## ISyE 6669 Midterm Practice

Instructors: Prof. Andy Sun

**Problem 1.** Consider the matrix  $A = \begin{bmatrix} 0 & 3 & -2 & -1 \\ 4 & -9 & 1 & 3 \\ -6 & -15 & -1 & 5 \end{bmatrix}$ . The rank of A is

- A 1
- B 2
- C 3
- D 4

**Problem 2.** Suppose matrices  $A \in \mathbb{R}^{m \times n}$  and  $B \in \mathbb{R}^{m \times n}$  both have full row rank. Then the rank of A + B is

- A m
- B n
- $C \min\{m, n\}$
- D Depends on A and B

**Problem 3.** Consider the function  $f(x,y) = x^3 - 2xy + y^2$ . The first order Taylor's expansion of this function at (-2,3) is

A 
$$6x + 2y - 13$$

B 
$$5x + 3y - 6$$

C 
$$13x - 3y - 6$$

D 
$$6x + 10y - 5$$

**Problem 4.** The set  $X = \{x \in [-1,1]^5 : \sum_{i=1}^5 x_i \ge -2\}$  is

- A Unbounded and closed
- B Bounded and not closed
- C Bounded and closed
- D Unbounded and not closed

## **Problem 5.** Which set is convex

A 
$$\{x \in \mathbb{R}^2 | \min\{x_1, x_2\} \ge 1\} + \{x \in \mathbb{R}^2 | x_1 \le -1, x_2 \le -2\}$$

B 
$$\{x \in \mathbb{R}^2 | x_1 \ge \ln x_2, x_2 > 0\}$$

C 
$$\{x \in \mathbb{R}^2 | x_1^2 + x_2^2 \ge 4\}$$

D 
$$\{x \in \mathbb{R}^2 | \max\{x_1, x_2\} \ge 1\}$$

Problem 6. Which function is convex on the indicated domain

A 
$$f(x_1, x_2) = 2^{|x_1+1|+|x_2-x_1|}$$
 on  $\mathbb{R}^2$ 

B 
$$f(x) = -2x^2 + 6x + 10$$
 on  $\mathbb{R}$ 

C 
$$f(x) = x^5$$
 on  $[-1, 1]$ 

D 
$$f(x) = \ln(x^2)$$
 on  $(0, +\infty)$ 

## **Problem 7.** Which statement is TRUE?

- A A function with convex level sets is always convex.
- B An optimal solution of maximizing a convex function over a compact set lies on the boundary of the set.
- C A non-convex optimization problem always has a unique optimal solution.
- D A convex function cannot be a concave function at the same time.

## Problem 8. Which of the following is a convex optimization problem

A  $\min\{x^4 + y^4 : x^2 + y^2 \ge 20\}$ 

B  $\max\{\cos(x) : x \in [0, 2\pi]\}$ 

 $C \min\{\ln(x) : x \ge 1\}$ 

D  $\min\{-x - 8y : x + 7y \ge 10, e^x \le 1\}$ 

**Problem 9.** What is the outcome of the problem  $\max\{412x - 511y : 0 \le x \le 1, y \le 1\}$ 

A Infeasible

B Unbounded optimum

C The unique optimal solution is x = 1, y = 1.

D None of above

**Problem 10.** I have solved an optimization problem and got an optimal solution  $x^*$ . Suppose now a new constraint is added to my problem. If I find that  $x^*$  satisfies the new constraint, then  $x^*$  is an optimal solution of the modified problem.

A True

B False

C It depends on whether the optimization problem is maximization or minimization.

**Problem 11.** If I maximize a univariate convex function over a nonempty closed and bounded interval, then there has to be an optimal solution which is one of the end points.

A True

B False

**Problem 12.** Consider an unconstrained maximization problem max f(x). Suppose at a point  $x_0$  we know  $\nabla f(x_0) = 0$  and  $\nabla^2 f(x_0)$  is positive definite. Then

A  $x_0$  is a local maximizer

B  $x_0$  is a local minimizer

C  $x_0$  may be neither a local maximizer nor a local minimizer

D Whether  $x_0$  is a local maximizer or minimizer depends on whether f(x) is a convex function or not.

**Problem 13.** The gradient vector of  $f(x_1, x_2) = \sqrt{x_1 - 1} + (x_2 - 1)^{1/4}$  at point  $(x_1, x_2) = (3, 2)$ 

- A Not defined
- $B \left(\frac{1}{2\sqrt{2}}, \frac{1}{4}\right)^{\top}$
- $C\left(\frac{1}{\sqrt{2}},1\right)^{\top}$
- $D\left(\frac{\sqrt{2}}{2},\frac{1}{4}\right)^{\top}$

**Problem 14.** The Hessian matrix of  $f(x_1, x_2) = 2(x_1 - 3)^2 + 6x_1x_2 + 2(x_2 + 3)^2 + 6x_1 + 2x_2$  at point  $(x_1 = 2, x_2 = 3)$  is

- $A \begin{bmatrix} 4 & 6 \\ 6 & 4 \end{bmatrix}$
- $B \begin{bmatrix} 6 & 0 \\ 0 & 2 \end{bmatrix}$
- $C \begin{bmatrix} 4 & 8 \\ 8 & 2 \end{bmatrix}$
- $D \begin{bmatrix} 4 & 4 \\ 4 & 1 \end{bmatrix}$

**Problem 15.** Consider the problem min  $\{c^{\top}x: x \in X\}$  where X is a nonempty compact set in  $\mathbb{R}^n$ . Suppose  $c \neq 0$ . What can you say about the problem:

- A The problem may have an unbounded optimal solution
- B An optimal solution can be in the interior of X
- C The problem can be infeasible
- D The optimal solution exists and is unique

**Problem 16.** Which of the following is not a feasible point of  $X = \{x \in \mathbb{R}^2 \mid x_1 - x_2 \le -1, 2x_1 - x_2 \le 0, x_2 \ge -\frac{1}{2}\}$ ?

- A  $(0, -\frac{1}{2})$
- B  $(\frac{1}{2}, \frac{3}{2})$
- C(0,1)
- D(-1,0)

**Problem 17.** For the transportation problem:

min 
$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$
  
s.t.  $\sum_{i=1}^{m} x_{ij} \ge d_j$ ,  $j = 1, 2, ..., n$   
 $\sum_{j=1}^{n} x_{ij} \le s_i$ ,  $i = 1, 2, ..., m$   
 $x_{ij} \ge 0$   $i = 1, 2, ..., m$ ,  $j = 1, 2, ..., n$ 

Which of the following situations must cause infeasibility?

- A The total supply  $\sum_{i=1}^{m} s_i$  is greater than the total demand  $\sum_{j=1}^{n} d_j$
- B There exists a demand  $d_j$  which is greater than the total supply  $\sum_{i=1}^m s_i$
- C The total supply  $\sum_{i=1}^{m} s_i$  is equal to the total demand  $\sum_{j=1}^{n} d_j$
- D Some  $s_i$  is smaller than all demand  $d_j$  for j = 1, 2, ..., n.

**Problem 18.** Which of the following functions can be reformulated as convex piecewise linear functions?

A 
$$f(x) = \min\{10x - 1, 2x + 10, 20\}, x \in \mathbb{R}$$

B 
$$f(x) = \sum_{i=1}^{2019} 2^{-i} |e^{i/2}x - \sin(i)|, \quad x \in \mathbb{R}$$

C 
$$f(x_1, x_2) = -|x_1| + |x_2|$$
,  $-1 \le x_1 \le 2, 0 \le x_2 \le 2$ .

D None of the above.

**Problem 19.** Choose the correct statement about the "here-and-now" decision and the "wait-and-see" decision.

A The "wait-and-see" decision can be made before part of the uncertainty is realized.

B The "here-and-now" decision may change after the uncertainty is realized.

C The "here-and-now" decision must be made before the uncertainty is realized.

**Problem 20.** Consider the following nonlinear optimization problem:

min 
$$|x - 2| + 3|1 - x|$$
  
s.t.  $x \ge 0$ 

Which of the following linear reformulations is equivalent to it?

Α

$$\min z_1 + 3z_2$$
s.t.  $z_1 \ge x - 2$ 

$$-z_1 \le x - 2$$

$$z_2 \ge 3(1 - x)$$

$$-z_2 \le 3(1 - x)$$

$$x \ge 0$$

В

min 
$$z_1 + 3z_2$$
  
s.t.  $z_1 \ge x - 2$   
 $-z_1 \ge x - 2$   
 $z_2 \ge 1 - x$   
 $-z_2 \ge 1 - x$   
 $x \ge 0$ 

 $\mathbf{C}$ 

min 
$$z_1 + 3z_2$$
  
s.t.  $z_1 \ge x - 2$   
 $-z_1 \le x - 2$   
 $z_2 \ge 1 - x$   
 $-z_2 \le 1 - x$   
 $x > 0$ 

D

$$\min -z_1 - 3z_2$$
s.t.  $z_1 \ge x - 2$ 

$$-z_1 \le x - 2$$

$$z_2 \ge 1 - x$$

$$-z_2 \le 1 - x$$

$$x > 0$$

**Problem 21.** Consider the following nonlinear objective that is the average of the  $\ell_1$  metric and  $\ell_{\infty}$  metric

$$\min_{x} \left\{ \frac{1}{2} (|x-4| + |x+5|) + \frac{1}{2} \max\{|x-4|, |x+5|\} \right\}.$$

Which is the correct reformulation as a linear program?

Α

$$\min \frac{1}{2}(z_1 + z_2) + \frac{1}{2}(x - 4) + \frac{1}{2}(x + 5)$$
s.t.  $-z_1 \le x - 4$ 

$$z_1 \le x - 4$$

$$-z_2 \le x + 5$$

$$z_2 \le x + 5$$

В

$$\min \quad \frac{1}{2}(z_1 + z_2) + \frac{1}{2}z_3 + \frac{1}{2}z_4$$
s.t.  $-z_1 \le x - 4 \le z_1$ 

$$-z_2 \le x + 5 \le z_2$$

$$-z_3 \le x - 4 \le z_3$$

$$-z_4 \le x + 5 \le z_4$$

 $\mathbf{C}$ 

$$\min \frac{1}{2}z_1 + \frac{1}{2}z_2 
s.t. - z_1 \le x - 4 \le z_1 
- z_1 \le x + 5 \le z_1 
- z_2 \le x - 4 \le z_2 
- z_2 < x + 5 < z_2$$

D

$$\min \quad \frac{1}{2}(z_1 + z_2) + \frac{1}{2}z_3$$
s.t.  $-z_1 \le x - 4 \le z_1$ 
 $-z_2 \le x + 5 \le z_2$ 
 $-z_3 \le x - 4 \le z_3$ 
 $-z_3 \le x + 5 \le z_3$ 

**Problem 22.** Which of the following statements about the set  $P = \{ \boldsymbol{x} = (x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 : x_1 + 2x_2 - 3x_3 + 4x_4 - 5x_5 = 0 \}$  in  $\mathbb{R}^5$  is TRUE?

A P is not a polyhedron, because a polyhedron should be defined by inequalities.

B P is a polyhedron but not convex.

- C *P* is unbounded and is the intersection of two halfspaces,  $\{x \in \mathbb{R}^5 : x_1 + 2x_2 3x_3 + 4x_4 5x_5 \le 0\} \cap \{x \in \mathbb{R}^5 : x_1 + 2x_2 3x_3 + 4x_4 5x_5 \ge 0\}.$
- D P has an extreme ray  $(3,0,1,0,0)^{\top}$ .

**Problem 23.** If a standard form linear program is not degenerate and has a finite optimal solution, then the step size determined by the min-ratio test in each iteration of the simplex method must be strictly positive, and the objective function value must also be strictly improved at each iteration.

- A True
- B False

**Problem 24.** Find the extreme ray(s) of the polyhedron  $P = \{(x, y) \in \mathbb{R}^2 : x - y \le 1, x \ge 0, y \ge 0\}.$ 

- $A [1,1]^{\top}$
- B  $[1,0]^{\top}$
- C The polyhedron P does not have any extreme ray.

**Problem 25.** Which of the following is TRUE?

- A A polyhedron always contains at least one extreme ray.
- B A nonempty polytope may not have a extreme point.
- C The nonnegative orthant  $\{(x_1, x_2, x_3) : x_i \ge 0, \forall i = 1, 2, 3\}$  has three extreme rays.
- D A nonempty polyhedron in standard form may not have an extreme point.

**Problem 26.** Given a polyhedron P in standard form where A is a  $4 \times 6$  matrix with full row rank, which of the following is not possible to be the number of basic feasible solutions of P?

- A 20
- B 15
- C 1
- D 0

**Problem 27.** Suppose a standard form LP has a nondegenerate basic feasible solution  $\mathbf{x} = (x_1 = 1, x_2 = 2, x_3 = 0, x_4 = 2, x_5 = 0)$ . Which of the following points cannot be a basic feasible solution adjacent to  $\mathbf{x}$ ?

- A (2,1,3,0,0).
- $B\ (0,1,0,1,3).$
- C(0,0,0,1,1).
- D (1,0,2,0,1).

**Problem 28.** Suppose the direction to move in a simplex iteration is  $\mathbf{d}^{\top} = \begin{pmatrix} -3 & 0 & -4 & 1 & 0 \end{pmatrix}$  and the current basic variables have values (1,2). Which variables are basic variables and what is the next iteration's basic feasible solution?

- A Basic variables are  $(x_2, x_5)$  and the next iteration's basic feasible solution is  $\begin{pmatrix} 0 & 0 & -2 & 1 & 0 \end{pmatrix}^{\top}$ .
- B Basic variables are  $(x_1, x_3)$  and the next iteration's basic feasible solution is  $\begin{pmatrix} 1 & 0 & 0 & \frac{1}{2} & 0 \end{pmatrix}^{\top}$ .
- C Basic variables are  $(x_1, x_3)$  and the next iteration's basic feasible solution is  $\begin{pmatrix} 0 & 0 & \frac{2}{3} & \frac{1}{3} & 0 \end{pmatrix}^{\top}$ .

**Problem 29.** If the the reduced costs of nonbasic variables  $(x_3, x_4, x_5)$  are (3, -1, 0) and the ratios are  $(\frac{x_1}{-d_1}, \frac{x_2}{-d_2}) = (1, 0)$ . Is this basic feasible solution degenerate and why?

- A Yes, because currently the reduced cost of  $x_5$  is 0.
- B No, because no basic variable can be zero.
- C Yes, because the basic variable  $x_2$  must be 0.

**Problem 30.** Given an LP , write down an equivalent standard form LP.  $\max\{2x_1-3x_2:x_1+x_2\leq 2,\ x_1+2x_2\geq 3\}$ 

A 
$$\max\{2x_1 - 3x_2 : x_1 + x_2 + s_1 = 2, x_1 + 2x_2 - s_2 = 3, s_1 \ge 0, s_2 \ge 0\}$$

B min{
$$-2x_1^+ + 2x_1^- + 3x_2$$
 :  $x_1^+ - x_1^- + x_2 + s_1 = 2$ ,  $x_1^+ - x_1^- + 2x_2 - s_2 = 3$ ,  $s_1 \ge 0$ ,  $s_2 \ge 0$ ,  $x_1^+ \ge 0$ ,  $x_1^- \ge 0$ }

C 
$$\min\{-2x_1^+ + 2x_1^- + 3x_2^+ - 3x_2^- : x_1^+ - x_1^- + x_2^+ - x_2^- + s_1 = 2, x_1^+ - x_1^- + 2x_2^+ - 2x_2^- - s_2 = 3, s_1 \ge 0, s_2 \ge 0, x_1^+ \ge 0, x_1^- \ge 0, x_2^+ \ge 0, x_2^- \ge 0\}$$

D 
$$\max\{2x_1^+ - 2x_1^- - 3x_2^+ + 3x_2^- : x_1^+ - x_1^- + x_2^+ - x_2^- + s_1 = 2, x_1^+ - x_1^- + 2x_2^+ - 2x_2^- - s_2 = 3, s_1 \ge 0, s_2 \ge 0, x_1^+ \ge 0, x_1^- \ge 0, x_2^+ \ge 0, x_2^- \ge 0\}$$