Homework 5-Regression

Mark Pearl 9/25/2019

8.1 Application for Regression in Real-Life

Describe a situation or problem from your job, everyday life, current events, etc., for which a linear regression model would be appropriate. List some (up to 5) predictors that you might use.

For a recent project at work for an NHL team, regression is heavily used for points production for each line. There are several categorical and continuous variables to account for such as historical point production, line rank (i.e 1st to 4th line), aggressivness, country of origin, etc. The response variable is the aggregated points across all players on a line or defensemen pairing.

The data would be trained on the categorical attributes which remain static along with historical season results for each player. This is a great tool for understanding line combinations against other teams, and what-if-analysis to determine which players on a team should be paired up together to optimize the total results for the entire team.

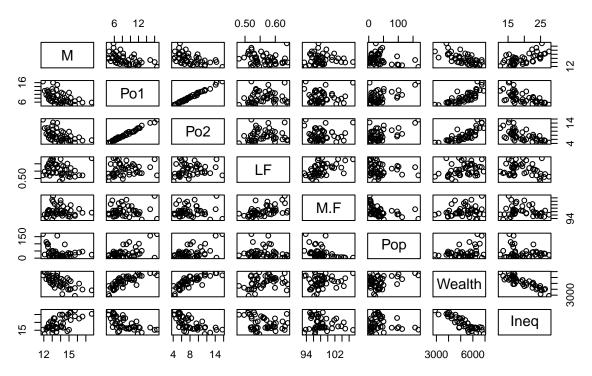
```
uscrime_data <- read.table('C:/Users/mjpearl/Desktop/omsa/ISYE-6501-OAN/hw5/data/uscrime.txt',header =
head(uscrime_data)</pre>
```

```
##
                   Po1
        M So
               Ed
                        Po2
                                I.F
                                     M.F Pop
                                                NW
                                                      U1 U2 Wealth Ineq
## 1 15.1
              9.1
                   5.8
                         5.6 0.510
                                    95.0
                                           33 30.1 0.108 4.1
                                                                3940 26.1
## 2 14.3
           0 11.3 10.3
                         9.5 0.583 101.2
                                           13 10.2 0.096 3.6
                                                                5570 19.4
              8.9
                   4.5
                         4.4 0.533
                                    96.9
                                           18 21.9 0.094 3.3
                                                                3180 25.0
## 4 13.6
           0 12.1 14.9 14.1 0.577
                                    99.4 157
                                               8.0 0.102 3.9
                                                                6730 16.7
           0 12.1 10.9 10.1 0.591
                                    98.5
                                           18
                                               3.0 0.091 2.0
                                                                5780 17.4
           0 11.0 11.8 11.5 0.547
                                    96.4
                                          25
## 6 12.1
                                              4.4 0.084 2.9
                                                                6890 12.6
##
         Prob
                  Time Crime
## 1 0.084602 26.2011
                         791
## 2 0.029599 25.2999
                        1635
## 3 0.083401 24.3006
                         578
## 4 0.015801 29.9012
                        1969
                        1234
## 5 0.041399 21.2998
## 6 0.034201 20.9995
```

8.2 LM Model for US Crime Data

The following plots will conduct exploratory analysis on the data to get a sense of the data's distribution for each variable. We will then use a simple linear regression approach using lm() to predict against the target variable for crime with the one row of data we've been provided for test data.

summary(uscrime_data)


```
##
          М
                            So
                                               Ed
                                                               Po1
            :11.90
                             :0.0000
                                                : 8.70
                                                                  : 4.50
##
    Min.
                     Min.
                                        Min.
                                                          Min.
##
    1st Qu.:13.00
                     1st Qu.:0.0000
                                        1st Qu.: 9.75
                                                          1st Qu.: 6.25
    Median :13.60
                     Median : 0.0000
                                        Median :10.80
                                                          Median : 7.80
            :13.86
                             :0.3404
                                                :10.56
                                                                  : 8.50
##
    Mean
                     Mean
                                        Mean
                                                          Mean
```

```
##
    3rd Qu.:14.60
                     3rd Qu.:1.0000
                                        3rd Qu.:11.45
                                                          3rd Qu.:10.45
                             :1.0000
                                                                 :16.60
            :17.70
                                                :12.20
##
    Max.
                     Max.
                                        Max.
                                                          Max.
##
         Po2
                             LF
                                               M.F
                                                                 Pop
    Min.
                                                 : 93.40
##
            : 4.100
                      Min.
                               :0.4800
                                         Min.
                                                            Min.
                                                                    :
                                                                      3.00
##
    1st Qu.: 5.850
                       1st Qu.:0.5305
                                         1st Qu.: 96.45
                                                            1st Qu.: 10.00
##
    Median : 7.300
                       Median :0.5600
                                         Median: 97.70
                                                            Median : 25.00
                                                                    : 36.62
##
    Mean
            : 8.023
                       Mean
                               :0.5612
                                         Mean
                                                 : 98.30
                                                            Mean
    3rd Qu.: 9.700
                                                            3rd Qu.: 41.50
##
                       3rd Qu.:0.5930
                                         3rd Qu.: 99.20
##
    Max.
            :15.700
                      Max.
                               :0.6410
                                         Max.
                                                 :107.10
                                                            Max.
                                                                    :168.00
##
                            U1
                                                U2
           NW
                                                               Wealth
##
    Min.
            : 0.20
                     Min.
                             :0.07000
                                         Min.
                                                 :2.000
                                                           Min.
                                                                   :2880
    1st Qu.: 2.40
                      1st Qu.:0.08050
                                                           1st Qu.:4595
##
                                         1st Qu.:2.750
##
    Median: 7.60
                     Median :0.09200
                                         Median :3.400
                                                           Median:5370
                     Mean
##
    Mean
            :10.11
                             :0.09547
                                         Mean
                                                 :3.398
                                                           Mean
                                                                   :5254
##
    3rd Qu.:13.25
                      3rd Qu.:0.10400
                                         3rd Qu.:3.850
                                                           3rd Qu.:5915
##
    Max.
            :42.30
                     Max.
                             :0.14200
                                         Max.
                                                 :5.800
                                                           Max.
                                                                   :6890
##
                           Prob
                                               Time
         Ineq
                                                               Crime
##
    Min.
            :12.60
                             :0.00690
                                                 :12.20
                                                                   : 342.0
                     Min.
                                         Min.
                                                           Min.
                                         1st Qu.:21.60
                                                           1st Qu.: 658.5
##
    1st Qu.:16.55
                      1st Qu.:0.03270
##
    Median :17.60
                     Median : 0.04210
                                         Median :25.80
                                                           Median: 831.0
##
    Mean
            :19.40
                     Mean
                             :0.04709
                                         Mean
                                                 :26.60
                                                           Mean
                                                                   : 905.1
##
    3rd Qu.:22.75
                      3rd Qu.:0.05445
                                          3rd Qu.:30.45
                                                           3rd Qu.:1057.5
            :27.60
                                                 :44.00
                                                                   :1993.0
##
    Max.
                     Max.
                             :0.11980
                                         Max.
                                                           Max.
```

There's potentially a few variables in this dataset such as Population which could require scaling or normalization. In addition, based on our last findings from a previous homework, it might be beneficial to remove outlier values towards the upper quartile.

```
## 75% of the sample size for the uscrime dataset
pairs(~M+Po1+Po2+LF+M.F+Pop+Wealth+Ineq,data=uscrime_data,
    main="Simple Scatterplot Matrix")
```

Simple Scatterplot Matrix

As we can see, there seems to be a positive correlation between Po1 and Po2 and a negative correlation between Wealth and Inequality. There are several approaches we can use to deal with these features. One approach through feature engineering would be to conduct PCA (Principal Component Analysis) on the correlated features to produce a net new feature which alleviates the co-linearity. Another approach is to use L1 or L2 regularization to penalize the weights of these features so that they don't impact the results of our response variable.

```
#Since we're using a specific row for the test dataset, we'll use the full output to train the model
lm.fit = lm(Crime ~ .,data = uscrime_data)
summary(lm.fit)
```

```
##
## Call:
## lm(formula = Crime ~ ., data = uscrime_data)
##
## Residuals:
##
       Min
                1Q
                    Median
                                        Max
  -395.74
           -98.09
                     -6.69
                            112.99
                                     512.67
##
##
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
                                      -3.675 0.000893 ***
## (Intercept) -5.984e+03 1.628e+03
## M
                8.783e+01
                           4.171e+01
                                        2.106 0.043443 *
## So
               -3.803e+00 1.488e+02
                                      -0.026 0.979765
## Ed
                1.883e+02 6.209e+01
                                        3.033 0.004861 **
                1.928e+02 1.061e+02
                                        1.817 0.078892 .
## Po1
```

```
## Po2
               -1.094e+02 1.175e+02
                                     -0.931 0.358830
## I.F
               -6.638e+02
                          1.470e+03
                                     -0.452 0.654654
## M.F
                1.741e+01
                          2.035e+01
                                       0.855 0.398995
               -7.330e-01
                          1.290e+00
## Pop
                                     -0.568 0.573845
## NW
                4.204e+00
                          6.481e+00
                                      0.649 0.521279
## U1
               -5.827e+03
                          4.210e+03
                                     -1.384 0.176238
## U2
                1.678e+02 8.234e+01
                                       2.038 0.050161 .
## Wealth
               9.617e-02
                          1.037e-01
                                       0.928 0.360754
               7.067e+01
                          2.272e+01
                                       3.111 0.003983 **
## Ineq
## Prob
               -4.855e+03
                          2.272e+03
                                     -2.137 0.040627 *
## Time
               -3.479e+00
                          7.165e+00
                                     -0.486 0.630708
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 209.1 on 31 degrees of freedom
## Multiple R-squared: 0.8031, Adjusted R-squared: 0.7078
## F-statistic: 8.429 on 15 and 31 DF, p-value: 3.539e-07
```

Based on the output of our fitted model on the training data, we can see modest performance with an R-Sqaure of 0.78. This means that the model is able to fairly accommodate the dataset's variance. We also see that there's several features with large p-values indicating that they don't provide any predictive value. The p-value results could be distorted for several of the features which have high co-linearity or due to overfitting. In a future test we will try and remove some features to assess the impact.

```
test <- data.frame(M = 14.0, So = 0, Ed = 10.0, Po1 = 12.0, Po2 = 15.5, LF = 0.640, M.F = 94.0, Pop = 1 lm_predict <- predict(lm.fit, test) lm_predict
```

```
## 1
## 155.4349
```

We can see with the predict function that are value doesn't fall within the range of values for the Crime variable in the training dataset, however since we haven't split our test dataset from the original data, we don't have a way of measure it's accuracy. We would be able to calculate the MSE or RMSE if we were using test data from the original dataset.

Now let's try and re-run the fit with the Po2 and Wealth variables removed from the training dataset.

```
drops <- c("Po2","Wealth")
train <- uscrime_data[ , !(names(uscrime_data) %in% drops)]
lm.fit2 = lm(Crime ~ .,data = train)
summary(lm.fit2)</pre>
```

```
##
## Call:
## lm(formula = Crime ~ ., data = train)
##
## Residuals:
##
      Min
              1Q Median
                             3Q
                                   Max
  -469.4 -93.1
                    12.6
                        117.3
                                 506.4
##
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
```

```
## (Intercept) -6041.0176 1515.7345 -3.986 0.000351 ***
## M
                  84.0350
                             40.8957
                                       2.055 0.047879 *
## So
                  35.2894
                            143.7092
                                       0.246 0.807543
## Ed
                             59.8202
                                       3.108 0.003861 **
                 185.9198
## Po1
                 105.0940
                             21.7659
                                       4.828 3.06e-05 ***
                -127.9865
                           1392.3561
                                      -0.092 0.927317
## LF
## M.F
                  20.1254
                             20.1066
                                       1.001 0.324141
## Pop
                  -0.6822
                              1.2761
                                      -0.535 0.596494
## NW
                   1.3912
                              6.0482
                                       0.230 0.819502
## U1
               -5748.4126
                           4146.8729
                                      -1.386 0.174980
## U2
                 180.7362
                             80.8400
                                       2.236 0.032251 *
                  60.7323
                             17.9172
                                       3.390 0.001829 **
## Ineq
                           2160.3360
                                      -2.091 0.044315 *
## Prob
               -4517.0792
## Time
                  -0.5337
                              6.6346
                                      -0.080 0.936366
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 207.9 on 33 degrees of freedom
## Multiple R-squared: 0.7927, Adjusted R-squared: 0.711
## F-statistic: 9.707 on 13 and 33 DF, p-value: 7.32e-08
```

Based on the updated plot, we can see this did improve the standard error for the residuals. However, we don't notice a significant improvement for the R2 score and a worse F-statistics measure. This is the result of overfitting, which makes sense since we have such few observations in our training dataset.