Files
tunmnlu/task_2/others-answer/DVA-CSE6242-Spring2021-main/hw4-ML/hw4-skeleton/Q3/tests.py
louiscklaw 9035c1312b update,
2025-02-01 02:09:32 +08:00

151 lines
5.8 KiB
Python

import platform
import random
import pandas as pd
if platform.system() != 'Windows':
import resource
def dataTest(Data):
datatest = Data()
data = 'data/pima-indians-diabetes.csv'
try:
x_data,y_data = datatest.dataAllocation(data)
print("dataAllocation Function Executed")
except:
print("Data not imported correctly")
try:
x_train, x_test, y_train, y_test = datatest.trainSets(x_data,y_data)
print("trainSets Function Executed")
except:
print("Data not imported correctly")
def linearTest(Data,LinearRegression):
dataset = Data()
linear = LinearRegression()
data = 'data/pima-indians-diabetes.csv'
x_data,y_data = dataset.dataAllocation(data)
x_train, x_test, y_train, y_test = dataset.trainSets(x_data,y_data)
try:
y_predict_train, y_predict_test = linear.linearClassifier(x_train,x_test, y_train)
print("linearClassifier Function Executed")
except:
print("Failed to execute linearClassifier()")
try:
print("Linear Regression Train Accuracy: ", linear.lgTrainAccuracy(y_train,y_predict_train))
except:
print("Failed to execute lgTrainAccuracy()")
try:
print("Linear Regression Test Accuracy: ", linear.lgTestAccuracy(y_test,y_predict_test))
except:
print("Failed to execute lgTestAccuracy()")
def RandomForestTest(Data,RFClassifier):
dataset = Data()
rf = RFClassifier()
data = 'data/pima-indians-diabetes.csv'
x_data,y_data = dataset.dataAllocation(data)
x_train, x_test, y_train, y_test = dataset.trainSets(x_data,y_data)
try:
rf_clf,y_predict_train, y_predict_test = rf.randomForestClassifier(x_train,x_test, y_train)
print("randomForestClassifier Function Executed")
except:
print("Failed to execute randomForestClassifier()")
try:
print("Random Forest Train Accuracy: ",rf.rfTrainAccuracy(y_train,y_predict_train))
except:
print("Failed to execute rfTrainAccuracy()")
try:
print("Random Forest Test Accuracy: ",rf.rfTestAccuracy(y_test,y_predict_test))
except:
print("Failed to execute rfTrainAccuracy()")
try:
print("Random Forest Feature Importance: ",rf.rfFeatureImportance(rf_clf))
except:
print("Failed to execute rfFeatureImportance()")
try:
print("Random Forest Sorted Feature Importance: ",rf.sortedRFFeatureImportanceIndicies(rf_clf))
except:
print("Failed to execute sortedRFFeatureImportanceIndicies()")
try:
gscv_rfc = rf.hyperParameterTuning(rf_clf,x_train,y_train)
print("HyperParameterTuning Function Executed")
except:
print("Failed to execute hyperParameterTuning()")
#try:
print("Random Forest Best Parameters: ",rf.bestParams(gscv_rfc))
#except:
#print("Failed to execute bestParams()")
try:
print("Random Forest Best Score: ",rf.bestScore(gscv_rfc))
except:
print("Failed to execute bestScore()")
def SupportVectorMachineTest(Data,SupportVectorMachine):
dataset = Data()
svm = SupportVectorMachine()
data = 'data/pima-indians-diabetes.csv'
x_data,y_data = dataset.dataAllocation(data)
x_train, x_test, y_train, y_test = dataset.trainSets(x_data,y_data)
try:
scaled_x_train, scaled_x_test = svm.dataPreProcess(x_train,x_test)
print("dataPreProcess Function Executed")
except:
print("Failed to execute dataPreProcess()")
try:
y_predict_train,y_predict_test = svm.SVCClassifier(scaled_x_train,scaled_x_test, y_train)
print("SVCClassifier Function Executed")
except:
print("Failed to execute SVCClassifier()")
try:
print("Support Vector Machine Trian Accuracy: ",svm.SVCTrainAccuracy(y_train,y_predict_train))
except:
print("Failed to execute SVCTrainAccuracy()")
try:
print("Support Vector Machine Test Accuracy: ",svm.SVCTestAccuracy(y_test,y_predict_test))
except:
print("Failed to execute SVCTestAccuracy()")
try:
svm_cv, best_score = svm.SVMBestScore(scaled_x_train, y_train)
print("Support Vector Machine Best Score: ", best_score)
except:
print("Failed to execute SVMBestScore()")
try:
y_predict_train,y_predict_test = svm.SVCClassifierParam(svm_cv,scaled_x_train,scaled_x_test,y_train)
print("SVCClassifierParam Function Executed")
except:
print("Failed to execute SVCClassifierParam()")
try:
print("Support Vector Machine Trian Accuracy: ",svm.svcTrainAccuracy(y_train,y_predict_train))
except:
print("Failed to execute SVCTrainAccuracy()")
try:
print("Support Vector Machine Test Accuracy: ",svm.svcTestAccuracy(y_test,y_predict_test))
except:
print("Failed to execute SVCTestAccuracy()")
try:
print("Support Vector Machine Rank Test Score: ",svm.SVMRankTestScore(svm_cv))
except:
print("Failed to execute SVCTestAccuracy()")
try:
print("Support Vector Machine Mean Test Score: ",svm.SVMMeanTestScore(svm_cv))
except:
print("Failed to execute SVCTestAccuracy()")
def PCATest(Data,PCAClassifier):
dataset = Data()
pc = PCAClassifier()
data = 'data/pima-indians-diabetes.csv'
x_data,y_data = dataset.dataAllocation(data)
#x_train, x_test, y_train, y_test = dataset.trainSets(x_data,y_data)
try:
pca = pc.pcaClassifier(x_data)
print("pcaClassifier Function Executed")
except:
print("Failed to execute pcaClassifier()")
try:
print("PCA Explained Variance Ratio: ",pc.pcaExplainedVarianceRatio(pca))
except:
print("Failed to execute pcaExplainedVarianceRatio()")
try:
print("PCA Singular Values: ",pc.pcaSingularValues(pca))
except:
print("Failed to execute pcaSingularValues()")