
ISyE 6669-OAN

The Simplex Method

Andy Sun

In Modules 15 and 16, we study one of the most celebrated algorithms in optimization, the
simplex method for solving linear optimization problems. The goal is to understand both the
general algorithmic ideas and the inner workings of the simplex method. We first overview the
procedure of finding basic solutions discussed in these modules and see why it works.

We always work with the following standard form linear program:

min c>x

s.t. Ax = b

x ≥ 0

1 The procedure to find basic solutions and why it works

Procedure for constructing basic solutions for the above standard form LP:

1. Choose m linearly independent columns AB(1), . . . ,AB(m) from A and form the matrix B =
[AB(1), . . . ,AB(m)]. Denote the rest of A as matrix N .

2. The basic solution is x = [xB,xN ], where the basic variables are xB = B−1b and the nonbasic
variables are xN = 0.

If the basic solution x = [xB,xN ] thus obtained is also feasible, which means x ≥ 0 and in particular
xB ≥ 0, then x is a BFS, an extreme point. This is an algebraic procedure to find basic solutions,
but why it works? Why the solution thus found x = [xB,xN ] is a basic solution for the LP?

The definition of a basic solution is that there are n linearly independent active constraints at
this solution, and all the equality constraints must be satisfied. So why is it true that there are n
linearly independent active constraints at the solution found by the above procedure? The reasoning
is summarized below.

• First, it is easy to realize that the matrix A of m rows and n columns is most likely a “short”
and “wide” matrix, in other words, m ≤ n. Why? Because, if m > n, then there are more
linear constraints than the number of dimensions, which results in an overdetermined system.
Without loss of generality, we always assume the rows of A are linearly independent, because
we can always remove equations that are linear independent. In this case, if m = n, the
equalities Ax = b has a unique solution, and the feasible region of the LP has one or no
solution. If m < n, the equalities define a non-empty affine subspace (i.e. a linear subspace
moved away from the origin), which is the more interesting case.

1



• Second, by definition, all the equality constraints in the LP must be satisfied at the basic
solution x. This means that Ax = b are all active constraints. So this gives m active
constraints. Since m < n, we still need another n−m active constraints, which, together with
the existing m equality constraints, form n linear independent constraints. Where do these
n−m active constraints come from? They can only come from the nonnegativity constraints
x ≥ 0. Such a constraint takes the form xi = 0 for some i. We can also write this linear
constraint as

[0, . . . , 0, 1, 0, . . . , 0]
...,ith,...

x1
...
xn

 = 0.

• Third, let’s put all n active constraints together:

B N xB b

0 . . . 0 1 0 . . . 0 =
0 . . . 0 0 1 . . . 0 xN 0
...

...
...

...
...

. . .
...

0 . . . 0 0 0 . . . 1

Table 1: n linearly independent active constraints at x = [xB,xN ].

The left-hand side matrix denoted as Ã can be written as a block matrix:

Ã :=

[
B N
0 I

]
, (1)

Note that B is an m×m invertible matrix, N is m×(n−m), the zero matrix in the left bottom
corner is (n−m)×m, and the identity matrix at the right bottom corner is (n−m)× (n−m).

Proposition 1. Assume B is invertible and Ã is defined in (1). Then, Ã is invertible.

Proof. To show Ã is invertible, Let us look at the following equation:[
B N
0 I

] [
xB
xN

]
= 0,

which clearly implies xN = 0. Therefore, we have BxB = 0. Since B is invertible, the only
solution is xB = 0. Therefore, Ã has linearly independent columns, thus is invertible.

The matrix Ã is invertible means all the active constraints in Ã are linearly independent!
This shows why x = [xB,xN ] thus found is a basic solution. The above picture is very useful.
Keep it in mind. We will use it again later.

2



2 The simplex method

2.1 Algorithmic idea: Local search

Local search is an iterative algorithm, i.e. an algorithm that goes through iterations, where each
iteration t can be described on a high level as follows:

Algorithm 1 Local search framework.

1: Start from a feasible solution xt.
2: Find a “good” direction d that (a) points inside the feasible region and (b) decreases the

objective value.
3: Find a “good” step length θ along d to move to next iterate: xt+1 ← xt + θd.
4: If no good direction or step length can be found, terminate. Otherwise t← t+ 1 and go to step

1.

Local search is a very general algorithmic framework. Many algorithms fall into this framework.
For instance, the famous gradient descent algorithm, which minimizes a differentiable function with-
out any constraint. The gradient descent algorithm moves along the negative gradient direction of
each iterate. If the algorithm terminates, it will find a point with zero gradient. This point can
be a local minimum, i.e. there is no other better solution in a neighborhood of the one found by
the algorithm. Because at each iteration, the algorithm only looks locally around a point, and it is
likely that the algorithm can be trapped in a local minimum and never gets out to the true global
minimum. Finding a global minimum can be very difficult for general optimization problems.

The only class of optimization problems for which local search can guarantee to find a global
minimum is the class of convex programs, i.e. minimization problems with a convex objective
function and a convex feasible region, because for this class of problems, a local minimum is a
global minimum. Let us state this theorem with a simple proof.

Theorem 1. A locally minimum of a convex optimization problem is also a global minimum.

Proof. Let x∗ be a local minimum of minx∈X f(x), where f(x) is a convex function and X is a
convex set. Then by definition, there exists a neighborhood of x∗ in X, denoted as Uε(x

∗) = {x :
‖x − x∗‖ ≤ ε} for some ε > 0, where f(x∗) ≤ f(x) for all x ∈ Uε(x

∗). Now suppose there is
a different point x̂ ∈ X such that f(x̂) < f(x∗). Since X is a convex set, for any 0 < λ < 1,
the point x = λx̂ + (1 − λ)x∗ is in X. We can choose λ to be very close to zero so that x is
also in the neighborhood Uε(x

∗). Since f is convex, we have f(x) ≤ λf(x̂) + (1 − λ)f(x∗) <
λf(x∗) + (1−λ)f(x∗) = f(x∗), i.e. x is a point in Uε(x

∗) with a strictly lower objective value than
x∗, which contradicts with x∗ being a local minimum in Uε(x

∗).

2.2 Simplex method as a local search

Remember LP is a special class of convex programs, therefore, we can expect that a good local
search algorithm should be able to solve LP. Of course, how to design a functioning local search
algorithm for LP is a highly nontrivial matter. It requires the work of a genius (more on this later).
The simplex method as a local search algorithm is outlined below. The aspects that are specific to
the simplex methods are put in italic.

3



Algorithm 2 The simplex method framework.

1: Start from a basic feasible solution xt.
2: Find a direction d that (a) points to an adjacent BFS and (b) decreases the objective value.
3: Find a step length θ so that the next iterate, xt+1 ← xt + θd, is a BFS.
4: If no such direction or step length can be found, terminate. O.w. t← t+ 1 and go to step 1.

An important observation is that the simplex method goes from one BFS to another BFS. Why
should we only care about BFS? This is due to an important property of LP. Namely, if an LP has
a BFS (which is true for any standard form LP) and if the optimal objective value is bounded, then
a BFS is an optimal solution.

2.3 Development of the simplex method

To implement Algorithm 2, we need to clarify the concept of “an adjacent BFS” and also specify
algebraically how to carry out steps 2, 3, and 4. From now on in this notes, all the LPs are in
standard form.

min c>x

s.t. Ax = b

x ≥ 0

where x ∈ Rn and the rows of the matrix A are linearly independent.
The simplex method is developed step by step below.

1. Start from a BFS : Recall that, algebraically speaking, a basic feasible solution is a feasible
solution where all equality constraints Ax = b are satisfied and out of all the active constraints,
n of them are linearly independent. A basic feasible solution x can be partitioned into two
parts: x = [xB,xN ], the basic variable part xB and the nonbasic variable part xN . The
nonbasic variable is always zero, i.e., xN = 0. The basic variable xB = [xB(1), . . . , xB(m)] is
associated with the basis B = [AB(1), . . . ,AB(m)]. In particular, we have

b = Ax = [B,N ]

(
xB
xN

)
= BxB + NxN = BxB ⇒ xB = B−1b.

2. Find a feasible direction: Starting from a basic feasible solution x, the simplex method con-
siders a feasible direction d to move away from the BFS x to x̂ := x + θd. The new point
x + θd needs to be (a) a feasible point and (b) an adjacent BFS. Let us look at these two
requirements.

(a) Maintain feasibility: For x̂ to be feasible, we need Ax̂ = b, which means A(x+ θd) = b.
Since we already have Ax = b and θ > 0, we should have Ad = 0. Let us break down
A into [B,N ] and d correspondingly to dB and dN . Then, we have

Ad = [B,N ]

(
dB
dN

)
= BdB + NdN = 0. (2)

We need to figure out how to find dB and dN . For this, we need the definition of an
adjacent BFS.

4



(b) Adjacent BFS: The new iterate x̂ is a BFS adjacent to x. Mathematically, an adjacent
BFS is defined below.

Definition 1 (Adjacent BFS). Two basic feasible solutions x̂ and x of a polyhedron P
are called adjacent, if they share the same n− 1 linearly independent active constraints.

Geometrically, the solutions of n− 1 linearly independent equations in n variables form
a line, i.e. a 1-dimensional linear structure. So, two adjacent BFS are connected by a
line segment on this line. This line segment is called an edge of the polyhedron. That
is, two adjacent BFS’ are connected by an edge, which is consistent with our intuition of
what “adjacency” means. If you want to get a picture, flip to Section 4, Figure 1, where
BFS’ (0, 10) and (6, 16) are connected by an edge and therefore are adjacent. They share
1 common active constraints in R2. The concept of adjacent BFS’ is applicable to any
polyhedron. Now, we specialize it to a standard form LP.

Proposition 2. In a standard form LP, two BFS’ x and x̂ are adjacent if they have the
same n−m− 1 nonbasic variables.

Proof. First, each BFS has n − m nonbasic variables, which are all zero. Since x and
x̂ share n − 1 active constraints and both have to satisfy all the m equality constraints
Ax = b, then they can only differ in one nonbasic variable. In other words, they have
the same n−m− 1 nonbasic variables.

For example, if the BFS x ∈ R5 has two basic variables x1, x2 and three nonbasic variables
x3, x4, x5, then its adjacent BFS x̂ should share two same nonbasic variables x3, x4 or
x3, x5 or x4, x5, plus one different nonbasic variable x1 or x2. In other words, going from
x to x̂, two nonbasic variables of x stay as nonbasic variables of x̂ and only one of the
nonbasic variables of x becomes a basic variable of x̂.

Proposition 2 gives us a way to specify dN ∈ Rn−m: Because n−m−1 nonbasic variables of x
need to remain nonbasic, i.e. at zero value, dN must have n−m−1 components at zero value;
and because one nonbasic variable of x needs to become basic, i.e. to increase from zero value
to some positive value, then the corresponding component of dN has to be a positive number,
and without loss of generality, we can fix this component at value 1 and use the step length θ
to control its size.

In terms of the Step 2 in the simplex method (Algorithm 2), we can do the following:

• Select a nonbasic variable xj (remember initially xj = 0), increase xj to θ ≥ 0, while
keeping other nonbasic variables at zero.

In other words, the simplex method makes dN = [0, . . . , 0, 1, 0, . . . , 0]> := e>j for some dj = 1,
where ej is the j-th unit vector. It seems that only the nonbasic direction is determined by
this choice. However, the cool thing about starting from a BFS is that the basic direction
part dB is also uniquely determined simultaneously. To see this, From (2), it follows that

BdB + NdN = BdB + Aj = 0,

5



where Aj is the column in N associated with the 1 component in dN , which is of course a
column of the matrix A. Since B is invertible, we have

dB = −B−1Aj . (3)

Put together, we have d = [−B−1Aj , ej ]. We refer to this direction as the j-th basic
direction.

3. Measure the cost change: How much can we change the objective cost by moving along the
j-th basic direction? The change of cost can be calculated as:

c>(x + θd)− c>x = θc>d = θ
(
c>BdB + c>NdN

)
= θ

(
−c>BB−1Aj + cj

)
:= θc̄j .

Here we define a very important quantity c̄j :

Definition 2. Let x be a basic solution, let B be an associated basis matrix, and let cB be
the vector of costs of the basic variables. For each j, we define the reduced cost c̄j of the
variable xj to be c̄j = cj − c>BB

−1Aj.

Intuitively, c̄j is the unit change of cost when we move along the j-th basic direction. Clearly,
we would select the j-th basic direction only if c̄j < 0, i.e. the cost can be reduced by going
this direction (remember we are minimizing the cost). This is the criterion for selecting a
feasible direction from n−m possible feasible directions.

However, if we find c̄j ≥ 0 for every index j, it is not benefitial to move along any basic direc-
tion, which implies the current BFS x is locally optimal, thus globally optimal. Conversely,
if x is optimal and nondegenerate, then c̄j ≥ 0 for every j. This in fact gives the optimality
conditions for linear optimization:

Theorem 2 (Optimality Conditions). Consider a basic feasible solution x associated with a
basis matrix B, and let x̄ be the corresponding vector of reduced costs.

(a) If c̄ ≥ 0, then x is optimal.

(b) If x is optimal and nondegenerate, then c̄ ≥ 0.

4. Find the step length: Once a basic direction is selected, i.e. c̄j < 0 for some j ∈ N , we want to
go along this direction as far as possible. In this way, the cost can be reduced by the maximum
amount. We want to move until some basic variable xB(l) becomes zero at x + θ∗d, where

θ∗ := max{θ ≥ 0 | x + θd ∈ P}.

Let us summarize for now. We start from a BFS, select a basic feasible direction that reduces
the cost, and we go along this direction as far as we can while still remaining feasible. Now
the question is, Does this lead us to a position that we can repeat the procedure?

5. Arrive at an adjacent BFS : Indeed, the above procedure leads us to a new BFS. From there,
we can start the procedure again. Let us see what the new BFS is. Remember after moving by
θ∗d, we have xB(l) = 0, i.e. xB(l) becomes a nonbasic variable. At the same time, xj = θ > 0

6



becomes a basic variable. We say that xj enters the basis and xB(l) leaves the basis. If we

look at the initial basis matrix B and the new basis matrix B, they only differ in one column:

B =
[
AB(1), . . . ,AB(l−1),AB(l),AB(l+1), . . . ,AB(m)

]
∈ Rm×m

B =
[
AB(1), . . . ,AB(l−1),Aj ,AB(l+1), . . . ,AB(m)

]
∈ Rm×m

Theorem 3.

(a) B is a basis matrix, that is, columns AB(i), i 6= l and Aj are linearly independent.

(b) The vector y = x + θ∗d is a BFS associated with the basis matrix B.

Putting everything together, we complete an iteration of the simplex method.

1. We start the simplex method with a basic feasible solution x and the associated basis
consisting of the basis matrix B = [AB(1), . . . ,AB(m)], where AB(i)’s are the basic
columns of A.

2. Compute the reduced cost c̄j = cj − c>BB
−1Aj for each nonbasic variable xj . There are

two possibilities:

(2.1) If all the reduced costs are nonnegative, the current BFS is optimal, and the algo-
rithm terminates;

(2.2) Otherwise, select some j with c̄j < 0, so xj enters the basis.

3. Compute dB = −B−1Aj . There are two possibilities:

(3.1) If dB ≥ 0, we know the optimal cost is −∞, and the algorithm terminates.

(3.2) Otherwise, if some entry of dB is negative, continue to the next step.

4. If some entry of dB is negative, compute the stepsize θ∗ by the following min-ratio test :

θ∗ = min
{i=1,...,m | dB(i)<0}

xB(i)

−dB(i)
.

Suppose the index B(l) achieves the minimum: xB(l) exits the basis.

5. Form the new basis matrix B by replacing AB(l) column with Aj . The new BFS y has
basic variable part yB(i) = xB(i) + θ∗dB(i) and yj = θ∗. Start a new iteration.

2.4 Correctness of the simplex method

The correctness of the above algorithm is stated in the following theorem. In essense, under a
favorable condition, the above simplex method always terminates in a finite number of steps, with
either an optimal solution, or a direction along which the optimal cost goes to −∞.

Theorem 4 (Correctness of the Simplex Method). If every basic feasible solution of a standard form
linear program is nondegenerate, then the simplex method always terminates in a finite number of
steps, either

7



1. finds an optimal solution xB = B−1b and xN = 0, with the associated optimal basis matrix
B;

2. or finds a direction d = (dB,dN ) such that Ad = 0, dB ≥ 0, dN = (0, . . . , 0, 1, 0, . . . , 0)T

with j-th element being 1, cTd < 0, and the optimal cost is −∞.

So the favorable condition is that every basic feasible solution is nondegenerate. We have talked
about degeneracy before. The definition is the following:

Definition 3. 1. A basic feasible solution of a standard form LP is said to be nondegenerate,
if every basic variable is positive, i.e. xB(i) > 0 for all i = 1, . . . ,m.

2. A basic feasible solution of a standard form LP is said to be degenerate, if some basic variable
xB(i) is zero.

The key insight in Theorem 3 is that, when every BFS is non-degenerate (i.e. xB > 0), the
algorithm moves by a positive amount θ∗ > 0 along a direction d, and no BFS can be visited twice
(why?). Since any polyhedron can only have a finite number of BFS, the algorithm must terminate
after a finite number of iterations.

2.5 The simplex method for degenerate problems

As we carry out the simplex method, there can be multiple choices of entering variables and exiting
variables. How to choose which variables to enter and exit is important for a degenerate problem.
If not careful, the simplex method may run into cycles and never terminates. A simple rule that
prevents cycling is the following one:

Bland’s rule:

1. Among all the eligible choices of nonbasic variables to enter the basis, select the one with the
smallest subscript.

2. Among all the eligible choices of basic variables to exit the basis, select the one with the
smallest subscript.

For example, if in an iteration of the simplex method, we have basic variables xB = (x5 = 0, x6 =
0, x7 = 1) and the reduced costs of the nonbasic variables x1, x2, x3, x4 are (−1/2, 20,−3/4, 6),
respectively. Then, both x1 and x3 are candidates to enter the basis. According to the Bland’s
rule, choose x1 to enter, which has smaller subscript than x3. Suppose the feasible direction is

dB = −B−1A1 =

[
−1/4
−1/2

0

]
. The min-ratio test has θ∗ = min{0/(1/4), 0/(1/2)} = 0, so both x5 and

x6 can exit. Bland rule picks x5 since it has a smaller subscript.

3 The Phase I/Phase II Simplex Method

So far we have assumed that we already have a basic feasible solution to start the simplex method.
However, in reality, finding a basic feasible solution is not an easy task — in fact, it turns out to be
as hard as solving a linear program. Do not confuse finding a basic feasible solution with finding
a basic solution. To find a basic solution, we only need to find a basis matrix B. However, the

8



resulting basic solution may not be feasible (because B−1b may not be nonnegative), therefore, may
not be a basic feasible solution.

In the following, we will develop a two-phase method, in the first phase (Phase-I), it finds an
initial BFS for a standard form LP, or detects the LP is infeasible; in the second phase (Phase-II),
it uses the initial BFS to start the simplex method.

1. For any standard form LP, we can always make the right-hand side vector b a nonnegative
vector, i.e. b ≥ 0 by multiplying −1 to both sides of the i-th equality constraint if bi < 0. For
example, if we have 3x1−x2 = −2 in the constraints, we can always write it as −3x1 +x2 = 2.
So we want to solve the standard form LP:

min c>x

s.t. Ax = b

x ≥ 0,

where b ≥ 0.

2. Now construct the following auxiliary problem, which we call the Phase-I LP:

(Phase-I LP) z∗ = min y1 + y2 + · · ·+ ym

s.t. Ax + Iy = b

x ≥ 0,y ≥ 0.

Here we introduce auxilliary variable y = (y1, . . . , ym), similar to the case where we introduce
slack variables (but here the purpose is not to transform a LP into standard form, but to find
an initial BFS or detect infeasibility).

For this problem, we can easily find an initial basic feasible solution, namely (x = 0,y = b).
Since the identity matrix I is invertible, this is a basic solution, and since b ≥ 0, this solution
is feasible. Therefore, it is indeed a BFS for the Phase-I LP. So we can solve the Phase-I LP
using the simplex method starting with the BFS (x = 0,y = b).

After we solve the Phase-I problem, the optimal cost z∗ has two possibilities: z∗ = 0 or z∗ > 0.

(a) If z∗ = 0, then the optimal solution y∗1, . . . , y
∗
m must be all zero, because each of y∗i ≥ 0

and their sum is zero. In this case, the x-variable part x∗ = (x∗1, . . . , x
∗
n) is a feasible

solution to the original problem, i.e. Ax∗ = b and x∗ ≥ 0. Furthermore, either x∗

already contains all the basic variables, or after some simple operations, we can obtain a
basic feasible solution to the original problem.

(b) If z∗ > 0, then some y∗i > 0. This in fact shows the original problem is infeasible, as
proved in the following theorem.

Theorem 5. The original LP is feasible if and only if z∗ = 0.

Proof. If the original LP is feasible, there exists some x∗ such that Ax∗ = b and x∗ ≥ 0.
Then, (x = x∗,y = 0) is also feasible for the Phase-I problem. The cost associated with this
feasible solution is 0. But since we know z∗ ≥ 0, this feasible solution is actually optimal.
That is, we have z∗ = 0.

9



For the other direction, if z∗ = 0, let the optimal solution of the Phase-I problem be (x∗,y∗).
Then y∗1 = · · · = y∗m = 0, therefore, Ax∗ + Iy∗ = b which implies Ax∗ = b. We also have
x∗ ≥ 0. So, the original problem is feasible.

To summarize, we have the following Phase-I/Phase-II simplex method to solve any stan-
dard form LP:

1. Phase I:

Solve the Phase-I LP. Denote the optimal cost as z∗. We will have two possibilities:

(a) If z∗ > 0, the original LP is infeasible. The algorithm terminates.

(b) If z∗ = 0, a feasible solution to the original LP is found, from which we can obtain a
BFS for the original LP.

2. Phase II:

Solve the original LP by the simplex method, starting with the BFS found in Phase I.

[See next page for examples]

10



4 Examples

4.1 Simplex Method in Detail

Consider the following linear program:

max 2x1 + 3x2

s.t. − x1 + x2 ≤ 10

3x1 + 2x2 ≤ 60

2x1 + 3x2 ≤ 6

x1, x2 ≥ 0.

1. First let us draw the feasible region of this LP in R2 in Figure 1.

Figure 1: A simplex example.

The blue dots are basic feasible solutions. The green dots are basic solutions but not feasible.
So in total, there are 10 basic solutions.

2. Transform to a standard form LP: The simplex method works on standard form LPs, so let
us first transform the above LP into the standard form.

min −2x1 −3x2

s.t. −x1 +x2 +x3 = 10
3x1 +2x2 +x4 = 60
2x1 +3x2 +x5 = 60

x1, x2, x3, x4, x5 ≥ 0.

Remember a standard form LP has the following form:

min cTx [Minimization]

s.t. Ax = b [Only equality constraints]

x ≥ 0 [All variables nonnegative]

11



To facilitate the simplex method, it helps to write out explicitly the c,A, b:

c =


−2
−3
0
0
0

 ,A =

−1 1 1 0 0
3 2 0 1 0
2 3 0 0 1

 , b =

10
60
60



3. Start the simplex method:

Iteration 1:

(a) Choose a starting BFS: Let us select the basis B = [A3,A4,A5] =
[

1 0 0
0 1 0
0 0 1

]
. The

corresponding basic solution is

xB =

x3

x4

x5

 = B−1b =

10
60
60

 ,xN =

[
x1

x2

]
=

[
0
0

]
,

and the cost coefficients associated with basic and nonbasic variables:

cB =

c3

c4

c5

 =

0
0
0

 , cN =

[
c1

c2

]
=

[
−2
−3

]
.

Since xB ≥ 0 (and of course xN ≥ 0), the current basic solution is a basic feasible
solution. So we are ready to start the simplex method.

(b) Compute reduced costs for nonbasic variables:

c̄1 = c1 − cTBB
−1A1 = −2

c̄2 = c2 − cTBB
−1A2 = −3

Both c̄1 and c̄2 are negative. Therefore, the current BFS is not optimal, and both x1 and
x2 are candidates to enter the basis, i.e. to increase to a positive value. Let us take x2

to enter the basis, and keep x1 zero.

(c) Compute feasible direction d =
[
dB
dN

]
: Since we decide to increase x2 and keep x1 at

zero, the nonbasic variable part of the feasible direction dN is dN =
[

0
1

]
, and the basic

variable part of the feasible direction dB is

dB = −B−1A2 =

−1
−2
−3

 .
Since some components of dB is negative, we do not have an unbounded optimal solution,
and we need to decide how far to go along this direction while still remaining feasible.

12



(d) Min-ratio test: By going along the above calculated direction, we are going from the
initial BFS x to a new point x + θd. Let us write it out componentwise:

x + θd =

[
xB + θdB
xN + θdN

]
=


xB(1) + θdB(1)

xB(2) + θdB(2)

xB(3) + θdB(3)

x1 + θ · 0
x2 + θ · 1

 =


x3 + θd3

x4 + θd4

x5 + θd5

x1

x2 + θ

 =


10 + θ · (−1)
60 + θ · (−2)
60 + θ · (−3)

0
θ

 =


10− θ
60− 2θ
60− 3θ

0
θ


To decide the largest θ so that x + θd ≥ 0, we need to do the min-ratio test:

θ∗ = min
{i=1,...,m|dB(i)<0}

xB(i)

−dB(i)
= min{10

1
,
60

2
,
60

3
} = 10.

So xB(1) = x3 exits the basis.

(e) The new basis: The new basis B̄ = [A2,A4,A5], which differs from the original basis
only in one column: A3 is replaced by A2 i.e. x3 exits the basis and x2 enters the basis.
The new basic variables and nonbasic variables are

xB̄ =

x2

x4

x5

 =

10
40
30

 , xN̄ =

[
x1

x3

]
=

[
0
0

]
.

We are ready for a new iteration of the simplex method.

Iteration 2:

(a) Let us write the new basis and its inverse:

B = [A2,A4,A5] =

1 0 0
2 1 0
3 0 1

 , B−1 =

 1 0 0
−2 1 0
−3 0 1

 .
The cost coefficients for basic and nonbasic variables:

cB =

c2

c4

c5

 =

−3
0
0

 , cN =

[
c1

c3

]
=

[
−2
0

]
.

(b) Compute reduced costs:

c̄1 = c1 − cTBB
−1A1 = −2−

[
−3 0 0

]  1 0 0
−2 1 0
−3 0 1

−1
3
2

 = −2−
[
−3 0 0

] −1
3
2

 = −5

c̄3 = c3 − cTBB
−1A3 = 0−

[
−3 0 0

]  1 0 0
−2 1 0
−3 0 1

1
0
0

 = 0−
[
−3 0 0

] 1
0
0

 = 3.

c̄1 < 0, so the current BFS is not optimal, and x1 enters the basis.

13



(c) Feasible direction:

dN =

[
d1

d3

]
=

[
1
0

]
, dB =

d2

d4

d5

 = −B−1A1 = −

 1 0 0
−2 1 0
−3 0 1

−1
3
2

 =

 1
−5
−5

 .
Since some components of dB are negative, the optimal solution is not unbounded.

(d) Min-ratio test: Going along the direction calculated above, we move from the current
BFS to a new point

xB + θdB =

10
40
30

+ θ

 1
−5
−5

 .
Do the min-ratio test to decide how far to move to keep xB + θdB ≥ 0:

θ∗ = min
{i=1,...,m|dB(i)<0}

xB(i)

−dB(i)
= min{ 40

−(−5)
,

30

−(−5)
} = 6.

xB(3) = x5 becomes zero, so x5 exits the basis.

(e) The new basis: B̄ = [A2,A4,A1], since x1 enters the basis and x5 exits the basis. The
new non-basis matrix N = [A5,A3]. The new BFS is

xB =

x2

x4

x1

 =

16
10
6

 , xN =

[
x5

x3

]
=

[
0
0

]
.

To decide if this BFS is optimal, we need to start another iteration.

1. Iteration 3:

(a) Let us write the new basis and its inverse:

B = [A2,A4,A1] =

1 0 −1
2 1 3
3 0 2

 , B−1 =

 0.4 0 0.2
1 1 −1
−0.6 0 0.2

 .
The cost coefficients for basic and nonbasic variables:

cB =

c2

c4

c1

 =

−3
0
−2

 , cN =

[
c5

c3

]
=

[
0
0

]
.

(b) Compute reduced costs:

c̄5 = c5 − cTBB
−1A5 = 0−

[
−3 0 −2

]  0.4 0 0.2
1 1 −1
−0.6 0 0.2

0
0
1

 = 0−
[
0 0 −1

] 0
0
1

 = 1

c̄3 = c3 − cTBB
−1A3 = 0−

[
−3 0 −2

]  0.4 0 0.2
1 1 −1
−0.6 0 0.2

1
0
0

 = 0−
[
0 0 −1

] 1
0
0

 = 0.

14



Since all the reduced costs are nonnegative, the current BFS is optimal. We are done!
The final optimal solution is:

x =


x1

x2

x3

x4

x5

 =


6
16
0
10
0

 .

Now let us trace the trajectory of the above simplex iterations on the graph. We started at the initial
BFS (x1, x2, x3, x4, x5) = (0, 0, 10, 60, 60), which corresponds to the origin (x1, x2) = (0, 0) on the
2-D graph. After the first iteration, we moved to a new BFS (x1, x2, x3, x4, x5) = (0, 10, 0, 40, 30),
which is the extreme point (x1, x2) = (0, 10) on the x2 axis. We decided this is not an optimal
solution, so we did one more iteration of simplex. This time, we reached the BFS (x1, x2, x3, x4, x5) =
(6, 16, 0, 10, 0), which corresponds to (x1, x2) = (6, 16) on the graph. It is optimal. This trajectory
is shown on the following graph. We can see, geometrically, the simplex method is traversing from
one extreme point to another adjacent extreme point, while reducing the objective cost, until it
reaches the optimal extreme point.

4.2 Two-Phase Simplex Method

Here is an example to form a Phase-I problem. The original LP is given as:

min x1 +3x2 +2x3

s.t. x1 +2x2 +x3 = 3
−x1 +2x2 −6x4 = 2

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

15



The Phase-I problem is formulated as:

min y1 +y2

s.t. x1 +2x2 +x3 +y1 = 3
−x1 +2x2 −6x4 +y2 = 2

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, y1 ≥ 0, y2 ≥ 0.

We can choose (y1, y2) to be the basic variables, which gives the basic feasible solution (x1 = 0, x2 =
0, x3 = 0, x4 = 0, y1 = 3, y2 = 2). Then, we can start the simplex method to solve the Phase-I
problem. We also know, the Phase-I problem always has a finite optimal cost, because y ≥ 0 which
implies y1 + · · ·+ ym ≥ 0, i.e. the optimal cost z∗ can not be negative.

Solving the Phase-I problem with the simplex method, we get an optimal solution x∗ = (0, 3/2, 0, 1/6)
and y∗ = (0, 0). The x variable part is a BFS for the original LP, with basic variables (x2 = 3/2, x4 =
1/6), and nonbasic variables (x1 = 0, x3 = 0). You can also go back to the original LP and verify
this: The matrix B = [A2,A4] is indeed invertible, therefore a basis matrix. The corresponding
basic variable is xB = B−1b = [3/2, 1/6], which is positive, therefore it is a BFS of the original LP.
Now, we can start solving the original LP with this BFS.

16


