Homework 6-Regression with PCA
Mark Pearl
19/02/2020

9.1 Regression with PCA

Using the same crime data set uscrime.txt as in Question 8.2, apply Principal Component Analysis and then
create a regression Im__model using the first few principal components. Specify your new lm_ model in terms
of the original variables (not the principal components), and compare its quality to that of your solution
to Question 8.2. You can use the R function prcomp for PCA. (Note that to first scale the data, you can
include scale. = TRUE to scale as part of the PCA function. Don’t forget that, to make a prediction for
the new city, you’ll need to unscale the coefficients (i.e., do the scaling calculation in reverse)!)

uscrime_data <- read.table('C:/Users/mjpearl/Desktop/omsa/ISYE-6501-0AN/hw6/data/uscrime.txt', header
head (uscrime_data)

## M So Ed Pol Po2 LF M.F Pop NW Ul U2 Wealth Ineq
# 1 15.1 1 9.1 5.8 5.6 0.510 95.0 33 30.1 0.108 4.1 3940 26.1
## 2 14.3 0 11.3 10.3 9.5 0.583 101.2 13 10.2 0.096 3.6 5570 19.4
## 3 14.2 1 8.9 4.5 4.4 0.533 96.9 18 21.9 0.094 3.3 3180 25.0
## 4 13.6 0 12.1 14.9 14.1 0.577 99.4 157 8.0 0.102 3.9 6730 16.7
## 5 14.1 0 12.1 10.9 10.1 0.591 98.5 18 3.0 0.091 2.0 5780 17.4
## 6 12.1 0 11.0 11.8 11.5 0.547 96.4 25 4.4 0.084 2.9 6890 12.6
#i#t Prob Time Crime
## 1 0.084602 26.2011 791
## 2 0.029599 25.2999 1635
## 3 0.083401 24.3006 578
## 4 0.015801 29.9012 1969
## 5 0.041399 21.2998 1234
## 6 0.034201 20.9995 682

9.1 Regression for PCA for US Crime Data

The following plots will conduct exploratory analysis on the data to get a sense of the data’s distribution for
each variable.

summary (uscrime_data)

## M So Ed Pol

## Min. :11.90 Min. :0.0000 Min. : 8.70 Min. : 4.50

## 1st Qu.:13.00 1st Qu.:0.0000 1st Qu.: 9.75 1st Qu.: 6.25

## Median :13.60 Median :0.0000 Median :10.80 Median : 7.80

## Mean :13.86 Mean :0.3404 Mean :10.56 Mean 8.50

## 3rd Qu.:14.60 3rd Qu.:1.0000 3rd Qu.:11.45 3rd Qu.:10.45

## Max. :17.70 Max. :1.0000 Max. :12.20 Max. :16.60

## Po2 LF M.F Pop

## Min. : 4.100 Min. :0.4800 Min. : 93.40 Min. . 3.00

## 1st Qu.: 5.850 1st Qu.:0.5305 1st Qu.: 96.45 1st Qu.: 10.00
## Median : 7.300 Median :0.5600 Median : 97.70 Median : 25.00



## Mean : 8.023 Mean :0.5612 Mean : 98.30 Mean : 36.62
## 3rd Qu.: 9.700 3rd Qu.:0.5930 3rd Qu.: 99.20 3rd Qu.: 41.50

## Max. :15.700 Max. :0.6410 Max. :107.10 Max. :168.00
## Nw U1 U2 Wealth

## Min. : 0.20 Min. :0.07000 Min. :2.000 Min. 12880
## 1st Qu.: 2.40 1st Qu.:0.08050 1st Qu.:2.750 1st Qu.:4595
## Median : 7.60 Median :0.09200 Median :3.400 Median :5370
## Mean :10.11 Mean :0.09547 Mean :3.398 Mean :5254
## 3rd Qu.:13.25 3rd Qu.:0.10400 3rd Qu.:3.850 3rd Qu.:5915
## Max. :42.30 Max. :0.14200 Max. :5.800 Max. 16890
## Ineq Prob Time Crime

## Min. :12.60 Min. :0.00690 Min. :12.20 Min. 1 342.0
## 1st Qu.:16.55 1st Qu.:0.03270 1st Qu.:21.60 1st Qu.: 658.5
## Median :17.60 Median :0.04210 Median :25.80 Median : 831.0
## Mean :19.40 Mean :0.04709 Mean :26.60 Mean : 905.1
## 3rd Qu.:22.75 3rd Qu.:0.05445 3rd Qu.:30.45 3rd Qu.:1057.5
## Max. :27.60 Max. :0.11980 Max. :44.00 Max. :1993.0

There’s potentially a few variables in this dataset such as Population which could require scaling or normal-
ization. In addition, based on our last findings from a previous homework, it might be beneficial to remove
outlier values towards the upper quartile.

## 75), of the sample size for the uscrime dataset

pairs(~M+Pol1+Po2+LF+M.F+Pop+Wealth+Ineq,data=uscrime_data,
main="Simple Scatterplot Matrix")

Simple Scatterplot Matrix
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As we can see, there seems to be a positive correlation between Pol and Po2 and a negative correlation
between Wealth and Inequality. There are several approaches we can use to deal with these features. One
approach through feature engineering would be to conduct PCA (Principal Component Analysis) on the
correlated features to produce a net new feature which alleviates the co-linearity.

PCA will calculate the eigenvector corresponding to the largest eigenvalue of the covariance matrix. These
PCA features will help us explain the greatest proportion of the variability in the dataset.

#Conduct PCA on the training dataset
pca <- prcomp(uscrime_data[-16], scale=TRUE)

# create coloring label
class.color <- c(rep(2,100),rep(3,100))

plot(pca$x, col = class.color, main = 'Samples on their new axis representing orthogonal features')

Samples on their new axis representing orthogonal features
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Based on our result we can see that with the orthogonal representation it significantly reduces the
multicolineairty of these features, which will make up a majority of the variance for the dataset. Let’s
determine how much variance is explained by our principal component features.

# calculate the variance explained by the PCs in percent
variance.total <- sum(pca$sdev”2)

variance.explained <- pca$sdev™2 / variance.total * 100
print(variance.explained)

## [1] 40.1263510 18.6789802 13.3662956 7.7480520 6.3886598 3.6879593
## [7] 2.1454579 2.0493418 1.5677019 1.3325395 1.1712360 0.8546007



## [13] 0.4622779 0.3897851 0.0307611

From our findings we can see that over 50% of the variance can be explained by the first 5 PCA features
from the result. Let’s use these to now construct a new lm_ model to use the first 5 features and see how
this impacts our performance results.

#number of PCs we want to test =k
k =5

#we now combine PCs 1:k with the crime data from our original data set
pca_crimedata <- cbind(pca$x[,1:k],uscrime_datal,16])

1m_model <- 1m(V6~., data = as.data.frame(pca_crimedata))
summary (1m_model)

##

## Call:

## 1m(formula = V6 ~ ., data = as.data.frame(pca_crimedata))
##

## Residuals:

#i# Min 1Q Median 3Q Max

## -420.79 -185.01 12.21 146.24 447.86

##

## Coefficients:

it Estimate Std. Error t value Pr(>|tl)

## (Intercept)  905.09 35.59 25.428 < 2e-16 *xx*

## PC1 65.22 14.67 4.447 6.51e-05 **x*

## PC2 -70.08 21.49 -3.261 0.00224 =*x

## PC3 25.19 25.41 0.992 0.32725

## PC4 69.45 33.37 2.081 0.04374 =*

## PC5 -229.04 36.75 =-6.232 2.02e-07 **x*

## ——-

## Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1
##

## Residual standard error: 244 on 41 degrees of freedom
## Multiple R-squared: 0.6452, Adjusted R-squared: 0.6019
## F-statistic: 14.91 on 5 and 41 DF, p-value: 2.446e-08

We can see compared to last week’s results that we get a lower adjusted R2 value of 0.62. However since the
difference is insignificant we can conclude that the model performs just as well with a reduced feature set.
In production setting this can be very useful, espiecially for reducing training time!

#now we will run the predict function on our test dataset to determine the performance of the model
test_data <- data.frame(M= 14.0, So = 0, Ed = 10.0, Pol = 12.0, Po2 = 15.5,
LF = 0.640, M.F = 94.0, Pop = 160, NWw = 1.1, Ul = 0.120, U2 = 3.6, Wealth = 3200, I

pred_df <- data.frame(predict(pca, test_data))
pred <- predict(lm_model, pred_df)

We can conclude our model produces nearly the same accuracy at a fraction of the cost as the observed value
is very close with that we determined in exercise 8.2!
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