\$Crime)

Histogram of uscrime_data\$Crime

The result of histogram indicates a skewed distribution for the right tail. For a grubbs test to be effective it is implied that the data follows a normal distribution. However our data does follow a normal distribution towards the middle portion of the graph, so it could mean that we have outlying data. We will continue with conducting the grubbs test for further investigation.

Grub Test Section

To ensure we test observations represented by the minimum and maximum values on the graph, we will use the "opposite" parameter of the grubbs test function.

```
grubbs.test(x=uscrime_data$Crime, type = 10, opposite = F)

##

## Grubbs test for one outlier

##

## data: uscrime_data$Crime

## G = 2.81287, U = 0.82426, p-value = 0.07887

## alternative hypothesis: highest value 1993 is an outlier

grubbs.test(x=uscrime_data$Crime, type = 10, opposite = T)

##

## Grubbs test for one outlier

##

## Grubbs test for one outlier
```

```
## data: uscrime_data$Crime
## G = 1.45589, U = 0.95292, p-value = 1
## alternative hypothesis: lowest value 342 is an outlier
```

The first output indicates that the highest or maximum observation closest to 2000 on the graph can be deemed an outlier due to the significantly low p-value of 0.07. This holds true to what was also determined in the boxplot output.

The second output indicates that the lowest value of the crime feature is with a high certainty not an outlier as we retrieved a p-value of 1.