Files
louiscklaw 9035c1312b update,
2025-02-01 02:09:32 +08:00

147 lines
5.2 KiB
Plaintext

---
title: "hw2"
author: "Mark Pearl"
date: "7/10/2021"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
library(tidyverse)
library(tidyr)
library(glmnet)
```
```{r q2 data files and cleansing}
#Read in and cleanse the data
income_democracy <- read_csv('./data/income_democracy.csv')
income_cleansed = subset(income_democracy,select = -c(country,year,code))
income_cleansed = income_cleansed %>% drop_na()
```
```{r q2 create train / test datasets}
## 80% of the sample size
smp_size <- floor(0.8 * nrow(income_cleansed))
train_ind <- sample(seq_len(nrow(income_cleansed)), size = smp_size)
train <- income_cleansed[train_ind, ]
test <- income_cleansed[-train_ind, ]
y_train <- train[c("dem_ind")]
X_train <- subset(train,select = -c(dem_ind))
y_test <- test[c("dem_ind")]
X_test <- subset(test,select = -c(dem_ind))
p=9
```
## Your job is to predict democracy index by real GDP per capita and other demographic features. Inorder to predict the democracy index we are going to use the following models:
1. Ridge Regression (10 points)
2. Lasso Regression (10 points)
3. Adaptive Lasso Regression (10 points)
4. Elastic Net Regression (10 points)
```{r q2 ridge regression}
# Ridge
ridge = cv.glmnet(as.matrix(X_train), as.matrix(y_train), family = "gaussian", alpha = 0, intercept = FALSE, nfolds=20)
lambda_ridge = ridge$lambda.min
lambda_ridge
coef.ridge = matrix(coef(ridge, s = lambda_ridge))[2:(p+1)]
ridge = glmnet(as.matrix(X_train), as.matrix(y_train), family = "gaussian", alpha = 0, intercept = FALSE, nfolds=20)
plot(ridge, xvar = "lambda", label = TRUE)
abline(v = lambda_ridge)
```
```{r q2 ridge regression}
# Ridge
y_ridge = predict(ridge, as.matrix(X_train), s = lambda_ridge)
mse_ridge = sum((y_test-y_ridge)^2)/nrow(X_test)
mse_ridge
```
```{r q2 lasso regression plot}
# Lasso
lasso = cv.glmnet(as.matrix(X_train), as.matrix(y_train), family = "gaussian", alpha = 1, intercept = FALSE, nfolds=20)
lambda_lasso = lasso$lambda.min
lambda_lasso
coef.lasso = matrix(coef(lasso, s = lambda_lasso))[2:(p+1)]
lasso = glmnet(as.matrix(X_train), as.matrix(y_train), family = "gaussian", alpha = 1, intercept = FALSE, nfolds=20)
plot(lasso, xvar = "lambda", label = TRUE)
abline(v = log(lambda_lasso))
```
```{r q2 lasso regression}
# Ridge
y_lasso = predict(lasso, as.matrix(X_train), s = lambda_lasso)
mse_lasso = sum((y_test-y_lasso)^2)/nrow(X_test)
mse_lasso
```
```{r q2 adaptive lasso regression}
gamma = 2
b.ols = solve(t(as.matrix(X_train))%*%as.matrix(X_train))%*%t(as.matrix(X_train))%*%as.matrix(y_train)
ridge = cv.glmnet(as.matrix(X_train), as.matrix(y_train), family = "gaussian", alpha = 0, intercept = FALSE, nfolds=20)
l.ridge = ridge$lambda.min
b.ridge = matrix(coef(ridge, s = l.ridge))[2:(p+1)]
w1 = 1/abs(b.ols)^gamma
w2 = 1/abs(b.ridge)^gamma
alasso1 = cv.glmnet(as.matrix(X_train), as.matrix(y_train), family = "gaussian", alpha = 1, intercept = FALSE, penalty.factor = w1, nfolds=20)
alasso2 = cv.glmnet(as.matrix(X_train), as.matrix(y_train), family = "gaussian", alpha = 1, intercept = FALSE, penalty.factor = w2, nfolds=20)
lambda1 = alasso1$lambda.min
lambda2 = alasso2$lambda.min
coef.alasso1 = matrix(coef(alasso1, s = lambda1))[2:(p+1)]
coef.alasso2 = matrix(coef(alasso2, s = lambda2))[2:(p+1)]
alasso1 = glmnet(as.matrix(X_train), as.matrix(y_train), family = "gaussian", alpha = 1, intercept = FALSE, penalty.factor = w1, nfolds=20)
alasso2 = glmnet(as.matrix(X_train), as.matrix(y_train), family = "gaussian", alpha = 1, intercept = FALSE, penalty.factor = w2, nfolds=20)
plot(alasso1, xvar = "lambda", label = TRUE)
abline(v=log(lambda1))
```
```{r q2 adaptive lasso regression}
plot(alasso2, xvar = "lambda", label = TRUE)
abline(v=lambda2)
```
```{r q2 adaptive lasso regression}
y_alasso1 = predict(alasso1, as.matrix(X_train), s = lambda1)
mse_alasso1 = sum((y_test-y_alasso1)^2)/nrow(X_test)
y_alasso2 = predict(alasso2, as.matrix(X_train), s = lambda2)
mse_alasso2 = sum((y_test-y_alasso2)^2)/nrow(X_test)
mse_alasso1
mse_alasso2
```
```{r q2 elastic regression}
# Elastic
alpha_seq = seq(0.1,0.99,0.01)
lambda_min_list <- rep(0,length(alpha_seq))
for (i in c(1:length(alpha_seq))) {
elastic = cv.glmnet(as.matrix(X_train), as.matrix(y_train),alpha=alpha_seq[i], family = "gaussian", intercept = FALSE, nfolds=20)
lambda_elastic = elastic$lambda.min
lambda_min_list[i]=lambda_elastic
}
```
```{r q2 elastic regression}
plot(c(1:length(alpha_seq)),lambda_min_list,type = "l",ylab = 'Lambda Values',xlab='X sequence (1 to 90)',main = 'Lambda Plots for Elastic Net')
lambda_elastic = lambda_min_list[which.min(lambda_min_list)]
points(which.min(lambda_min_list),lambda_elastic,col = "red", lwd=5)
text(lambda_elastic~which.min(lambda_min_list), labels=sprintf("%s Optimal Lambda for Alpha of: %s",round(lambda_elastic,5),alpha_seq[which.min(lambda_min_list)]),cex=0.9, font=2,pos=2)
```
```{r q2 elastic regression}
elastic = glmnet(as.matrix(X_train), as.matrix(y_train),alpha=lambda_elastic, family = "gaussian", intercept = FALSE, nfolds=20)
y_elastic = predict(elastic, as.matrix(X_train), s = lambda_elastic)
coef.elastic = matrix(coef(elastic, s = lambda_elastic))[2:(p+1)]
plot(elastic, xvar = "lambda", label = TRUE)
abline(v = lambda_elastic)
```
```{r q2 elastic regression}
mse_elastic = sum((y_test-y_elastic)^2)/nrow(X_test)
mse_elastic
```