Homework 6-Regression with PCA

Mark Pearl 19/02/2020

9.1 Regression with PCA

Using the same crime data set uscrime.txt as in Question 8.2, apply Principal Component Analysis and then create a regression lm_model using the first few principal components. Specify your new lm_model in terms of the original variables (not the principal components), and compare its quality to that of your solution to Question 8.2. You can use the R function promp for PCA. (Note that to first scale the data, you can include scale. = TRUE to scale as part of the PCA function. Don't forget that, to make a prediction for the new city, you'll need to unscale the coefficients (i.e., do the scaling calculation in reverse)!)

```
uscrime_data <- read.table('C:/Users/mjpearl/Desktop/omsa/ISYE-6501-OAN/hw6/data/uscrime.txt',header =
head(uscrime_data)</pre>
```

```
##
        M So
                Ed
                    Po1
                         Po<sub>2</sub>
                                 LF
                                      M.F Pop
                                                 NW
                                                       U1
                                                           U2 Wealth Ineq
## 1 15.1
           1
              9.1
                    5.8
                         5.6 0.510
                                     95.0
                                           33 30.1 0.108 4.1
                                                                 3940 26.1
## 2 14.3
           0 11.3 10.3
                         9.5 0.583 101.2
                                           13 10.2 0.096 3.6
                                                                 5570 19.4
           1
              8.9
                   4.5
                         4.4 0.533
                                     96.9
                                            18 21.9 0.094 3.3
                                                                 3180 25.0
           0 12.1 14.9 14.1 0.577
                                                8.0 0.102 3.9
## 4 13.6
                                     99.4 157
                                                                 6730 16.7
## 5 14.1
           0 12.1 10.9 10.1 0.591
                                     98.5
                                           18
                                                3.0 0.091 2.0
                                                                 5780 17.4
## 6 12.1
           0 11.0 11.8 11.5 0.547
                                     96.4
                                          25
                                                4.4 0.084 2.9
                                                                 6890 12.6
##
         Prob
                  Time Crime
## 1 0.084602 26.2011
                         791
## 2 0.029599 25.2999
                        1635
## 3 0.083401 24.3006
                         578
## 4 0.015801 29.9012
                        1969
## 5 0.041399 21.2998
                        1234
## 6 0.034201 20.9995
                         682
```

9.1 Regression for PCA for US Crime Data

The following plots will conduct exploratory analysis on the data to get a sense of the data's distribution for each variable.

summary(uscrime_data)

```
So
                                              Ed
##
          М
                                                               Po1
##
    Min.
            :11.90
                     Min.
                             :0.0000
                                        Min.
                                               : 8.70
                                                         Min.
                                                                 : 4.50
    1st Qu.:13.00
                     1st Qu.:0.0000
                                        1st Qu.: 9.75
                                                         1st Qu.: 6.25
##
##
    Median :13.60
                     Median :0.0000
                                        Median :10.80
                                                         Median : 7.80
##
    Mean
            :13.86
                             :0.3404
                                               :10.56
                                                                 : 8.50
                     Mean
                                        Mean
                                                         Mean
    3rd Qu.:14.60
                     3rd Qu.:1.0000
                                        3rd Qu.:11.45
                                                         3rd Qu.:10.45
                             :1.0000
##
    Max.
            :17.70
                     Max.
                                        Max.
                                               :12.20
                                                         Max.
                                                                 :16.60
##
         Po2
                             LF
                                              M.F
                                                                 Pop
##
    Min.
           : 4.100
                      Min.
                              :0.4800
                                        Min.
                                                : 93.40
                                                           Min.
                                                                   : 3.00
    1st Qu.: 5.850
                      1st Qu.:0.5305
                                         1st Qu.: 96.45
                                                           1st Qu.: 10.00
    Median : 7.300
                      Median :0.5600
                                         Median : 97.70
                                                           Median : 25.00
```

```
##
    Mean
           : 8.023
                              :0.5612
                                         Mean
                                                : 98.30
                                                           Mean
                                                                   : 36.62
                      Mean
                      3rd Qu.:0.5930
                                                           3rd Qu.: 41.50
##
    3rd Qu.: 9.700
                                         3rd Qu.: 99.20
                                                :107.10
##
    Max.
           :15.700
                      Max.
                              :0.6410
                                         Max.
                                                           Max.
                                                                   :168.00
                           U1
                                               U2
##
          NW
                                                              Wealth
##
    Min.
           : 0.20
                     Min.
                             :0.07000
                                         Min.
                                                :2.000
                                                          Min.
                                                                  :2880
    1st Qu.: 2.40
                     1st Qu.:0.08050
##
                                         1st Qu.:2.750
                                                          1st Qu.:4595
    Median : 7.60
                     Median: 0.09200
                                         Median :3.400
                                                          Median:5370
##
##
    Mean
            :10.11
                     Mean
                             :0.09547
                                         Mean
                                                :3.398
                                                          Mean
                                                                  :5254
##
    3rd Qu.:13.25
                     3rd Qu.:0.10400
                                         3rd Qu.:3.850
                                                          3rd Qu.:5915
            :42.30
##
    Max.
                     Max.
                             :0.14200
                                         Max.
                                                :5.800
                                                          Max.
                                                                  :6890
##
         Ineq
                           Prob
                                              Time
                                                              Crime
            :12.60
                             :0.00690
                                                :12.20
                                                                  : 342.0
##
    Min.
                     Min.
                                         Min.
                                                          Min.
                                                          1st Qu.: 658.5
##
    1st Qu.:16.55
                     1st Qu.:0.03270
                                         1st Qu.:21.60
    Median :17.60
                     Median :0.04210
                                                          Median: 831.0
##
                                         Median :25.80
##
            :19.40
                             :0.04709
                                                :26.60
                                                                  : 905.1
    Mean
                     Mean
                                         Mean
                                                          Mean
##
    3rd Qu.:22.75
                     3rd Qu.:0.05445
                                         3rd Qu.:30.45
                                                          3rd Qu.:1057.5
            :27.60
                             :0.11980
                                                :44.00
                                                                  :1993.0
##
    Max.
                     Max.
                                         Max.
                                                          Max.
```

There's potentially a few variables in this dataset such as Population which could require scaling or normalization. In addition, based on our last findings from a previous homework, it might be beneficial to remove outlier values towards the upper quartile.

Simple Scatterplot Matrix

As we can see, there seems to be a positive correlation between Po1 and Po2 and a negative correlation between Wealth and Inequality. There are several approaches we can use to deal with these features. One approach through feature engineering would be to conduct PCA (Principal Component Analysis) on the correlated features to produce a net new feature which alleviates the co-linearity.

PCA will calculate the eigenvector corresponding to the largest eigenvalue of the covariance matrix. These PCA features will help us explain the greatest proportion of the variability in the dataset.

```
#Conduct PCA on the training dataset
pca <- prcomp(uscrime_data[-16], scale=TRUE)

# create coloring label
class.color <- c(rep(2,100),rep(3,100))

plot(pca$x, col = class.color, main = 'Samples on their new axis representing orthogonal features')</pre>
```

Samples on their new axis representing orthogonal features

Based on our result we can see that with the orthogonal representation it significantly reduces the multicolineairty of these features, which will make up a majority of the variance for the dataset. Let's determine how much variance is explained by our principal component features.

```
# calculate the variance explained by the PCs in percent
variance.total <- sum(pca$sdev^2)
variance.explained <- pca$sdev^2 / variance.total * 100
print(variance.explained)

## [1] 40.1263510 18.6789802 13.3662956 7.7480520 6.3886598 3.6879593
## [7] 2.1454579 2.0493418 1.5677019 1.3325395 1.1712360 0.8546007</pre>
```

```
## [13] 0.4622779 0.3897851 0.0307611
```

From our findings we can see that over 50% of the variance can be explained by the first 5 PCA features from the result. Let's use these to now construct a new lm_model to use the first 5 features and see how this impacts our performance results.

```
#number of PCs we want to test = k
k = 5
#we now combine PCs 1:k with the crime data from our original data set
pca_crimedata <- cbind(pca$x[,1:k],uscrime_data[,16])</pre>
lm_model <- lm(V6~., data = as.data.frame(pca_crimedata))</pre>
summary(lm_model)
##
## Call:
## lm(formula = V6 ~ ., data = as.data.frame(pca_crimedata))
## Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
                                    447.86
## -420.79 -185.01
                     12.21 146.24
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
                                    25.428 < 2e-16 ***
## (Intercept)
                 905.09
                             35.59
## PC1
                  65.22
                             14.67
                                      4.447 6.51e-05 ***
## PC2
                 -70.08
                             21.49
                                    -3.261 0.00224 **
## PC3
                             25.41
                                     0.992 0.32725
                  25.19
## PC4
                  69.45
                             33.37
                                      2.081 0.04374 *
## PC5
                -229.04
                             36.75 -6.232 2.02e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 244 on 41 degrees of freedom
## Multiple R-squared: 0.6452, Adjusted R-squared: 0.6019
## F-statistic: 14.91 on 5 and 41 DF, p-value: 2.446e-08
```

We can see compared to last week's results that we get a lower adjusted R2 value of 0.62. However since the difference is insignificant we can conclude that the model performs just as well with a reduced feature set. In production setting this can be very useful, espiecially for reducing training time!

We can conclude our model produces nearly the same accuracy at a fraction of the cost as the observed value is very close with that we determined in exercise 8.2!