Files
tunmnlu/task_3/Skeleton/Q1/_original/q1.ipynb
louiscklaw 9035c1312b update,
2025-02-01 02:09:32 +08:00

310 lines
6.4 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "e5905a69",
"metadata": {},
"source": [
"# CSE6242 - HW3 - Q1"
]
},
{
"cell_type": "markdown",
"id": "09289981",
"metadata": {},
"source": [
"Pyspark Imports"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "139318cb",
"metadata": {},
"outputs": [],
"source": [
"### DO NOT MODIFY THIS CELL ###\n",
"import pyspark\n",
"from pyspark.sql import SQLContext\n",
"from pyspark.sql.functions import hour, when, col, date_format, to_timestamp, round, coalesce"
]
},
{
"cell_type": "markdown",
"id": "3fd9e0f8",
"metadata": {},
"source": [
"Initialize PySpark Context"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b0c18c6c",
"metadata": {},
"outputs": [],
"source": [
"### DO NOT MODIFY THIS CELL ###\n",
"sc = pyspark.SparkContext(appName=\"HW3-Q1\")\n",
"sqlContext = SQLContext(sc)"
]
},
{
"cell_type": "markdown",
"id": "d68ae314",
"metadata": {},
"source": [
"Define function for loading data"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7e5bbdda",
"metadata": {},
"outputs": [],
"source": [
"### DO NOT MODIFY THIS CELL ###\n",
"def load_data():\n",
" df = sqlContext.read.option(\"header\",True) \\\n",
" .csv(\"yellow_tripdata_2019-01_short.csv\")\n",
" return df"
]
},
{
"cell_type": "markdown",
"id": "0d52409d",
"metadata": {},
"source": [
"### Q1.a"
]
},
{
"cell_type": "markdown",
"id": "e43f6e00",
"metadata": {},
"source": [
"Perform data casting to clean incoming dataset"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "11f801b4",
"metadata": {},
"outputs": [],
"source": [
"def clean_data(df):\n",
" '''\n",
" input: df a dataframe\n",
" output: df a dataframe with the all the original columns\n",
" '''\n",
" \n",
" # START YOUR CODE HERE ---------\n",
" \n",
"\n",
" # END YOUR CODE HERE -----------\n",
" \n",
" return df"
]
},
{
"cell_type": "markdown",
"id": "d4f565d0",
"metadata": {},
"source": [
"### Q1.b"
]
},
{
"cell_type": "markdown",
"id": "72b4f712",
"metadata": {},
"source": [
"Find rate per person for based on how many passengers travel between pickup and dropoff locations. "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4e115152",
"metadata": {},
"outputs": [],
"source": [
"def common_pair(df):\n",
" '''\n",
" input: df a dataframe\n",
" output: df a dataframe with following columns:\n",
" - PULocationID\n",
" - DOLocationID\n",
" - passenger_count\n",
" - per_person_rate\n",
" \n",
" per_person_rate is the total_amount per person for a given pair.\n",
" \n",
" '''\n",
" \n",
" # START YOUR CODE HERE ---------\n",
" \n",
" # END YOUR CODE HERE -----------\n",
" \n",
" return df"
]
},
{
"cell_type": "markdown",
"id": "127574ab",
"metadata": {},
"source": [
"### Q1.c"
]
},
{
"cell_type": "markdown",
"id": "36a8fd27",
"metadata": {},
"source": [
"Find trips which trip distances generate the highest tip percentage."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "376c981c",
"metadata": {},
"outputs": [],
"source": [
"def distance_with_most_tip(df):\n",
" '''\n",
" input: df a dataframe\n",
" output: df a dataframe with following columns:\n",
" - trip_distance\n",
" - tip_percent\n",
" \n",
" trip_percent is the percent of tip out of fare_amount\n",
" \n",
" '''\n",
" \n",
" # START YOUR CODE HERE ---------\n",
" \n",
" # END YOUR CODE HERE -----------\n",
" \n",
" return df"
]
},
{
"cell_type": "markdown",
"id": "f0172fe6",
"metadata": {},
"source": [
"### Q1.d"
]
},
{
"cell_type": "markdown",
"id": "4613c906",
"metadata": {},
"source": [
"Determine the average speed at different times of day."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "abff9e24",
"metadata": {},
"outputs": [],
"source": [
"def time_with_most_traffic(df):\n",
" '''\n",
" input: df a dataframe\n",
" output: df a dataframe with following columns:\n",
" - time_of_day\n",
" - am_avg_speed\n",
" - pm_avg_speed\n",
" \n",
" trip_percent is the percent of tip out of fare_amount\n",
" \n",
" '''\n",
" \n",
" # START YOUR CODE HERE ---------\n",
"\n",
" # END YOUR CODE HERE -----------\n",
" \n",
" return df"
]
},
{
"cell_type": "markdown",
"id": "34cbd7b9",
"metadata": {},
"source": [
"### The below cells are for you to investigate your solutions and will not be graded\n",
"## Ensure they are commented out prior to submitting to Gradescope to avoid errors"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bf9abefb",
"metadata": {},
"outputs": [],
"source": [
"# df = load_data()\n",
"# df = clean_data(df)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cfa96f41",
"metadata": {},
"outputs": [],
"source": [
"# common_pair(df).show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8e42b46a",
"metadata": {},
"outputs": [],
"source": [
"# distance_with_most_tip(df).show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4f558c64",
"metadata": {},
"outputs": [],
"source": [
"# time_with_most_traffic(df).show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.4"
}
},
"nbformat": 4,
"nbformat_minor": 5
}