Files
tunmnlu/task_2/hw2_skeleton/_ref/Q1/Stacked Bar Chart.twb
louiscklaw 9035c1312b update,
2025-02-01 02:09:32 +08:00

2093 lines
143 KiB
XML

<?xml version='1.0' encoding='utf-8' ?>
<!-- build 20214.22.0108.1039 -->
<workbook original-version='18.1' source-build='2021.4.3 (20214.22.0108.1039)' source-platform='win' version='18.1' xmlns:user='http://www.tableausoftware.com/xml/user'>
<document-format-change-manifest>
<_.fcp.AccessibleZoneTabOrder.true...AccessibleZoneTabOrder />
<_.fcp.AnimationOnByDefault.true...AnimationOnByDefault />
<AutoCreateAndUpdateDSDPhoneLayouts />
<_.fcp.MarkAnimation.true...MarkAnimation />
<_.fcp.ObjectModelEncapsulateLegacy.true...ObjectModelEncapsulateLegacy />
<_.fcp.ObjectModelExtractV2.true...ObjectModelExtractV2 />
<_.fcp.ObjectModelTableType.true...ObjectModelTableType />
<_.fcp.SchemaViewerObjectModel.true...SchemaViewerObjectModel />
<SetMembershipControl />
<SheetIdentifierTracking />
<WindowsPersistSimpleIdentifiers />
<ZoneBackgroundTransparency />
</document-format-change-manifest>
<preferences>
<preference name='ui.encoding.shelf.height' value='24' />
<preference name='ui.shelf.height' value='26' />
</preferences>
<_.fcp.AnimationOnByDefault.false...style>
<_.fcp.AnimationOnByDefault.false..._.fcp.MarkAnimation.true...style-rule element='animation'>
<_.fcp.AnimationOnByDefault.false...format attr='animation-on' value='ao-on' />
</_.fcp.AnimationOnByDefault.false..._.fcp.MarkAnimation.true...style-rule>
</_.fcp.AnimationOnByDefault.false...style>
<datasources>
<datasource caption='games_detailed_info_filtered' inline='true' name='federated.151vh9o1rpo78p12ewefd11e5n7d' version='18.1'>
<connection class='federated'>
<named-connections>
<named-connection caption='games_detailed_info_filtered' name='textscan.03rrlv91d8b1ox1h2w6le0bjty3y'>
<connection class='textscan' directory='C:/Users/StoneHayden/OneDrive - Cypress Creek Renewables/Documents/School/CSE6242/HW2/HW2 Skeleton/QYCkUJF64n_hw2/Q1' filename='games_detailed_info_filtered.csv' password='' server='' />
</named-connection>
</named-connections>
<_.fcp.ObjectModelEncapsulateLegacy.false...relation connection='textscan.03rrlv91d8b1ox1h2w6le0bjty3y' name='games_detailed_info_filtered.csv' table='[games_detailed_info_filtered#csv]' type='table'>
<columns character-set='UTF-8' header='yes' locale='en_US' separator=','>
<column datatype='string' name='Category' ordinal='0' />
<column datatype='string' name='Mechanics' ordinal='1' />
<column datatype='string' name='Max.Players' ordinal='2' />
</columns>
</_.fcp.ObjectModelEncapsulateLegacy.false...relation>
<_.fcp.ObjectModelEncapsulateLegacy.true...relation connection='textscan.03rrlv91d8b1ox1h2w6le0bjty3y' name='games_detailed_info_filtered.csv' table='[games_detailed_info_filtered#csv]' type='table'>
<columns character-set='UTF-8' header='yes' locale='en_US' separator=','>
<column datatype='string' name='Category' ordinal='0' />
<column datatype='string' name='Mechanics' ordinal='1' />
<column datatype='string' name='Max.Players' ordinal='2' />
</columns>
</_.fcp.ObjectModelEncapsulateLegacy.true...relation>
<metadata-records>
<metadata-record class='capability'>
<remote-name />
<remote-type>0</remote-type>
<parent-name>[games_detailed_info_filtered.csv]</parent-name>
<remote-alias />
<aggregation>Count</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='string' name='character-set'>&quot;UTF-8&quot;</attribute>
<attribute datatype='string' name='collation'>&quot;en_US&quot;</attribute>
<attribute datatype='string' name='field-delimiter'>&quot;,&quot;</attribute>
<attribute datatype='string' name='header-row'>&quot;true&quot;</attribute>
<attribute datatype='string' name='locale'>&quot;en_US&quot;</attribute>
<attribute datatype='string' name='single-char'>&quot;&quot;</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>Category</remote-name>
<remote-type>129</remote-type>
<local-name>[Category]</local-name>
<parent-name>[games_detailed_info_filtered.csv]</parent-name>
<remote-alias>Category</remote-alias>
<ordinal>0</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[games_detailed_info_filtered.csv_858542382CE147CCB28AD8524D4B6E0A]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>Mechanics</remote-name>
<remote-type>129</remote-type>
<local-name>[Mechanics]</local-name>
<parent-name>[games_detailed_info_filtered.csv]</parent-name>
<remote-alias>Mechanics</remote-alias>
<ordinal>1</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[games_detailed_info_filtered.csv_858542382CE147CCB28AD8524D4B6E0A]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>Max.Players</remote-name>
<remote-type>129</remote-type>
<local-name>[Max.Players]</local-name>
<parent-name>[games_detailed_info_filtered.csv]</parent-name>
<remote-alias>Max.Players</remote-alias>
<ordinal>2</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[games_detailed_info_filtered.csv_858542382CE147CCB28AD8524D4B6E0A]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
</metadata-records>
</connection>
<aliases enabled='yes' />
<column datatype='string' name='[Mechanics]' role='dimension' type='nominal' />
<_.fcp.ObjectModelTableType.true...column caption='games_detailed_info_filtered.csv' datatype='table' name='[__tableau_internal_object_id__].[games_detailed_info_filtered.csv_858542382CE147CCB28AD8524D4B6E0A]' role='measure' type='quantitative' />
<column-instance column='[Mechanics]' derivation='None' name='[none:Mechanics:nk]' pivot='key' type='nominal' />
<layout _.fcp.SchemaViewerObjectModel.false...dim-percentage='0.5' _.fcp.SchemaViewerObjectModel.false...measure-percentage='0.4' dim-ordering='alphabetic' measure-ordering='alphabetic' show-structure='true' />
<style>
<style-rule element='mark'>
<encoding attr='color' field='[none:Mechanics:nk]' type='palette'>
<map to='#4e79a7'>
<bucket>&quot;Card Drafting&quot;</bucket>
</map>
<map to='#59a14f'>
<bucket>&quot;Modular Board&quot;</bucket>
</map>
<map to='#76b7b2'>
<bucket>&quot;Memory&quot;</bucket>
</map>
<map to='#e15759'>
<bucket>&quot;Hand Management&quot;</bucket>
</map>
<map to='#f28e2b'>
<bucket>&quot;Dice Rolling&quot;</bucket>
</map>
</encoding>
</style-rule>
</style>
<semantic-values>
<semantic-value key='[Country].[Name]' value='&quot;United States&quot;' />
</semantic-values>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-graph>
<objects>
<object caption='games_detailed_info_filtered.csv' id='games_detailed_info_filtered.csv_858542382CE147CCB28AD8524D4B6E0A'>
<properties context=''>
<relation connection='textscan.03rrlv91d8b1ox1h2w6le0bjty3y' name='games_detailed_info_filtered.csv' table='[games_detailed_info_filtered#csv]' type='table'>
<columns character-set='UTF-8' header='yes' locale='en_US' separator=','>
<column datatype='string' name='Category' ordinal='0' />
<column datatype='string' name='Mechanics' ordinal='1' />
<column datatype='string' name='Max.Players' ordinal='2' />
</columns>
</relation>
</properties>
</object>
</objects>
</_.fcp.ObjectModelEncapsulateLegacy.true...object-graph>
</datasource>
<datasource caption='popular_board_game' inline='true' name='federated.03rqcb01spyh6x1e89v5007k7zuw' version='18.1'>
<connection class='federated'>
<named-connections>
<named-connection caption='popular_board_game' name='textscan.1nmnp2h1mp0l8417owzkt0vmnoww'>
<connection class='textscan' directory='C:/Users/StoneHayden/OneDrive - Cypress Creek Renewables/Documents/School/CSE6242/HW2/HW2 Skeleton/QYCkUJF64n_hw2/Q1' filename='popular_board_game.csv' password='' server='' />
</named-connection>
</named-connections>
<_.fcp.ObjectModelEncapsulateLegacy.false...relation connection='textscan.1nmnp2h1mp0l8417owzkt0vmnoww' name='popular_board_game.csv' table='[popular_board_game#csv]' type='table'>
<columns character-set='UTF-8' header='yes' locale='en_US' separator=','>
<column datatype='string' name='name' ordinal='0' />
<column datatype='string' name='category' ordinal='1' />
<column datatype='string' name='playtime' ordinal='2' />
<column datatype='integer' name='playtime_num' ordinal='3' />
<column datatype='real' name='avg_rating' ordinal='4' />
<column datatype='integer' name='num_ratings' ordinal='5' />
<column datatype='integer' name='min_players' ordinal='6' />
</columns>
</_.fcp.ObjectModelEncapsulateLegacy.false...relation>
<_.fcp.ObjectModelEncapsulateLegacy.true...relation connection='textscan.1nmnp2h1mp0l8417owzkt0vmnoww' name='popular_board_game.csv' table='[popular_board_game#csv]' type='table'>
<columns character-set='UTF-8' header='yes' locale='en_US' separator=','>
<column datatype='string' name='name' ordinal='0' />
<column datatype='string' name='category' ordinal='1' />
<column datatype='string' name='playtime' ordinal='2' />
<column datatype='integer' name='playtime_num' ordinal='3' />
<column datatype='real' name='avg_rating' ordinal='4' />
<column datatype='integer' name='num_ratings' ordinal='5' />
<column datatype='integer' name='min_players' ordinal='6' />
</columns>
</_.fcp.ObjectModelEncapsulateLegacy.true...relation>
<metadata-records>
<metadata-record class='capability'>
<remote-name />
<remote-type>0</remote-type>
<parent-name>[popular_board_game.csv]</parent-name>
<remote-alias />
<aggregation>Count</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='string' name='character-set'>&quot;UTF-8&quot;</attribute>
<attribute datatype='string' name='collation'>&quot;en_US&quot;</attribute>
<attribute datatype='string' name='field-delimiter'>&quot;,&quot;</attribute>
<attribute datatype='string' name='header-row'>&quot;true&quot;</attribute>
<attribute datatype='string' name='locale'>&quot;en_US&quot;</attribute>
<attribute datatype='string' name='single-char'>&quot;&quot;</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>name</remote-name>
<remote-type>129</remote-type>
<local-name>[name]</local-name>
<parent-name>[popular_board_game.csv]</parent-name>
<remote-alias>name</remote-alias>
<ordinal>0</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[popular_board_game.csv_0A4B9E5F8EB8474D868BC07C3D001F27]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>category</remote-name>
<remote-type>129</remote-type>
<local-name>[category]</local-name>
<parent-name>[popular_board_game.csv]</parent-name>
<remote-alias>category</remote-alias>
<ordinal>1</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[popular_board_game.csv_0A4B9E5F8EB8474D868BC07C3D001F27]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>playtime</remote-name>
<remote-type>129</remote-type>
<local-name>[playtime]</local-name>
<parent-name>[popular_board_game.csv]</parent-name>
<remote-alias>playtime</remote-alias>
<ordinal>2</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[popular_board_game.csv_0A4B9E5F8EB8474D868BC07C3D001F27]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>playtime_num</remote-name>
<remote-type>20</remote-type>
<local-name>[playtime_num]</local-name>
<parent-name>[popular_board_game.csv]</parent-name>
<remote-alias>playtime_num</remote-alias>
<ordinal>3</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[popular_board_game.csv_0A4B9E5F8EB8474D868BC07C3D001F27]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>avg_rating</remote-name>
<remote-type>5</remote-type>
<local-name>[avg_rating]</local-name>
<parent-name>[popular_board_game.csv]</parent-name>
<remote-alias>avg_rating</remote-alias>
<ordinal>4</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[popular_board_game.csv_0A4B9E5F8EB8474D868BC07C3D001F27]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>num_ratings</remote-name>
<remote-type>20</remote-type>
<local-name>[num_ratings]</local-name>
<parent-name>[popular_board_game.csv]</parent-name>
<remote-alias>num_ratings</remote-alias>
<ordinal>5</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[popular_board_game.csv_0A4B9E5F8EB8474D868BC07C3D001F27]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>min_players</remote-name>
<remote-type>20</remote-type>
<local-name>[min_players]</local-name>
<parent-name>[popular_board_game.csv]</parent-name>
<remote-alias>min_players</remote-alias>
<ordinal>6</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[popular_board_game.csv_0A4B9E5F8EB8474D868BC07C3D001F27]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
</metadata-records>
</connection>
<aliases enabled='yes' />
<_.fcp.ObjectModelTableType.true...column caption='popular_board_game.csv' datatype='table' name='[__tableau_internal_object_id__].[popular_board_game.csv_0A4B9E5F8EB8474D868BC07C3D001F27]' role='measure' type='quantitative' />
<column caption='Avg Rating' datatype='real' name='[avg_rating]' role='measure' type='quantitative' />
<column caption='Category' datatype='string' name='[category]' role='dimension' type='nominal' />
<column caption='Min Players' datatype='integer' name='[min_players]' role='measure' type='quantitative' />
<column caption='Name' datatype='string' name='[name]' role='dimension' type='nominal' />
<column caption='Num Ratings' datatype='integer' name='[num_ratings]' role='measure' type='quantitative' />
<column caption='Playtime' datatype='string' name='[playtime]' role='dimension' type='nominal' />
<column caption='Playtime Num' datatype='integer' name='[playtime_num]' role='dimension' type='ordinal' />
<layout _.fcp.SchemaViewerObjectModel.false...dim-percentage='0.5' _.fcp.SchemaViewerObjectModel.false...measure-percentage='0.4' dim-ordering='alphabetic' measure-ordering='alphabetic' show-structure='true' />
<semantic-values>
<semantic-value key='[Country].[Name]' value='&quot;United States&quot;' />
</semantic-values>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-graph>
<objects>
<object caption='popular_board_game.csv' id='popular_board_game.csv_0A4B9E5F8EB8474D868BC07C3D001F27'>
<properties context=''>
<relation connection='textscan.1nmnp2h1mp0l8417owzkt0vmnoww' name='popular_board_game.csv' table='[popular_board_game#csv]' type='table'>
<columns character-set='UTF-8' header='yes' locale='en_US' separator=','>
<column datatype='string' name='name' ordinal='0' />
<column datatype='string' name='category' ordinal='1' />
<column datatype='string' name='playtime' ordinal='2' />
<column datatype='integer' name='playtime_num' ordinal='3' />
<column datatype='real' name='avg_rating' ordinal='4' />
<column datatype='integer' name='num_ratings' ordinal='5' />
<column datatype='integer' name='min_players' ordinal='6' />
</columns>
</relation>
</properties>
</object>
</objects>
</_.fcp.ObjectModelEncapsulateLegacy.true...object-graph>
</datasource>
<datasource caption='mjpetrey/boardgamegeek' inline='true' name='federated.0yf7bwm0hymiz612ly1sn139tsth' version='18.1'>
<connection class='federated'>
<named-connections>
<named-connection caption='mjpetrey/boardgamegeek' name='webdata-direct.0aierx0142acme1d69psl16lxj0n'>
<connection APIVersion='' authType='custom' authentication='yes' channel='https' class='webdata-direct' connectionData='{&quot;dataset&quot;:&quot;mjpetrey/boardgamegeek&quot;,&quot;query&quot;:&quot;SELECT * FROM games_detailed_info_filtered&quot;,&quot;queryType&quot;:&quot;sql&quot;,&quot;version&quot;:&quot;1.1.0&quot;}' connectionName='mjpetrey/boardgamegeek' filename='' increment-key='' path='/' port='443' scriptVersion='' secondary_whitelist='' server='tableau.data.world' urlQuery='state=0845aab0-9592-11ec-876b-133298d0c0d2' username='' usernameAlias='' />
</named-connection>
</named-connections>
<_.fcp.ObjectModelEncapsulateLegacy.false...relation connection='webdata-direct.0aierx0142acme1d69psl16lxj0n' name='Query Results' table='[QueryTable]' type='table' />
<_.fcp.ObjectModelEncapsulateLegacy.true...relation connection='webdata-direct.0aierx0142acme1d69psl16lxj0n' name='Query Results' table='[QueryTable]' type='table' />
<metadata-records>
<metadata-record class='column'>
<remote-name>category</remote-name>
<remote-type>-1</remote-type>
<local-name>[category]</local-name>
<parent-name>[Query Results]</parent-name>
<remote-alias>category</remote-alias>
<ordinal>0</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='string' name='RemoteTypeName'>&quot;string&quot;</attribute>
<attribute datatype='boolean' name='filterable_column'>false</attribute>
</attributes>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[QueryTable_0ED7695A67B446EEBCF484DF7CC0F469]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>mechanics</remote-name>
<remote-type>-1</remote-type>
<local-name>[mechanics]</local-name>
<parent-name>[Query Results]</parent-name>
<remote-alias>mechanics</remote-alias>
<ordinal>1</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='string' name='RemoteTypeName'>&quot;string&quot;</attribute>
<attribute datatype='boolean' name='filterable_column'>false</attribute>
</attributes>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[QueryTable_0ED7695A67B446EEBCF484DF7CC0F469]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>max_players</remote-name>
<remote-type>-1</remote-type>
<local-name>[max_players]</local-name>
<parent-name>[Query Results]</parent-name>
<remote-alias>max_players</remote-alias>
<ordinal>2</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='string' name='RemoteTypeName'>&quot;string&quot;</attribute>
<attribute datatype='boolean' name='filterable_column'>false</attribute>
</attributes>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[QueryTable_0ED7695A67B446EEBCF484DF7CC0F469]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
</metadata-records>
</connection>
<aliases enabled='yes' />
<column caption='Measure Names' datatype='string' name='[:Measure Names]' role='dimension' type='nominal' />
<column caption='Measure Values' datatype='real' name='[Multiple Values]' role='measure' type='quantitative' />
<_.fcp.ObjectModelTableType.true...column caption='Query Results' datatype='table' name='[__tableau_internal_object_id__].[QueryTable_0ED7695A67B446EEBCF484DF7CC0F469]' role='measure' type='quantitative' />
<column caption='Category' datatype='string' name='[category]' role='dimension' type='nominal' />
<column caption='Max Players' datatype='string' name='[max_players]' role='dimension' type='nominal' />
<column caption='Mechanics' datatype='string' name='[mechanics]' role='dimension' type='nominal' />
<extract _.fcp.ObjectModelExtractV2.true...object-id='' count='-1' enabled='true' units='records'>
<connection access_mode='readonly' authentication='auth-none' author-locale='en_US' class='hyper' dbname='C:/Users/StoneHayden/OneDrive - Cypress Creek Renewables/Documents/My Tableau Repository/Datasources/federated.0yf7bwm0hymiz612ly1sn139tsth_182uo4q0bgsbos1a7m11t0gh2tdo.hyper' default-settings='yes' schema='Extract' sslmode='' tablename='Extract' update-time='02/24/2022 04:54:18 PM' username='tableau_internal_user'>
<_.fcp.ObjectModelEncapsulateLegacy.false...relation name='Extract' table='[Extract].[Extract]' type='table' />
<_.fcp.ObjectModelEncapsulateLegacy.true...relation name='Extract' table='[Extract].[Extract]' type='table' />
<refresh>
<refresh-event add-from-file-path='mjpetrey/boardgamegeek' increment-value='%null%' refresh-type='create' rows-inserted='1642' timestamp-start='2022-02-24 16:54:14.945' />
</refresh>
<metadata-records>
<metadata-record class='column'>
<remote-name>category</remote-name>
<remote-type>129</remote-type>
<local-name>[category]</local-name>
<parent-name>[Extract]</parent-name>
<remote-alias>category</remote-alias>
<ordinal>0</ordinal>
<family>Query Results</family>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<approx-count>5</approx-count>
<contains-null>true</contains-null>
<collation flag='0' name='LROOT' />
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[QueryTable_0ED7695A67B446EEBCF484DF7CC0F469]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>mechanics</remote-name>
<remote-type>129</remote-type>
<local-name>[mechanics]</local-name>
<parent-name>[Extract]</parent-name>
<remote-alias>mechanics</remote-alias>
<ordinal>1</ordinal>
<family>Query Results</family>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<approx-count>5</approx-count>
<contains-null>true</contains-null>
<collation flag='0' name='LROOT' />
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[QueryTable_0ED7695A67B446EEBCF484DF7CC0F469]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>max_players</remote-name>
<remote-type>129</remote-type>
<local-name>[max_players]</local-name>
<parent-name>[Extract]</parent-name>
<remote-alias>max_players</remote-alias>
<ordinal>2</ordinal>
<family>Query Results</family>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<approx-count>4</approx-count>
<contains-null>true</contains-null>
<collation flag='0' name='LROOT' />
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[QueryTable_0ED7695A67B446EEBCF484DF7CC0F469]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
</metadata-records>
</connection>
</extract>
<layout _.fcp.SchemaViewerObjectModel.false...dim-percentage='0.5' _.fcp.SchemaViewerObjectModel.false...measure-percentage='0.4' dim-ordering='alphabetic' measure-ordering='alphabetic' show-structure='true' />
<semantic-values>
<semantic-value key='[Country].[Name]' value='&quot;United States&quot;' />
</semantic-values>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-graph>
<objects>
<object caption='Query Results' id='QueryTable_0ED7695A67B446EEBCF484DF7CC0F469'>
<properties context=''>
<relation connection='webdata-direct.0aierx0142acme1d69psl16lxj0n' name='Query Results' table='[QueryTable]' type='table' />
</properties>
<properties context='extract'>
<relation name='Extract' table='[Extract].[Extract]' type='table' />
</properties>
</object>
</objects>
</_.fcp.ObjectModelEncapsulateLegacy.true...object-graph>
</datasource>
</datasources>
<worksheets>
<worksheet name='Sheet 1'>
<layout-options>
<title>
<formatted-text>
<run>Popular Board Games&#10;</run>
</formatted-text>
</title>
</layout-options>
<table>
<view>
<datasources>
<datasource caption='games_detailed_info_filtered' name='federated.151vh9o1rpo78p12ewefd11e5n7d' />
</datasources>
<datasource-dependencies datasource='federated.151vh9o1rpo78p12ewefd11e5n7d'>
<column datatype='string' name='[Category]' role='dimension' type='nominal' />
<column datatype='string' name='[Mechanics]' role='dimension' type='nominal' />
<column-instance column='[Mechanics]' derivation='Count' name='[cnt:Mechanics:qk]' pivot='key' type='quantitative' />
<column-instance column='[Category]' derivation='None' name='[none:Category:nk]' pivot='key' type='nominal' />
<column-instance column='[Mechanics]' derivation='None' name='[none:Mechanics:nk]' pivot='key' type='nominal' />
</datasource-dependencies>
<filter class='categorical' column='[federated.151vh9o1rpo78p12ewefd11e5n7d].[:Measure Names]'>
<groupfilter function='level-members' level='[:Measure Names]' />
</filter>
<slices>
<column>[federated.151vh9o1rpo78p12ewefd11e5n7d].[:Measure Names]</column>
</slices>
<aggregation value='true' />
</view>
<style>
<style-rule element='cell'>
<format attr='width' field='[federated.151vh9o1rpo78p12ewefd11e5n7d].[none:Category:nk]' value='137' />
</style-rule>
</style>
<panes>
<pane selection-relaxation-option='selection-relaxation-allow'>
<view>
<breakdown value='auto' />
</view>
<mark class='Bar' />
<encodings>
<color column='[federated.151vh9o1rpo78p12ewefd11e5n7d].[none:Mechanics:nk]' />
<lod column='[federated.151vh9o1rpo78p12ewefd11e5n7d].[none:Mechanics:nk]' />
</encodings>
<style>
<style-rule element='mark'>
<format attr='mark-labels-show' value='false' />
</style-rule>
<style-rule element='pane'>
<format attr='minwidth' value='-1' />
<format attr='maxwidth' value='-1' />
</style-rule>
</style>
</pane>
</panes>
<rows>[federated.151vh9o1rpo78p12ewefd11e5n7d].[cnt:Mechanics:qk]</rows>
<cols>[federated.151vh9o1rpo78p12ewefd11e5n7d].[none:Category:nk]</cols>
</table>
<simple-id uuid='{CF7F47E3-76D7-4DD6-9112-93C14F8B1D83}' />
</worksheet>
<worksheet name='Sheet 3'>
<layout-options>
<title>
<formatted-text>
<run>Popular Board Games</run>
</formatted-text>
</title>
<caption>
<formatted-text>
<run>shayden33</run>
</formatted-text>
</caption>
</layout-options>
<table>
<view>
<datasources>
<datasource caption='games_detailed_info_filtered' name='federated.151vh9o1rpo78p12ewefd11e5n7d' />
<datasource caption='mjpetrey/boardgamegeek' name='federated.0yf7bwm0hymiz612ly1sn139tsth' />
</datasources>
<datasource-dependencies datasource='federated.0yf7bwm0hymiz612ly1sn139tsth'>
<column caption='Category' datatype='string' name='[category]' role='dimension' type='nominal' />
<column-instance column='[mechanics]' derivation='Count' name='[cnt:mechanics:qk]' pivot='key' type='quantitative' />
<column caption='Max Players' datatype='string' name='[max_players]' role='dimension' type='nominal' />
<column caption='Mechanics' datatype='string' name='[mechanics]' role='dimension' type='nominal' />
<column-instance column='[category]' derivation='None' name='[none:category:nk]' pivot='key' type='nominal' />
<column-instance column='[max_players]' derivation='None' name='[none:max_players:nk]' pivot='key' type='nominal' />
</datasource-dependencies>
<datasource-dependencies datasource='federated.151vh9o1rpo78p12ewefd11e5n7d'>
<column datatype='string' name='[Mechanics]' role='dimension' type='nominal' />
<column-instance column='[Mechanics]' derivation='None' name='[none:Mechanics:nk]' pivot='key' type='nominal' />
</datasource-dependencies>
<filter class='categorical' column='[federated.0yf7bwm0hymiz612ly1sn139tsth].[none:max_players:nk]'>
<groupfilter function='member' level='[none:max_players:nk]' member='&quot;2 Players&quot;' user:ui-domain='relevant' user:ui-enumeration='inclusive' user:ui-marker='enumerate' />
</filter>
<slices>
<column>[federated.0yf7bwm0hymiz612ly1sn139tsth].[none:max_players:nk]</column>
</slices>
<aggregation value='true' />
</view>
<style>
<style-rule element='axis'>
<format attr='title' class='0' field='[federated.0yf7bwm0hymiz612ly1sn139tsth].[cnt:mechanics:qk]' scope='rows' value='Game Count' />
</style-rule>
</style>
<panes>
<pane id='1' selection-relaxation-option='selection-relaxation-allow'>
<view>
<breakdown value='auto' />
</view>
<mark class='Bar' />
<encodings>
<color column='[federated.151vh9o1rpo78p12ewefd11e5n7d].[none:Mechanics:nk]' />
<lod column='[federated.151vh9o1rpo78p12ewefd11e5n7d].[none:Mechanics:nk]' />
</encodings>
</pane>
</panes>
<rows>[federated.0yf7bwm0hymiz612ly1sn139tsth].[cnt:mechanics:qk]</rows>
<cols>[federated.0yf7bwm0hymiz612ly1sn139tsth].[none:category:nk]</cols>
</table>
<simple-id uuid='{4580980B-EBFA-499B-AC80-C31FC69A6CF2}' />
</worksheet>
</worksheets>
<dashboards>
<dashboard _.fcp.AccessibleZoneTabOrder.true...enable-sort-zone-taborder='true' name='Dashboard 1'>
<style />
<size maxheight='800' maxwidth='1000' minheight='800' minwidth='1000' />
<datasources>
<datasource caption='mjpetrey/boardgamegeek' name='federated.0yf7bwm0hymiz612ly1sn139tsth' />
</datasources>
<datasource-dependencies datasource='federated.0yf7bwm0hymiz612ly1sn139tsth'>
<column caption='Max Players' datatype='string' name='[max_players]' role='dimension' type='nominal' />
<column-instance column='[max_players]' derivation='None' name='[none:max_players:nk]' pivot='key' type='nominal' />
</datasource-dependencies>
<zones>
<zone h='100000' id='4' type-v2='layout-basic' w='100000' x='0' y='0'>
<zone h='98000' id='7' param='horz' type-v2='layout-flow' w='98400' x='800' y='1000'>
<zone h='98000' id='5' type-v2='layout-basic' w='82400' x='800' y='1000'>
<zone h='98000' id='3' name='Sheet 3' w='82400' x='800' y='1000'>
<zone-style>
<format attr='border-color' value='#000000' />
<format attr='border-style' value='none' />
<format attr='border-width' value='0' />
<format attr='margin' value='4' />
</zone-style>
</zone>
</zone>
<zone fixed-size='160' h='98000' id='6' is-fixed='true' param='vert' type-v2='layout-flow' w='16000' x='83200' y='1000'>
<zone h='18250' id='8' name='Sheet 3' param='[federated.0yf7bwm0hymiz612ly1sn139tsth].[none:max_players:nk]' type-v2='filter' w='16000' x='83200' y='1000'>
<zone-style>
<format attr='border-color' value='#000000' />
<format attr='border-style' value='none' />
<format attr='border-width' value='0' />
<format attr='margin' value='4' />
</zone-style>
</zone>
<zone h='15750' id='9' name='Sheet 3' pane-specification-id='1' param='[federated.151vh9o1rpo78p12ewefd11e5n7d].[none:Mechanics:nk]' type-v2='color' w='16000' x='83200' y='19250'>
<zone-style>
<format attr='border-color' value='#000000' />
<format attr='border-style' value='none' />
<format attr='border-width' value='0' />
<format attr='margin' value='4' />
</zone-style>
</zone>
</zone>
</zone>
<zone-style>
<format attr='border-color' value='#000000' />
<format attr='border-style' value='none' />
<format attr='border-width' value='0' />
<format attr='margin' value='8' />
</zone-style>
</zone>
</zones>
<devicelayouts>
<devicelayout auto-generated='true' name='Phone'>
<size maxheight='700' minheight='700' sizing-mode='vscroll' />
<zones>
<zone h='100000' id='13' type-v2='layout-basic' w='100000' x='0' y='0'>
<zone h='98000' id='12' param='vert' type-v2='layout-flow' w='98400' x='800' y='1000'>
<zone h='18250' id='8' mode='checkdropdown' name='Sheet 3' param='[federated.0yf7bwm0hymiz612ly1sn139tsth].[none:max_players:nk]' type-v2='filter' w='16000' x='83200' y='1000'>
<zone-style>
<format attr='border-color' value='#000000' />
<format attr='border-style' value='none' />
<format attr='border-width' value='0' />
<format attr='margin' value='4' />
<format attr='padding' value='0' />
</zone-style>
</zone>
<zone fixed-size='280' h='98000' id='3' is-fixed='true' name='Sheet 3' w='82400' x='800' y='1000'>
<zone-style>
<format attr='border-color' value='#000000' />
<format attr='border-style' value='none' />
<format attr='border-width' value='0' />
<format attr='margin' value='4' />
<format attr='padding' value='0' />
</zone-style>
</zone>
<zone h='15750' id='9' name='Sheet 3' pane-specification-id='1' param='[federated.151vh9o1rpo78p12ewefd11e5n7d].[none:Mechanics:nk]' type-v2='color' w='16000' x='83200' y='19250'>
<zone-style>
<format attr='border-color' value='#000000' />
<format attr='border-style' value='none' />
<format attr='border-width' value='0' />
<format attr='margin' value='4' />
<format attr='padding' value='0' />
</zone-style>
</zone>
</zone>
<zone-style>
<format attr='border-color' value='#000000' />
<format attr='border-style' value='none' />
<format attr='border-width' value='0' />
<format attr='margin' value='8' />
</zone-style>
</zone>
</zones>
</devicelayout>
</devicelayouts>
<simple-id uuid='{A154FFA7-FEF4-419C-802C-3CDDBEAEF8B5}' />
</dashboard>
</dashboards>
<windows saved-dpi-scale-factor='0.833333' source-height='72'>
<window class='worksheet' name='Sheet 1'>
<cards>
<edge name='left'>
<strip size='160'>
<card type='pages' />
<card type='filters' />
<card type='marks' />
</strip>
</edge>
<edge name='top'>
<strip size='2147483647'>
<card type='columns' />
</strip>
<strip size='2147483647'>
<card type='rows' />
</strip>
<strip size='2147483647'>
<card type='title' />
</strip>
</edge>
<edge name='right'>
<strip size='160'>
<card param='[federated.151vh9o1rpo78p12ewefd11e5n7d].[:Measure Names]' show-morefewerbutton='false' type='filter' />
<card pane-specification-id='0' param='[federated.151vh9o1rpo78p12ewefd11e5n7d].[none:Mechanics:nk]' type='color' />
</strip>
</edge>
</cards>
<viewpoint>
<highlight>
<color-one-way>
<field>[federated.151vh9o1rpo78p12ewefd11e5n7d].[:Measure Names]</field>
<field>[federated.151vh9o1rpo78p12ewefd11e5n7d].[none:Category:nk]</field>
<field>[federated.151vh9o1rpo78p12ewefd11e5n7d].[none:Mechanics:nk]</field>
</color-one-way>
</highlight>
</viewpoint>
<simple-id uuid='{BC07A4B0-AD45-4A66-9467-17A7E15EBE3E}' />
</window>
<window class='worksheet' name='Sheet 3'>
<cards>
<edge name='left'>
<strip size='160'>
<card type='pages' />
<card type='filters' />
<card type='marks' />
</strip>
</edge>
<edge name='top'>
<strip size='2147483647'>
<card type='columns' />
</strip>
<strip size='2147483647'>
<card type='rows' />
</strip>
<strip size='31'>
<card type='title' />
</strip>
</edge>
<edge name='right'>
<strip size='160'>
<card param='[federated.0yf7bwm0hymiz612ly1sn139tsth].[none:max_players:nk]' show-morefewerbutton='false' type='filter' />
<card pane-specification-id='1' param='[federated.151vh9o1rpo78p12ewefd11e5n7d].[none:Mechanics:nk]' type='color' />
</strip>
</edge>
<edge name='bottom'>
<strip size='90'>
<card type='caption' />
</strip>
</edge>
</cards>
<viewpoint>
<highlight>
<color-one-way>
<field>[federated.0yf7bwm0hymiz612ly1sn139tsth].[none:category:nk]</field>
<field>[federated.0yf7bwm0hymiz612ly1sn139tsth].[none:max_players:nk]</field>
<field>[federated.0yf7bwm0hymiz612ly1sn139tsth].[none:mechanics:nk]</field>
<field>[federated.151vh9o1rpo78p12ewefd11e5n7d].[none:Category:nk]</field>
<field>[federated.151vh9o1rpo78p12ewefd11e5n7d].[none:Mechanics:nk]</field>
</color-one-way>
</highlight>
</viewpoint>
<simple-id uuid='{620EBF24-83AD-4188-803E-A10E254B6913}' />
</window>
<window class='dashboard' maximized='true' name='Dashboard 1'>
<viewpoints>
<viewpoint name='Sheet 3'>
<zoom type='entire-view' />
<highlight>
<color-one-way>
<field>[federated.151vh9o1rpo78p12ewefd11e5n7d].[none:Mechanics:nk]</field>
</color-one-way>
</highlight>
</viewpoint>
</viewpoints>
<active id='8' />
<simple-id uuid='{3EDEE201-9E71-45F1-8680-5A11F78742C3}' />
</window>
</windows>
<thumbnails>
<thumbnail height='576' name='Dashboard 1' width='576'>
iVBORw0KGgoAAAANSUhEUgAAAkAAAAJACAYAAABlmtk2AAAACXBIWXMAAA7DAAAOwwHHb6hk
AAAgAElEQVR4nOzdeXxU9b3/8fds2TeyQBJCIJCwg7IroCzihiKCa6HW232v2l5bvba2Xmtr
bXt7q5b219beVqgKCqJRFAUURVlEZd9DCAQSyL4vs/3+SEyIgCxOcibzfT0fDx8P5szJnM/J
ZHl5zpmJze/3+wUAAGAQu9UDAAAAdDUCCAAAGIcAAgAAxiGAAACAcQggAABgHAIIAAAYhwAC
AADGIYAAAIBxCCAAAGAcAggAABiHAAIAAMYhgAAAgHEIIAAAYBwCCAAAGIcAAgAAxiGAAACA
cQggAABgnG4bQMWFh1RcVmX1GF2q5NhhHSupsHoMAAC6Pee5rrh9/Rt68p9L2267wiI1fNRY
3XzTXCXHR3XKcJ/lzWVPSwOu0B3XTQrsA9cW6Zs/+kWHRQlJPTXu0ss0+7or5bLbAru987D2
ledUnjhG37j5ijOuU3x4v5YuW65de/Pkd7g0cPBwXXPd9Rqc1bsLJwUAILidcwBVlx+XLTZN
X//CLElSU0Ot1q15TV/6j9f09ML/U3JMWKcN2aU8jdpRUKbHH7lfkuT3+1R2/JiWP/8Pbc8r
0kN332nxgGe2afWL+ulv/p9uuOULuuM/psrma9bOrR/q3m/fo4WvL1GC1QMCABAkzjmAJKlH
z3SNGTOm7fbEyVMU8dDdevH1dfr6zdMDPpxV7OHRHfZTkqZNGqmr5/9UCtIAqi4+oJ8/9nf9
4W9Pa1jfnm3LJ1w6SfPv+JocFs4GAECw+dzXAI0aPUrHjh5tu73l/Td15+1zNW7cWF1z/Y36
x5IV8p+0/rN/+72eX5aru7/9FU0YN05XXnuD/u+F1zus8/uH7lVRbcftLP3Xk1q/veCMcxTs
/Vj/ede3Ne3ySRo7dpxumHubXlqz8aQ1mvXAvQ+oWdLxw/v0yC8e0K+f/Nc572dTQ6OiomM6
LDvbvn78/pv69tfu1KSJl2jcuPG67Utf08btB9onKi/QA79+UpK0b9tGPfCTH+lfS99ovdev
VS/9W7fNvUHjxo7V1dfN1tI31p9xvhUvLtGUm+7sED+fCI+O6lC6i/7yW91202yNHzdOl06e
oh8+8EuV1TS23b8291k9/fxyPfbwA7pi6mW6ZOJl+vWCRTq46yP95J7vaNKll2jKFVfr+dff
67CdretX6Y7b5mjc2LG64aYv6M31W0+616/lCxfo+mtmaOzYsbrm+tnn9fkHACCQPncAFR45
oh6JPSRJh3et132PLNDXfvTf2rjxAz31xKPalPsP/XP52rb1jxzcpxWr3tGdP3hA6zdu1F9+
93OtXPi/eunt9l+W+3ZtVaOn43aOFhxQeXXdGeeor6vTjNnztHzFKn2waaMee/Au/fXRnymv
pL51DZ92bNuhwryt+u5d9yljyFjNvnrKWfbOr7rqSq1f+4Z+eP+v9IO7v9t2z7nsa12DW/O+
frdWvfWuNq5/T3fdMVM/u+8B1XtbJ2qu0449B7T1vdd038N/1NjLrtKUCSMlSWuX/1NPPLta
P374f7Txgw/0wqKnNHpw3zNOunXLFk2aeG7XQ4XFJOmh3z6hDRs3avWKF9U3ska//fPCtvtL
io5o8bNLNHj8DOWuXKPXXlykzS8/pV8+uUiz5n1La9e9r6f+5wH95ckFat0VHdu3Wfc98qS+
dd+vtHHTJj32s+/riYfv164j5ZKkozvf079e36onnnpGH3zwgf75lz8qNSHinOYFACDQzusU
2MmaGmq1bvVrejp3gxb8625J0uKFT+vrP3pQl40bLknqnTVYv/nNf+v27zymO26c0raxL371
Oxo1JEuSNGDYGD10/1165NkXdePUiy54R4aMnqwhJ90efPFEXXv5CO3YfUADUlqiQp4aPfKb
P+nRJ/+m7N5JZ3yshqM7NXbs2Lbbial9df+DD2na+OFty85lXydfMbPD4068cq5GPLNQB4rq
NDIjWpJUczxPf3pmlf72j38oKbY1CPzN+us/lug3f35Gg3u3xGVsj2RlZaar/Awzl1dWKim5
fZ/W5j6rZ155u/VWuH79xONKbL1M69YvfqVtvai4RH37G1/RnB8+0eHxZs/7qm64elrLOr36
amDfnrr53gc1JqvlSqLsiy5TkuP3cktySHrh2UX64nd+okmjWp6FwRdP1HfuuF5LX3pNQ783
X1VVVUpI7qWM1BTZbDalZvTTl7/Y7wx7AwBA5zqvAHpzyV/15pK/SpLCIqM1auwl+s3jf1ZW
z5ZTQzt2HdT8BztGTHz6UGU4i3Ws2qfMuNMfcBo0arTKfrPkQuZv4/d59PbKV/T2ug0qLm15
qfixwwd156Xu9pV8Pt3z019+ZvxIUmTvYXr3pZbTM+7mRuXt260X/v13rf9wgv7r21+QdG77
6mmq0yvLX9SGzR+povXo1cH8Ernd7TP5bBH65a9/2R4/khqOH1B94pC2+DkXTodT7ma3pJbH
GTpmkr6RPlCS9NC9d6vZ175uybF8LV36onbuPaBmt1fyNMjtjjznbbWwyXbSC+J27d6n//ze
2A5rjB49Sv/+00pJ0uCxU5T+7DJde90NGj16lCZcMlHXXj1DUeEX3OAAAFyw8/rtc+Wt39Cv
f/yNM97v8UhhrlMjxxVmV7PbpzOecbPZZLd9vpeX//13P9NRR5a+8YN7ld4zSTab9NfH7u+4
Uli8sjNPvUbms7jCIjR4+Cj99JFh+uKcG1Qw72b1jXedfV/9Pv3s7u8q67LZuven/62k+JZI
vP+bt3VYP75nb/WM6xgfzY0Nio7peL3R2WRm9tH+/ft1UeZoSVJKeqZS0jMlSZEnPcvlR/fo
ez/6pb5z94/05W/9QOEup1SZr6u++eh5be/Tmpub9MuffE/hn7raOntgSxTZw2L0yBN/15GD
+7X5w816f9VS/XPREj39r7+qRyQRBADoWgH9zdOvb6J27jqiKSP7tC1z1x5XfnmEevc486b2
fLhZvfoP+BxbrlfuW3v1wopfK6yz3qbH7pDL7lZ9g1eKd511X+uLd2pvY5J+PW/OeW8qNjlV
JYcOqMknhZ/jVVpTp07RH194QXOmj5bjMz4H769eqctu+KKmXDLqvOf6LL3TUnX9XQ9rwsDP
Ckyb+vQfqD79B2rOLfP0u59+V+99uFfXTx4W0FkAADibgL4T9Owbb9ST//OYymoaJEk+T5P+
9PvHNOGaGxV50pZ8vvbXSpUXH9Ijv12gW2+9uW1ZZESkCgoOt9zw+7Vt01pt2LLvM7bsVISq
tf9IaeuHeLXh7RV6fe0HAdgrvypLi/WPPz6q0sjByu4VcU776oyIVHVRgUprmiRJXnejVixd
qA/2HDnrFu0xvTWur7Tg6eX65FNVXV6sD7bsPOPHjJ8xVz1qd+sXv/uLahvbT7E1N9So6aQL
yiMiI3Vg3962x60sLdL/Pvn/zucTclozrrpSC/74P6qqa2pbVnHiqF59821J0rZN7+jDnXlt
9/ncDSouqVB8fPzn3jYAAOcroEeAxl95s27MO6SbZ89S9oD+KjqSr34XT9Gj98/vsN5DP/yK
Fmb3l8vmVV5+oe749n/qqvGD2u6/5bbb9V8/uFM5A7NVdrxI6TkXqWfP5M/Ycpi+/a0v6bt3
3KLsgdkqKSpUzugpGn3R0Avaj09fBB0Tn6gxEybqyT88Ipft3PY1rEd/fena4bplzmxlZ/VR
4ZFCTZl5k4ZmpZ/TDPf810O6+657dGPus+oZH6mKOo+yU898WszmjNBjT/xFjz3y35p59dXK
yRkgeZuVd/CQxk6+VrGtz/Tl187Vc8u+prm3blBitEsnKur0jTtvkba/dUGfq09MueGL2r33
Id1w3bXKzh4gT2Otistq9fW775MkRUeG6cGf36Nqb7jSUhJUeOiQxl1zuyaNyPhc2wUA4ELY
/H6//+yrnZ/q8hIdOHRYSb0y1Ld3rw73PXb/NzV6zr3KjG1UbZNXAwcNVkxk+CmPUXb8qA4d
Pa7MrGyl9Ig7p+1Wlhbr4OFjyuiXrZ6J5/Yxn9dn7askFRfm69iJKmUPGqy46PN72bff69He
vbvlVpiGDh4oxzn+GY7q8hPKO1QohytcA3JyFB3R8V26/V6P9u7ZJY89QkMG5Zzz457TtitK
dCD/sCKi4jQwJ1vOk8/H+f0qLMjT8bJqpWf2U1pKYsC2CwDA+eiUAPosj93/TY25+T5dMSar
KzcLAADQptv+NXgAAIAL1eVHgAAAAKzGESAAAGAcAggAABiHAAIAAMYhgAAAgHEIIAAAYBwC
CAAAGIcAAgAAxiGAAACAcQggAABgHAIIAAAYhwACAADGIYAAAIBxnFYPAABWWPf68/rbM7kK
j4xU/5GTdN93v3Ta9TaufV1pQycrMyWmiycE0JkIIADGOZ73kf64aJWe+ttTiot0qbGxUZLU
WFetvfsOKDI+WTn9M1VeXKiXli7WwDKHRgxI15iLhsnv82j3zp2KSUpTZnpPSZLf79W2LdvU
q08/OfwepaSkSH6fDuzdJY8zRoOy+8km6dCB3UrqnaPK4oOyh0Wr3u1XTr8MSdK+XdvUJ2eE
Il02qz4tgFEIIADGee+t1bpi1k2Ki3RJkiIiIiRJv//Vg0rIGKxDOzdr4NTbNSUnVsfLqmTf
vV3NdZUaM3yA7rvre0oecJGO7d+mqbd9W7MvH6EHf/BNJWSPVtXR/5Mnebh+9eOv6Tf3f181
MX0V3lCs5sThevhHX9HTTz6q5KGT9cZrK/XTBx/Qfz/8Bz3/wtNyNBzXAw8/rmef+buVnxbA
KAQQAOPU1zcoPiPulOXz7viy1q7frN4ZvbX5o4/09Zt/rIsGZWrMnHmaNDRVh7e8rRJHL916
+UQ1jcjQn59frkt6NulYeH89fNf3tOu9V7XwvaOqPrxNO+qStPDRH0vy6Vu336SjtXdKkg6X
uvX80uflsts0eVCU3tq8Twmlm3XJldfJycEfoMtwETQA4/Qf0F/bt+/osKzyyA795OHHlTVw
qEYNHyT5T/24+oYG1VaU6sMPP9SOgyWaecVEeTxuhYWHd1ivqbFJkdHRrbfsio60q7HZJ0m6
5Qvz5LK3lM7Nt9yil5a/pDfXvKPrZs4I+H4CODOOAAEwziUzZuvpxV/XU88kauSANB0tq9Ok
nDjZI2IU4ZQ279ojqeWi58TEJK1Z+YrCmy/RyOGjZW/4P6Vn5Sg52qmDRyuVPni0PAVP6skF
f9bhPR/LkTFWKf1HyF/4By1bsVoRDcdUEp6tfomuU+boP2qK9D9/0sHEwRqcGtvFnwXAbI5f
/OIXv7B6CADoSjZnuK6+9modLzig/QXHNGzkxRowaLjSYnzaV3BCV19zteITkjSof6YGD79Y
ZYV5OlHj1qiLR2naZeO1Y8vHOlFZp0smTlRSYpJmXnedIqLiNDizhw6UuDVt0nhNn3a59mz/
SPWK1t0/+JYiXQ5JUt/sIYqNbP1/T5tdVUf3qd/Yq3XRwEwLPyOAeWx+v/80B3oBAOemWj+/
91Gl9c/Qu2+v0Xce+K0mjcw6p49c8s8n9era7Xr8zwsUH+Ho5DkBnIwAAoDPqbqiRPsPHlFm
/xyl9Dj3U1m7tn2kjOxhiosKP/vKAAKKAAIAAMYJyVeBeTweq0cAAABBLCReBebz+XTygSyP
xyOv12vhRAAAIJiFRAD5/X75fL4OyxwOLigEAACnFxIB5HA4TgkepzMkdg0AAHQCyyuh4vgR
vbvhI9nsdnn9dk2/8krFRYbpRGGe1m3aKsmuy664SinxUfK5G7Vy5Uo1u71Kzx6ucSMGWj0+
AADohiy/CNoVGafrZt2gWbNm6arLRuqNN9+T/G6tXL1eN9w4R7Ouna7XV7wmSXp31QoNHDtF
s+fMVem+zSqqarJ4egAA0B1ZHkAxcfFytP5dnMJDh9Szd7rqTxSoR98hctptckXGKd7hUYNP
Ol7t0YDUBEnS2FHDtGvvQStHBwAA3ZTlp8AkafuH7+vDjz6WNzpDd94+WVWHdyg2Nqbt/tgI
p+o9ksPVPm5sXJzqj5RbMS4AAOjmgiKARoyZqBFjJqr02EG9vGK1rhnXTzU1VW331zR6FOWU
vO729/epqa5WVGSUFeMCAIBuzvJTYGVlpfrkLXziE1PU3FCrqJ59VXl4jzw+v9wN1ar2uRRp
l9Liw5RXXClJ2rxll4YN7m/h5AAAoLuy/E9h5O/dpq27D8rhcMjnt+uyadOVGBupkqMH9e7G
rZJsunzG1UqOi5TP3ag33lippmaveueM1Njh2ad9TLfbLZfL1bU7AgAAug3LA6gzEEAAAOCz
WH4KDAAAoKsRQAAAwDgEEAAAMA4BBAAAjEMAAQAA4xBAAADAOAQQAAAwDgEEAACMQwABAADj
EEAAAMA4BBAAADAOAQQAAIxDAAEAAOM4rR4AABB6jlfU6URFndVjhJwR/XtaPULIIIAAAAG3
5qN8Pbd6h9VjhJyXfnW71SOEDE6BAQAA4xBAAADAOAQQAAAwDgEEAACMQwABAADjBEUAuZsa
lLd/n46XVrYt8/u8KsjPU0FhkfwnrVtbVaYDefny+PynPhAAAMA5sDyACg/s0MuvrVajx6dd
H67VO5t3S95GPbtokcprGlR2LF/PvJArSSo+uFO5q95XU12lFi5aLLfP4uEBAEC3ZPn7APXM
HKibsodLkoYOytILy16XZ2C8wpL7a9TIluX7Dzwjr6R1m7Zq7q3zFG6XnM2V2p5XpNE5aRZO
DwAAuiPLAygsLEyS5G1u0KsvvaiRE2bIGddT/eJ2avHzS+X3NGrAiPFySJIzTOGtx6wyMjL0
9r5iKSdNXq9XPl/74SCPxyO32931OwMAkCR+BneS+vp6q0cIGZYHkCSVHs3XitXvacbMWUpP
jpe7vkL5J+o187rrpaYqvbbqPY0anqMzXfVjs9lkt7efzXM4HG1hBQDoei6Xy+oRQlJUVJTV
I4QMywOoobJYr761WV+YP19hDpsk6XjBfqVmDVNsVLgU1VO9Ipt0vMYrh9etJp8UbpcKCwuV
ljZEkjrEj6QOR4MAAAA+zfIA+mjDOvXJHqj8A/skSVGxCeo9YKjefnapYhyN8jdV63BtuC6L
c2ji+JFa9mKuRuZkaPOeEs2fP83i6QEAQHdk8/v9lr6evLykWCXlVW23o2IT1Ce9l/w+jwoO
FcgWFqXM3mmytRwcUm1VuYpLq9Qvq5+cdttpH9PtdnP4FQAs9OzqHfwx1E7AH0MNHMuPACWm
pCoxJfWU5Ta7U/36DzhleUx8orLjE7tiNAAAEKIsfx8gAACArkYAAQAA4xBAAADAOAQQAAAw
DgEEAACMQwABAADjEEAAAMA4BBAAADAOAQQAAIxDAAEAAOMQQAAAwDgEEAAAMA4BBAAAjEMA
AQAA4xBAAADAOAQQAAAwDgEEAACM47R6AABA6EmxV2qIq8DqMYAzIoAAAAF3WcQ2TUhYaPUY
IegnVg8QMjgFBgAAjEMAAQAA4xBAAADAOAQQAAAwDgEEAACMQwABAADjBMXL4I8c3KPtuw8o
NjFVl0wYI5fdJvm92vrhJh0prtCAIcM1ZECmJL92bflA+ccqNGbCpUpNirN6dAAA0A1ZfgQo
f/fHOlzerCuvman+vSK04o11kqTVK15WWFKmZl57leIiXZKknRvX6Lg7VldNn6xVuUtV0+Sz
cnQAANBNWR5AWUNGadLYkXI57OqZ2lvuplr5GitU6YvVkKzesjuc6p2eJknaeahUU8YNkSsi
WlMmDNO2PYesHR4AAHRLQXEKTJLKigq04s13NXPOzaopPahjRYVasWKFGhvqZY9O1uxrpsru
cLYVW3JysrbsqpAkeTweeTyetsfy+Xxyu90W7AUAQJJ8/AzuFPX19VaPEDKCIoC2bVyr/Sca
deu8eQp32lVX51LWoBGaOWWMJGntK0tUVOOR399+yqu5qUkuV8upMafTKaezfVfcbnfbfQCA
rtfkcqnZ6iFCUFRUlNUjhAzLT4GVHt6tAxV23TTraoU7W8aJTumj0oJ98reu47c55LLbFOXw
qaK+5UjP3r0H1D+rr0VTAwCA7szyI0Dbt3ys+qZo5ebmSpKS0vtp4pgRmjJukJ5b8oKiw52K
SOitlGiHpk2fquXLlyg6MkK26CSNT4u3dngAANAt2fx+v//sq3UvnAIDAGs1rV+g5g0LrB4j
5MTes8PqEUKG5afAAAAAuhoBBAAAjEMAAQAA4xBAAADAOAQQAAAwDgEEAACMQwABAADjEEAA
AMA4BBAAADAOAQQAAIxDAAEAAOMQQAAAwDgEEAAAMA4BBAAAjEMAAQAA4xBAAADAOAQQAAAw
DgEEAACMQwABAADjEEAAAMA4BBAAADAOAQQAAIxDAAEAAOMQQAAAwDgEEAAAMI7T6gG8zQ16
9521qq5vlsfr15QZVykpNlKS5Pc26fl/L9KwyddpWP9U+dyNWrlypZrdXqVnD9e4EQMtnh4A
AHRHlgfQ0cOHNHj0JKUmxqq5vkIvrXxLt8yZKUnasHaN0vr0UXVdoyTp3VUrNHDsdA1ITdBr
S59RUWZfpcWHWzk+AADohiwPoMzsIW3/ri4/ofDoOElS1fF8VdkTNTjJp6LW+49XezQlNUGS
NHbUMG3be1Bp44d8+iHl9/vl8Xg6fXYAwOn5fD6rRwhJ/G4LHMsDqIVfW9a/rf0nmnTjrKsl
v0er3/lQ18+9Scd2bWhby+FqHzc2Lk71R8oltXxBnPxF4ff75ff7u258AEAHfj8B1Bm8Xq/V
I4QM6wPI79OKZYuVPHCsbrk0R5K0Y/1bOlZRq5UrXlHliULV6oDSkmLkdbdHTk11taIioyRJ
TqdTTmf7rrjdbrlcrq7dDwBAmyaHU/yqDrzwcC77CBTLA+jgtvcV03+sxo/IaVs2/NIrNfzS
ln8f2r5eRUpTv/RkHYkPU15xpQakJmjzll0aNWOuRVMDAIDuzPIAqqiuV0nZHuUW7pEkJaX3
08QxI9ruj4iOU5wiJEmTrrhGb7yxUjuaveo9cJxS4yhhAABw/mz+ELxYhlNgAGCtpvUL1Lxh
gdVjhJzYe3ZYPULI4I0QAQCAcQggAABgHAIIAAAYhwACAADGIYAAAIBxCCAAAGAcAggAABiH
AAIAAMYhgAAAgHEIIAAAYBwCCAAAGIcAAgAAxiGAAACAcQggAABgHAIIAAAYhwACAADGIYAA
AIBxCCAAAGAcAggAABiHAAIAAMYhgAAAgHEIIAAAYBwCCAAAGIcAAgAAxiGAAACAcQggAABg
HKfVA1SVFGrV2g1yhYWpoa5GF0+coUF9ErV65UrVNHklv1eu2BRdN+My1VUc1/IVqxQTFSl/
ZA/NvmaabFbvAAAA6HYsDyCvLUw3zL1JLrtN8jVpybLXNCjjao0Yf7l6JsVJknKXPK96SW+t
WaOZc25TjyinNq3O1f5jVRqYHm/tDgAAgG7H8gBKTO7Z9u+tG95RatZgyRGpnkmRkqTq0mOq
8DoUKanB51SPqJaRBw3K1vr8Ag1MHymfzye/39/2OF6vVz6fr0v3AwDQzuv1WD1CSGpqarJ6
hJBheQBJkruxTityX1JK9ihdPmpw61K/tm18R7uP1uiWm2fLJslma79kKSw8XG5Pfcuafv8p
weNwOLpoegDAp/lsXGLaGfjdFjiWB5DPXa/nnnteV82+Wb16xLQtX7/mVXni+uu2uVPalvm9
HvnUcuV2aWmpEnskS2r5gvj0F4XTafmuAYCxvHYCqDPwuy1wLP8K3bbhbV08dVaH+PE1lutg
mXTZ2KEd1h2W1VNrP9gtd2Od3vlgty4a3K+LpwUAAKHA8pSMTUrXru3v69D2lttJ6f00dmCa
4iL8ys3NbV3LoStmztTQ8VNl27pZb6xZpxnXz1FMmOX9BgAAuiGb/+Srh0OE2+2Wy+WyegwA
MFbT+gVq3rDA6jFCTuw9O6weIWRwCAUAABiHAAIAAMYhgAAAgHEIIAAAYBwCCAAAGIcAAgAA
xiGAAACAcQggAABgHAIIAAAYhwACAADGIYAAAIBxCCAAAGAcAggAABiHAAIAAMYhgAAAgHEI
IAAAYBwCCAAAGIcAAgAAxiGAAACAcQggAABgHAIIAAAYhwACAADGIYAAAIBxCCAAAGAcAggA
ABgnKALI3dSgvP37dLy08qSlfh07nK9jx0s7rFtbVaYDefny+PxdOyQAAAgZlgdQ4YEdevm1
1Wr0+LTrw7V6Z/NuSdKbuS/oYHGF8rZv1Kr3t0iSig/uVO6q99VUV6mFixbL7bNycgAA0F05
rR6gZ+ZA3ZQ9XJI0dFCWXlj2urxDU1Tmjdft40dLkp579ln5Jl6sdZu2au6t8xRul5zNldqe
V6TROWlWjg8AALohywMoLCxMkuRtbtCrL72okRNmqLr0uFLSM9rWSY5wqsotyRmm8NZjVhkZ
GXp7X7GUkyav1yufr/1wkMfjkdvt7srdAACcxMfP4E5RX19v9Qghw/IAkqTSo/lasfo9zZg5
S+nJ8SovOCHJdsp6Z7rqx2azyW5vP5vncDjawgoA0PWaXC41Wz1ECIqKirJ6hJBh+TVADZXF
evWtzbp9/nylJ8dLkuJ7pqn0WGHbOmWNHsW7JIfXrabWAz2FhYVKS2s5/WW32+VwONr+s9lO
jScAAIBPWH4E6KMN69Qne6DyD+yTJEXFJqhPei8lO6u1btNH8lcXKSVrmOySJo4fqWUv5mpk
ToY27ynR/PnTrB0eAAB0Sza/32/p68nLS4pVUl7VdvuTAJL8OnakQAqLVXqvpLb7a6vKVVxa
pX5Z/eS0n/5Ij9vtlsvl6uTJAQBn0rR+gZo3LLB6jJATe88Oq0cIGZYfAUpMSVViSupp7rEp
vU+/U5bGxCcqOz6x0+cCAAChy/JrgAAAALoaAQQAAIxDAAEAAOMQQAAAwDgEEAAAMA4BBAAA
jEMAAQAA4xBAAADAOAQQAAAwDgEEAACMQwABAADjEEAAAMA4BBAAADAOAQQAAKcLxMIAACAA
SURBVIxDAAEAAOMQQAAAwDgEEAAAMA4BBAAAjEMAAQAA4xBAAADAOAQQAAAwDgEEAACMQwAB
AADjEEAAAMA4BBAAADBOUASQ3+fRRxvfU01z+7KqsmK9ufI1vblmrarqGj9ZU7u2bNKrK1aq
uKzaklkBAED3Z3kA1ZQd08uvvKb9e3eqtjWAfI1VWvbKW5o4ZYYuHT1MS59fKp+knRvX6Lg7
VldNn6xVuUtV0+SzdHYAANA9WR5AsUnpmn3DLGWmJrUv9HsUFZeo6AiXouMTFO5sGXPnoVJN
GTdErohoTZkwTNv2HLJmaAAA0K05rR7gdOyRSRrcy6annn5WvrpyTbjyRtkl2R3OtmJLTk7W
ll0VkiSPxyOPx9P28T6fT263u+sHBwBIknz8DO4U9fX1Vo8QMoIygOpKD+tgdYS++qUvSH6v
li5erOx+8+T3t5/yam5qksvlkiQ5nU45ne274na72+4DAHS9JpdLzWdfDecpKirK6hFChuWn
wE6ntrJMMQmtp8RsDsWGSTVNXkU5fKqobznSs3fvAfXP6mvhlAAAoLuy/AjQkbxd2rIrT4V5
eTpUk6ukpCRdNWWCfLtf0ovLD0h+j6KT+qtXtEPTpk/V8uVLFB0ZIVt0ksanxVs9PgAA6IZs
fr/fb/UQgcYpMACwVtP6BWresMDqMUJO7D07rB4hZATlKTAAAIDORAABAADjEEAAAMA4BBAA
ADAOAQQAAIxDAAEAAOMQQAAAwDgEEAAAMA4BBAAAjEMAAQAA4xBAAADAOAQQAAAwDgEEAACM
QwABAADjEEAAAMA4BBAAADAOAQQAAIxDAAEAAOMENID+8cfHVNbUfvv//eH3qvUFcgsAAACf
X4ACyKejhwu0Z9cuHSooUEFBgfL279F76zfLQwABAIAg4wzMw3j098d/px0Hj6jyj79TuF2S
za7r7/ymEgK0BQAAgEAJUJ6E6ee/e0JrXlmucVffqFhXYB4VAACgMwT0+MzEqVO04d3V8vj8
rUscmjxtmiIcgdwKAADA5xPQAPrr7x/SCWcfZabEtj38JVOnBXITAAAAn1tAA8huD9NXv3uX
srjwBwAABLGAlsqQITla+NTfNfGi7NYl53YKzO/z6OMPNipn1CTFhn2y0KutH27SkeIKDRgy
XEMGZErya9eWD5R/rEJjJlyq1KS4QI4PAAAMEdD3AXLGJCs11q6DBw+2/pcvj/+zP6am7Jhe
fuU17d+7U7XN7ctXr3hZYUmZmnntVYqLbLmqeufGNTrujtVV0ydrVe5S1TTxGnsAAHD+AnoE
aNKMWZro71g8zrMc/YlNStfsG9K1/o2lbct8jRWq9MXqiqzekqTe6WmSpJ2HSnXzbVfILmnK
hGHatueQJl3UP5C7AAAADBDQAHr6T7/Wuq35kiS/p1FFZV79e9liJYWf3+PUlBbpWFGhVqxY
ocaGetmjkzX7mqmyO5xth6ySk5O1ZVeFJMnj8cjj8bR9vM/nk9vtDsQuAQAugI+fwZ2ivr7e
6hFCRkAD6Ct3/Uxf+eSG36MHf/awepxn/EiS0+lS1qARmjlljCRp7StLVFTjkd/ffsqrualJ
LperdX2nnM72XXG73W33AQC6XpPLpeazr4bzFBUVZfUIISOg1wDV1VaroqKi5b/yCpUVHFT5
BfxPQHRKH5UW7NMnJ9P8NodcdpuiHD5V1Lcc6dm794D6Z/UN3PAAAMAYAT0CtPipP7adApOk
gRNmKOksB2KO5O3Sll15KszL06GaXCUlJemqqRM1ZdwgPbfkBUWHOxWR0Fsp0Q5Nmz5Vy5cv
UXRkhGzRSRqfFh/I8QEAgCFsfr//LK/TOn8ej0cOh1M2W6Af+dxwCgwArNW0foGaNyyweoyQ
E3vPDqtHCBkBPQJUdfyQ7vuvn6qqUWpobNKXv/dj3TBtXCA3AQAA8LkFNIAW/e1Jzf32L3Tl
2Gw11VXoW9/8oWZM+T9FBfRKIwAAgM8nsBdB1zUoo3eqJCk8OkEJEVIz71UIAACCTECPAM25
5VY9cPc3dOnES3R0/3YljJwm/iwYAAAINgHNk5zRU/T3BYO1e3++4q67QYOz+wXy4QEAAAIi
IKfADu9cr3+9uEqSFJfUSxMuuUSD+qbopz97WJwBAwAAwSYgAbRz64dKSOrZ8YFd0XJUHFUp
bwUKAACCTEACKCOjjzZv3qyT31CosaZEh6r9SggLxBYAAAACJyDXAI2YfK1eefUeffMHezRu
5CA111fprbfe1X/c86DoHwAAEGwCcxG0PUz3P/qk9mz/UFt37FVkWoaemPcVpSUnBOThAQAA
AilwrwKz2TR45FgNHjk2YA8JAADQGXiPZgAAYJyAvg9Qc12FFi9ZqpoGv+74+n/o7ZWrNOv6
awO5CQBAN+CpjlZDYS+rxwg5sVYPEEICGkAL//I7RQ6ZqeLXn1ad9+t6f+UruvzaaxXvCORW
AADBzlMTo8ajBBCCV0BPgZWcqNT4CWPltNsl+VRbUyOf/6wfBgAA0KUCegToxpvn6uF7v6/G
8iI9et/3FTVoonrwt8AAAECQCWieDB53hR7PGqY9Bw4pMj5JIwbnBPLhAQAAAiKgAVRRfFiv
vvGWPK3nvT7auEk3f3G+YjgKBAAAgkhArwH6++OPqqzJobi4uNb/YnmdPQAACDoBPTaTnJyi
S2bN1ZDUqEA+LAAAQEAFNIBGjbpIv3rgh8pMTWpdEqZ7f/5z/iAqAAAIKgENoBWvvq5b7/ia
+iVFti6xK4rrfwAAQJAJ7KvAhgxWeuYAjeifdPaVAQAALBLQADp69LD+/J0vqUdcdOuSCC1Y
+LSSwwO5FQAAgM8noAH0/Qf/V98P5AMCAAB0ggC/D1C+/vaPRaqqa2xdwkXQAAAg+AT0bXoW
/fVxZY6apKKjpfrqHbfIFh511jdB9Ps8+mjDu3ryD79RUW3H+5pry/T4bx/R+u2HJEl1Fcf1
73//Wy+9uEzLX39L/JkxAABwIQIaQNXVDZo0ebKcLpuyBl8sW/kR1fo++2PqKsuV3G+IxgzL
/tQ9fq1evVbTpk1pW/LWmjWaOec2zZ4zV+muWu0/VhXI8QEAgCECegrsolEjtW/vYQ1OC9dP
H3pYe4/XK+IsiRWT2FMxko5u67j80M4P1KP/xYrVcX1yYKjB51SP1tfVDxqUrfX5BRqYPlI+
n09+f/vxIK/XK5/vLOUFAOg0Ho/H6hFCUlNTk9UjhIyABtD1878jSZp20W+0bccuZd4z+KwB
dDqexhpt3leim+aMV8H2423Lbbb2BwsLD5fbUy9J8vv9pwSPw+G4gD0AAASC3c4fQuoM/G4L
nIAEkKehXK+/u0PXX3W51r7+ovYeLpEkFZY16PoZk8778fbv2qpmd6Neyc1V5YlC1eqA0pJi
5Pd65FPLebvS0lIl9kiW1PIF8ekvCqeTd2AEAKsQQJ2D322BE5DP5JZ1q3S4LFaStPb1Fepz
6bWKd0lLFj6tq2ZM0vm+CGzI6MkaMrrl34e2r1eR0tQvPVn1WT219oPdmjwiU+98sFuzb78j
EOMDAADDBCSASk4cV0afIZKkAUNG6to5c5UYJm19+w1VNEm9PuONEI/k7dKWXXmSwlT6Vq7C
Y5N01dSJbfcn9MyQQy1xNXT8VNm2btYba9ZpxvVzFBPG/2EAAIDzF5AAGpCdo7+uelezLh+h
+d9seSvE+ooi7S11K/Es7wLdZ8BQ9Rkw9Iz3J/Tqo4S2WzYNuWichlwUiKkBAICpAhJAA8fP
UGruD/XV7/xQl44epub6Kq1Z847uvOtncgViAwAAAAEUmKupbE795y//qD3bPtTWnXsV3itd
T/7ty0pL6RGQhwcAAAikAF5ObtPgkWM1eOTYwD0kAABAJ+AqYgAAYBwCCAAAGIcAAgAAxiGA
AACAcQggAABgHAIIAAAYhwACAADGIYAAAIBxCCAAAGAcAggAABiHAAIAAMYhgAAAgHEIIAAA
YBwCCAAAGIcAAgAAxiGAAACAcQggAABgHAIIAAAYhwACAADGIYAAAIBxCCAAAGAcAggAABgn
aAKosuyEmrwnLfD7VVRYoLz8Anl9/rbFtVVlOpCXL89JywAAAM6H5QHUVFepFbkv6d9P/1Pl
Da0LvQ16YfFiHS4uV11ViRYtXia/pOKDO5W76n011VVq4aLFcvusnBwAAHRXTqsHsDnCdOXM
Wdq82nPSQpduuPlWhTlb+qxgX74aJa3btFVzb52ncLvkbK7U9rwijc5Js2ZwAADQbVkeQGER
UacutDsV1npsas/H78sb30uRkuQMU3jr8oyMDL29r1jKSZPX65XP1344yOPxyO12d/rsAIDT
42dw56ivr7d6hJBheQCdic/dqFdfXq6EzOGaffVwSdKZrvqx2Wyy29vP5jkcDoWFhXXBlACA
03G7XFaPEJKiok5z0AAXJEgDyK+Xlz2v0VOvV2avHm1LHV63mnxSuF0qLCxUWtoQSeoQP5I6
HA0CAAD4NMsDqKq8RMUl5SouKZcO7FV9QpQyE+0qqnWqofKE9laekGRX/5wcTRw/UstezNXI
nAxt3lOi+fOnWT0+AADohiwPoE8MHXt527/t4T00ffLoU9ZJzRqmWYlpKi6t0vx5t8hp68oJ
AQBAqLA8gOITUxSfmHLK8kGDBp12/Zj4RGXHJ3b2WAAAIIRZ/j5AAAAAXY0AAgAAxiGAAACA
cQggAABgHAIIAAAYhwACAADGIYAAAIBxCCAAAGAcAggAABiHAAIAAMYhgAAAgHEIIAAAYBwC
CAAAGIcAAgAAxiGAAACAcQggAABgHAIIAAAYhwACAADGIYAAAIBxCCAAAGAcAggAABiHAAIA
AMYhgAAAgHEIIAAAYJygCaDKshNq8p68xK9jh/N17Hhph/Vqq8p0IC9fHp+/S+cDAAChw/IA
aqqr1Ircl/Tvp/+p8ob25W/mvqCDxRXK275Rq97fIkkqPrhTuaveV1NdpRYuWiy3z6KhAQBA
t2Z5ANkcYbpy5iyNHjagbZm3vlRl3nhNHj9al824TqUFu+WTtG7TVs2dM0vDRo7SxKG9tD2v
yLrBAQBAt+W0eoCwiKhTllWXHldKekbb7eQIp6rckpxhCm9NtoyMDL29r1jKSZPX65XP1344
yOPxyO12d/boAIAz4Gdw56ivr7d6hJBheQCdjt/vl2Q7dfkZ1rfZbLLb2w9mORwOhYWFdc5w
AICzcrtcVo8QkqKiTj1ogAtj+Smw04nvmabSY4Vtt8saPYp3SQ6vW02tB3oKCwuVlpYmSbLb
7XI4HG3/2WynxhMAAMAnLD8CVFVeouKSchWXlEsH9qo+IUoD+vVRsrNa6zZ9JH91kVKyhsku
aeL4kVr2Yq5G5mRo854SzZ8/zerxAQBAN2R5AH1i6NjLO9y+4vqbdOxIgdS3r9J7JUmSUrOG
aVZimopLqzR/3i1ycqAHAABcAMsDKD4xRfGJKae5x6b0Pv1OWRoTn6js+MROnwsAAISuoLwG
CAAAoDMRQAAAwDgEEAAAMA4BBAAAjEMAAQAA4xBAAADAOAQQAAAwDgEEAACMQwABAADjEEAA
AMA4BBAAADAOAQQAAIxDAAEAAOMQQAAAwDgEEAAAMA4BBAAAjEMAAQAA4xBAAADAOE6rBwgm
2w+e0I78E1aPEVJ6JkTrijFZVo8BAEAHBNBJduSf0HOrd1g9RkgZntWTAAIABB1OgQEAAOMQ
QAAAwDgEEAAAMA4BBAAAjEMAAQAA4wTtq8Cqyoq1afPHkitK4ydMUHx0hCS/dm35QPnHKjRm
wqVKTYqzekwAANANBeURIF9jlZa98pYmTpmhS0cP09Lnl8onaefGNTrujtVV0ydrVe5S1TT5
rB4VAAB0Q0EZQPJ7FBWXqOgIl6LjExTubBlz56FSTRk3RK6IaE2ZMEzb9hyydk4AANAtBeUp
MHtkkgb3sumpp5+Vr65cE668UXZJdoezrdiSk5O1ZVeFJMnj8cjj8bR9vM/nk9vtPu/tXsjH
4LN5fV7V19dbPQaALsbP087Bz9PACcoAqis9rIPVEfrql74g+b1aunixsvvNk9/ffsqrualJ
LpdLkuR0OuV0tu+K2+1uu+98XMjH4LM57A5FRUVZPQaALubm52mn4Odp4ATlKbDayjLFJCS1
3LA5FBsm1TR5FeXwqaK+5UjP3r0H1D+rr4VTAgCA7ioojwD1GjBSvt0v6cXlByS/R9FJ/dUr
2qFp06dq+fIlio6MkC06SePT4q0eFQAAdENBGUCyOXT1rLmnLI5K6KV58+Z12mbnRr2j61MW
dNrjm8iRME7SdKvHAACgg6A8BQYAANCZCCAAAGAcAggAABiHAAIAAMYhgAAAgHEIIAAAYBwC
CAAAGIcAAgAAxiGAAACAcQggAABgHAIIAAAYhwACAADGIYAAAIBxCCAAAGAcAggAABjHafUA
wcRTHa2Gwl5WjxFSXOE9FGX1EAAAfAoBdBJPTYwajxJAgeSP72H1CAAAnIJTYAAAwDgEEAAA
MA4BBAAAjEMAAQAA4xBAAADAOAQQAAAwDgEEAACMQwABAADjEEAAAMA4QftO0E11lVq95h15
/VJMcm9NmzhGPnejVq5cqWa3V+nZwzVuxECrxwQAAN1QkAaQX6+++ppmzLpZcZEueb1eSdK7
q1Zo4NjpGpCaoNeWPqOizL5Kiw+3eFYEk+0HT2hH/gmrxwg5X7hiuNUjAEBABWUAuauLZI/P
VGPlcZ0o8iirX19J0vFqj6akJkiSxo4apm17Dypt/JBTPt7v98vj8Zz3dn0+3+cbHKe40Ofi
Qm3LK9aSt3Z12fZMccuUwVaPgG6Gn6edoyt/noa6oAyg2soKHSk4oIKUGIXbmvX0og26447b
5XC1jxsbF6f6I+WSWr4gTv6i8Pv98vv9571dvmEDz+/3tx3B65Lt8Rx2iq58DhEa+HnaOfhe
DJygDKComBj17jdQ40ZfJElqKCvU0Ypmed3tkVNTXa2oyChJktPplNPZvitut1sul+u8t9vo
DMpPR7dmt9sVHt51pykdPIedoiufQ4QGfp52Dr4XAycoXwUWnpihumN71NDsleTXicpGJca4
lBYfprziSknS5i27NGxwf2sHBQAA3VKQJrpDN866RitffVl2u01ZIycqNsymSVdcozfeWKkd
zV71HjhOqXGUMAAAOH9BGkBSbFKabpwzp8MyuytC11w326KJAABAqAjKU2AAAACdiQACAADG
IYAAAIBxgvYaIOBCXB6+VQPin7F6jBB0u9UDAEBAEUAIKcmOKsWFFVg9BgAgyHEKDAAAGIcA
AgAAxiGAAACAcQggAABgHAIIAAAYhwACAADG4WXwCCme6mg1FPayeoyQE2v1AAAQYAQQQoqn
JkaNRwkgAMBn4xQYAAAwDgEEAACMQwABAADjEEAAAMA4BBAAADAOAQQAAIxDAAEAAOMQQAAA
wDgEEAAAMA4BBAAAjEMAAQAA4/C3wAAAAVcdE62jqT2tHiPkZFo9QAgJ+gA6duSQonukKj4m
QpJUW1Wm4tJq9cvqJ6fdZu1wAIDT2pOdpVXXXGH1GCHnUqsHCCFBfQqs/Oh+vfJyrnblF0uS
ig/uVO6q99VUV6mFixbL7bN4QAAA0C0F7xEgn1tvrd+u6ZePVUnronWbtmrurfMUbpeczZXa
nlek0Tlplo4JAAC6n6ANoE3vrtaoSdNlL93dvtAZpvDWY1YZGRl6e1+xlJMmr9crn6/9cJDH
45Hb7T7vbV7Ix+Cz+bw+1dfXd9n2eA47R1c+hwgNfC92Dr4XAycoA6im9IhONMdqfFqCDpW2
L/efYX2bzSa7vf1snsPhUFhY2Hlv1+1ynffH4LPZHXZFRUV12fZ4DjtHVz6HCA0uvhc7Bd+L
gROUAVReXiV/Y7lyc3NVeaJQtTqgtKQYObxuNfmkcLtUWFiotLQhktQhfiR1OBoEAADwaUEZ
QH0HDlffgcMlSYe2r1eR0tQvPVkR40dq2Yu5GpmToc17SjR//jSLJwUAAN1RUAbQyVKzhqqH
wlv/PUyzEtNUXFql+fNukZNXwQMAgAsQ9AEUEROviJNux8QnKjs+0bJ5AABA9xfU7wMEAADQ
GQggAABgHAIIAAAYhwACAADGIYAAAIBxgv5VYACA7sfjrVVjc5HVYwBnRAABAAKuvnG/SipX
WD1GCPqG1QOEDE6BAQAA4xBAAADAOJwCQ0g5mtpTuy4ebvUYISfT6gEAIMAIIISUo6k99cHF
I6weI+TcbPUAABBgnAIDAADG4QjQSTh9EngpmZnqZfUQAAB8CgF0Ek6fBF7/xCRNsXoIAAA+
hVNgAADAOAQQAAAwDgEEAACMQwABAADjEEAAAMA4BBAAADAOAQQAAIxDAAEAAOMQQAAAwDi8
EzSAoPPs6h16bvUOq8cIKcOzeuqRr0+3egwgaATvESC/X0WFBcrLL5DX529bXFtVpgN5+fKc
tAwAAOB8BGcAeRv0wuLFOlxcrrqqEi1avEx+ScUHdyp31ftqqqvUwkWL5fZZPSgAAOiOgvMU
mM2lG26+VWHOlj4r2JevRknrNm3V3FvnKdwuOZsrtT2vSKNz0qydFQAAdDvBGUB2p8Jaj03t
+fh9eeN7KVKSnGEKb12ekZGht/cVSzlp8nq98vnaDwd5PB653e7z3uyFfAw+m9frVX19fZdt
j+ewc3TlcyjxPHYGr4/vxVDQ1d+LoSw4A0iSz92oV19eroTM4Zp99XBJ0pmu+rHZbLLb28/m
ORwOhYWFnfc2XS7XhYyKz+BwOBQVFdVl2+M57Bxd+RxKPI+dwWHnezEUdPX3YigL0gDy6+Vl
z2v01OuV2atH21KH160mnxRulwoLC5WWNkSSOsSPpA5HgwB0Pyn2Sg1xFVg9Rkjp6+TnInCy
oAwgd/UxFdU61VB5QnsrT0iyq39OjiaOH6llL+ZqZE6GNu8p0fz506weFUAnuCximyYkLLR6
jJDiiBknaZ7VYwBBIygDyB7eQ9Mnjz5leWrWMM1KTFNxaZXmz7tFTpsFwwEAgG4vKAPIER6l
QYMGnfa+mPhEZccndvFEAAAglATn+wABAAB0IgIIAAAYhwACAADGIYAAAIBxCCAAAGAcAggA
ABiHAAIAAMYhgAAAgHEIIAAAYBwCCAAAGIcAAgAAxgnKvwUGwGy+Jpfc1dFWjxFa6iKsngAI
KgQQgKDTXJqo2t0DrB4jpITb0hVr9RBAEOEUGAAAMA4BBAAAjEMAAQAA4xBAAADAOAQQAAAw
TrcLoNqqMh3Iy5fH57d6FAAA0E11qwAqPrhTuaveV1NdpRYuWiy3z+qJAABAd9St3gdo3aat
mnvrPIXbJWdzpbbnFWl0TprVYwEAgG6mWwWQnGEKbz1mlZGRobf3FUsEEE7S1FykqrqPrB4j
BM2yegAACKhuFUBc9YOzaXIXq7ruY6vHAAAEuW4VQA6vW00+KdwuFRYWKi1tSEAfv7ruYx05
8VxAH9N0MbbhkiZaPQYA4Dx5jnyghhe+bPUYneb/t3enb1Ec+wLHv909OzMMm6wiKBwBRYKO
uGBABRdcCEYl0XjOc597/zljDCBM1IDrgbhLJHJAVBCEsDPIOvv0nBejRGPEDTMXrM+bmeme
qarueaqeX1dVVy+qSdCFm/KorrHTdv8eNztGyctMDHeRBEEQBEFYhBZVD1DiyrWUxyQxNDbJ
ie8q0UjhLpEgCIIgLE0Bp4Hp9lXhLsYns6gCIACzNYZMa0y4iyEIwif0zKjSExMIdzGWlCiL
SkK4CyEsKm7FyNMIEQAJgiD8bZqXB6ja4gl3MZaUnAQf+eEuhLCojMVEcaasNNzF+GSkYDC4
6G+u8vv9+P3+cBdDEARBEIRFYkkEQH/mdrsxGAzhLobwEcR/uPj5fD5kWUZRlHAXRfgIoi4u
fqIu/rVFdReYIAiCIAjCQhABkCAIgiAIn50lOQQmCIIgCIIwH9EDJAiCIAjCZ0fcBh8GE8N9
NN1uAcBgsrCxYBPRkSYcfY8Y8kWydtWbVrhWudpwnimPys695fjHe7ly7S7LM7JZnWTB4dWR
kSpW+vgUrl9twDHtwWCysN62kbgo87v9rrGJguIitB+Yb3tLM+nrbJjE3MUFEXBOcO5S09zn
qIRUijb9/TeHNzc3Y7PZ/vZ8l6KrDXamn6+YkJy+Gtu6rPnPr2+KGy19bC1YO2+6Lc3NrLPZ
EFVvIXhpsNfjAbSGCGwbC1gWbfkkOQ3/3s291gcoOhNf5K8nPtb6xu+KACgMJkZ+Jy59HVvX
pTM9Mcbpmhr+739O4HVOM+XVvfF3rtEeJjXLqNizCYC6xuvsOfwtZo2Ee2aSaIOoqp/K08Fx
jh8/xuzUOOftVazfWU5G8tsX5HSMjb7XQ3xvNFSRXniEpOfx1bLEJLRixfMFE3BN4NXHcWTP
1rCWIykpKaz5LyWD4zMcP3b8lW3znt+gD8ezqdc2N1RVU3jkMC8ubRKTkhBVb6F4GZ+BY8fL
cc1McPr0aY7883+JeIfGrfVGA7r0QrKS3n7R+ajlGh0jKnt37UX1zPD46aAIgP4/s0TFYtC9
PhLZ2NRIcVExAE2NjRRtWc+5i430TQSwzw6TmppKR1c36vmfSE7NICNWQ5/LSIzVTNOVSwQC
fqadbiJil1OyzYbqc3Gh4QIeVUIJ+snbVkZqrPHvPtxFLyIyhsPfVHKqpoGMbw4xPvSUxpv3
CAaDbC4qJTkuEueUgwuX/o2s1fG4Z5C9wKOW60SuKiAxUsvQkzamtImsTo2lo+UmD3qGkSSF
jbZcWtq76Jm2Yzaa2L+/lMePuihITAaC3G66xOAzJ7JGz+7duzFoZS7V2/GrCm6Xk+XZG7Ct
Wbqrtn5Ko/3dNN26h6LIbNi6g6RIDQ0XLuIPSkQlpFG8OZ+poSfcbOvF65rB5XJRvPsACVEm
OtuaaX38O1pDBHt2l6JT/NTbz6EqWmZmZ8nIzGRoYIBZp5u9ByuINGroIUwvggAAB4pJREFU
7OokOTkZ1eemoaEBXwCik9L5siAv3KdiSXhxfoOqjysXGpjxqChKkOy8bWQkwLORfs6fO4vL
6SJvczGmwDPauzqZttsxmqLYX1rEo65OEpOTcTn6+Pe9TgLuWZwuF9t2lpEcZ2Go9zHX77ai
0+vRGKyUlX4Z7sNeFIzmKNakxzE47kR51sn9h08Jqn5SV+dhW5vJo5brWNPWcbfpEikr0mlu
aUfpmeaR2cjOkm3cvPuAXdu3AHD96mXWF+3EqEhAkDttPXx34kQocNVayVsbCn4Guju4ff8h
UlBlWepqCm1redJ2RwRA4dJyu4nR7t8Ydzxja0nZa/tHR8defa+zsHfHVq73eNmzdR0AXR0d
7C8vRwcMPmxmcibU1zA8PExZxVHMRh01NdWAjSv158jetIu0eCutNxpwesVjBj6UrDUhq25A
5cLlXzh87Ds0QS/f/2jn+LdH+fl8PbsrKrEYtNirqwGYnnSg84X+H/fsFNO6GKZHumkb8HDk
UAVBNYAqKeSvySC9sHyuB+hFD1LfgzvMGlOpKMpicqSH+ku/UFFWzPDoOEeP/wudIlFdUysC
oHfQ1d6C3ROqXwmpGWzKy6T+8g2OnTiORoZAQOXi2Rps2w+QYDVy9+pZ2nqXk6jO4lUsHDi4
A6+jhwv3O9idn0xzp4NvD1Uw3v+Qhqu3OFi6gYkZP5XHKvCMdlFzq4/j5Qfof3CH9q5+tuSm
zdXvxgvnyS4oIT3eSiAg6uSHcE5P8PDhQwCiYhNIiIuaO7+3rtSTmL2JNWnx9LTewOH0AjpQ
DOzdtx9JdVFVe4Wjhw+wJiOTwvLyuR6gsdFRAAJeJ7OqnsMHdxKYHuTczTbKd+TS0HiPEycq
USSJ6qrqMBz54uSameBh3wSHi0wo0TmszP4CCHLy5PfY1mYyPeng18YbHNx7ALNBi+IaeaUH
aHKwC6d/MybZS9/oFIXKi14kJ4piQQKG+7q43dI+N8Qdl7KKQyuzAag+eRK3bS2zU89EABQu
+ZuK2JKbhmNkgAtXfmHViqMLlrYxworZGBpK0+pCr5MeibT4N3cFCu9LAt8kv/c7+PnsTwD0
9Q8RwAfaCCyGt8/66e3uZE1eaDhTkpV55xp0P+kjt7QAAGt8Ov7ZX0Pvo2PQKaEeRJ32Q2ca
fV4y1uRT/tIQmO9ZL5aUf6CRQw2poijM+GQSrKEe0tzcHC6295K4QktsbCwSoNfrCQaDDPc9
ZdXq0FySmJQsPLeqgA2YLRZkKZSWJTLUKCuyTND/6oCow6my43m9FIvULbyBSQ9b0uJf2x4d
G4ssSaBokFHfmk7c8/9do9chB4PMOgZIWJWNIolBsnc10PMIu92O3mRm36EjGDUS/d1PuHv/
IbIs0zcyMffdwuKdmN/Qhhbacrh+t52syBnS1mx4aY+WYNALhC5sylMzqKquhk35TI72c/3u
fWRZprdvhBfPjRABUBhJkkRcQgox2gCz/j/ve/nTx69UYJD9jM94iDHrcbvdvHmmkfA2I0/b
MMevBE0EK9JXUF5eDsDBYBAJ8Plff4aVLMn8seJE6HXZsnj+MzBAzvI/AlNZlp8/1uXVqhkX
Z2VwcIxlK5fhd0+iymJl3oWitcTgGr//yjZF9eLyBzFqJIYGh4iNSQFenzcSHRvL/QcDkJOC
b9YB2sj3ytugqEx7Alj0Ivj5UCZLFFlZWX+5L9og0z8+Q0qMGbfbzXwNnyyr+P1B0Lw9qDFF
LWOs/xpB8kD14/b4PrT4n43k9NVzbeUL1+7cp7LyGyQJPFVVc9u1L13MybJM4KVHXSX9I5/L
t77HZTaw56vNL6WmwyA5GZv2EGfRv5JP07U7fFVZiUaSqPf8kY8IgMKk5XYTYz2tBPw+ZHMC
UVpwvbTfolE5U2dHr1UYGp/96PxKdu3ifL0dncHE7PgIX2R/dJKflWnHAHa7naCqgjaCfWWl
IElkp8Vyuqoag06LpI/k4J7t5GWmcPKHH7GaI+jsHWIvkJaZRd25H3kQF83EcB9ZhSuJX7UO
9UEtNWceIQUldpd/RVZuPrV1p4iNT2JfWclc/jm2L6mrraW71Yhz1klJWfmbCyvM6+UhsBdd
5LlpVk5XVaPTyORvLmbH9m3U/ngKk8mIJ6Dh64pCJntbX0vLkphBZOtZas7U4na52H3g0HuV
ZceOIuqqTmE2W7AmLKd48/oFOUYh5MuSXZw/X8+vOgPq7DjL52n4cvNzqDt1ivik5ZSVzD+f
RzZEU5AVT3X1GUwRZvxB0RP0IRKtBs7U1aHX6egbcvzld1Zm5XK6to4nsfGU7CvDpMisWxnH
f8Y16P80fXbfgYPU/VSF3mRGlsAUFborOiXRSu2ZOox6HT19Q2x7/n2xEOJnwuv1ons+HHbZ
/gM5278mKVIMmQiCsHS93O7duWzHmrOd1Unv10v311S83gA6nRbV5+SHM/Ucq/x6AdIV3sVv
1y5iydzMqoSPu5Ve9AB9Jga6O/itowdQiUnKFsGPIAhL3thAN3d+60ACTDFJbFyQ4Cfk2uWf
mfaB3+dne0npgqUrzK/lViOOoJUvPjL4AdEDJAiCIAjCZ+i/xUEn7eLJZrQAAAAASUVORK5C
YII=
</thumbnail>
<thumbnail height='576' name='Sheet 1' width='576'>
iVBORw0KGgoAAAANSUhEUgAAAkAAAAJACAYAAABlmtk2AAAACXBIWXMAAA7DAAAOwwHHb6hk
AAAgAElEQVR4nOzdZ5gV9f3//9ecur1Xem9LBxGQjmLHGo1GjRo10RST+Ev9ppj2T9MYjSZ2
jbGLRlRULPQqvXdY+va+55w9ZeZ/A0SXXZQo7MCZ5+O69kbOfM7Me86VS17XpxqWZVkCAABw
EJfdBQAAALQ1AhAAAHAcAhAAAHAcAhAAAHAcAhAAAHAcAhAAAHAcAhAAAHAcAhAAAHAcAhAA
AHAcAhAAAHAcAhAAAHAcAhAAAHAcAhAAAHAcAhAAAHAcAhAAAHAcAhAAAHAcAhAAAHAcAhAA
AHAcj90FAACAU4dlmQrU1ykQCkuGS4nJKUpO9MswDLtLO6EIQAAAQJIUrC3R6y/8W2+8O0c7
9pdLHr86deuny79+u746ZehxDxuZ4YD27DugxMwC5WWm6FSMTgQgAACgproD+vuvf6Lpy/dr
wnmX6da7hsgba9L65fNUXHxApo4/AIVKN+vOb35Hw67/k355w7iTWvcXRQACAMDprKhmv/SY
pi8u1jU/+qPuuPwseV2H+m3GjJ+gxsYmue2t8IQzLMuy7C4CAADYJ1y9W9+79SbtTxutpx+6
W9mJrfePWJap1fPe0sxZC7Rmw3YFIqZSc9rr7Euu1fVTz5JbEU1/6Ld6/O1lKiuvkD8lSxmp
iTIk9Zx8g+753hWSpLqD2/TsM//WnI82KOpK1NCx5+mm669U+8ykI88q3blWLzz/ghat2qyo
EjRg1Fj1Tg+oJHmYfnjtxI8r0vaVs/Wf517Ruh0H5E7M0Kizp+r6qy9WbopPktRQvlU/+96P
lHfed/WLa87U6//+p55/bwU9QAAAOF3FwS3atadOw28Zq8yEY0cDyzT1wiN/UrFvsM4YPUGJ
XktbVszXP/9wl8K+J3TbeX3UuWi4zq6XXn9rpgp6DdWYAR0lSfl9u0qSGks26q5vf0/bgpm6
4NxJ8jRVatbrj2nV5j167N6fKCvRKzMc0P1/v1fz1ldo4uQJKshIUMmOVbr/xVWadEvfj6vR
xtnP6Xu/fEi+wr46Z/I5CpXv0ltP3aMlK7foX/f8WNmJHpmxsEoP7perpkavP/pH/fWZ9xV1
JxCAAABwuqb6OgVNqX37Qrk+Y8ay4XLrZw/NUGZm5pHPrPC1+vZVV2jGu+/ptvOKNHjCJerV
vaNmffih+o6+QHfcMO5Tk6BNvf3cw1pbk6Ennn9a/QuSJUkXn9VP3/rxfXpz6dW6YUIPHVg3
U8s31+v3Dz2pCX3zJUnRylVaMu/WT+7UuF//eOhpuTuO0jNP36scvyHJ1JQRj+mHv39c/3n3
PN156dAj7XcvfVOPV1Xpqz/4nW66bDIBCAAAp/t4hXs0FvvsdpIS3DEtmTVDS1auU019UJak
g4GIGgKBz39QpFLLlu9Qu95nyt9Qqp07D983tUC5mX6tXrFO143vrrVLlqrTWVM15nD4aU35
zo3aUVqrKd//2uHwI0kuDZl4nno++oqWLF6kOy8dcqR92cEqff/uP+rKcf3lMpgEDQCA4yVm
5CrNJ+3ZtUdRa4g8x+gFijTs12++/13N3lShzt26Ki3RL8OQAk3m8T0oElJtKKK9y97QNV99
o8XlpJoqWZalYGNIOXk5nxlSgoEGRSOWCvJzm33uSk5Wlter3dXVzT4ffN7XdPm4oiM9XAQg
AAAcLruwl3p3zdWaRbNVdvP5apfqa7Xd5tn/1axNlbr15/fq6smDlHo4AP3+1kma3Ur7Fsus
PF4lut1qN+Rc/fY7V7cYbkvOzJfbMJSWkaI923apyZT8x1h7n5CYLI/HUElpmaRORz43AwHV
RCLKzEhv1t6bmCjPpzZz5CgMAAAczpOSr8svnaJg8RLd/+QbCkU/6dGxzKiqqmpkSqqqrJbb
59eAQYOUlnS496d6n0pros3u53a75XK5dGDv3uYpyJejgUXtVLp1o0Jp7TVw4MAjfwOKeinB
ZUiGoaIzR6p8xdt64Z2lCkVMNTVUat6sBfr0IFte177qkpemWdOnqepID5SpdfM+0NbyOo0Y
MVL6jC0Y6QECAMDpDJdGXnyjrlu/TU8/f49uXL9Ik0cNkCsW0oblC+Xuc5n+vx9cod4Di2Q1
vqn7fv9/mjKqSDX7t2rOR1sVbWiSPpkXLV9uZw3ulKMZMx7Vr/w16p6boOzuZ+jisQM19fqb
NWPBj/Tj227UOeedp47ZyQrUlmvJgrkqGPUN/fGHl6mgaLLGDnlT//zdD/TvexIkK6a8jp2a
lexK7ajbb71ad/7mCd1y2506b/xQhcqL9fa7HyitzxRdd/5gfdbpHe6777777pPzawIAgNOF
y5Oo4ROmaGDXHO3dvEZz5i3Q+q3Fyuw0QFMvmqKuhVlKKeyt3rmmli1YoOVrNyu5XX/96Be/
krlrtsr8PXT1uaMkSYY7QUOGDVJDSbEWLpivdZu2K6fHcI0s6qykrE6aPG64Giv3aen8BVqx
eo0OVDdp2LgLdO1XzldOaoJcLq9GjR2jPl06qHuf/rr8+tv1na8M1cvPvakOwyZp8vCekgwV
9hyqkUXttWvDCs2Zt1A7D9Zr9EXX6Tc/vUMFqX5JUjhQqdnvzVJW0VhNHtbzyPuyESIAADil
WFZMpmnI7f5kps6BZdN0+e336pqf3687Lx/xpZ/BEBgAADilNFZv1bNPz9OA0cOUkuhRxe6N
evrJp+XP66IJI4tOyDMIQAAA4JTicvm0fdVsPf/qUwo0ReX2J6t77wH66e3f18B2ySfkGQyB
AQCAU4ylQEO9qqqrFYmacnl8ysrOUWqS/4Q9gQAEAAAch32AAACA4xCA2phlWTLN49wyHAAA
nBQEIBuEQiG7SwAAwNEIQAAAwHEIQAAAwHEIQAAAwHEIQAAAwHEIQAAAwHEIQAAAwHEIQAAA
wHEIQAAAwHEIQAAAwHEIQAAAwHEIQAAAwHEIQAAAwHEIQAAAwHEIQAAAwHEIQAAAwHEIQAAA
wHEIQAAAwHEIQAAAwHE8dhdwUlmWmoL1KiktV1PUlD8xRQX5efJ73S2axiIhHTxwQMGwqZSM
bOXnZMpltLxlNBzQwQMlCkVMpWblKT8rVYbRSkMAAHDKiuMAZGnXmjma9u5S+ZNT5fW4FA42
qMmdoUuv+op6FWYcaRmo3qtpz7+skia3UhO8qq2uUbfhkzR18kgleIwj92soK9ZLL01TVcSn
5AS3aqpq1HvUhbpk0hB5yEAAAJw24jYANexbq8demasrb/qm+nfJk9ftUiTUqLXz3tATT7yk
X/38m0p2SVY0oLdffl5NBWfq9gvPUorfreqSHfrPE89qTk6+zh3WTYYkMxrSGy89K0/nibrj
3DOV5HWrtmSb/vWvp7SgoEATigrtfmUAAHCc4nYO0L4dW5XR/QwN6VEon8ctwzDkS0zRsMmT
lF65ScVVh9pV7tmg9WVeXXzOaKUmeGUYLmUV9NDU80dpxbx5aghbkqTaXSu0tjJNF00ZrWS/
V4bLpYx2vXT1+Wdq1gdzdbgZAAA4DcRtAMrKy1dt2X4FIuanPrVUX1KiBn+B8tIO/e8DOzYr
o+tA5aT5PmlmGGrXtZ/UeFAVdQFJ0vbNm9VpwFBlJ3z6JzPUceAQeQ5s0sH6Tz8HAACcyuJ2
CCyvzyidt2WHnv7PKxo35kzlpPpUvneb5s5fprO/+lXl+iTJVEVZpXILh7T4IfzJKco0Yipr
CKlrTrJKy6uU3zOvxXNc/jxlpARUVd2ozmmpRz43zc8ORMFg8Mu/JAAA+ELiNgDJ8Gr4xAu0
97mn9epL25Xo8yjY2KCeZ56nM/t2PNzIUiQaU1JiYsvv+3xK9bkVOdyDFI1FldhKO8PwKDEp
QdFotNnnoVDomKVZliXLYswMAAC7xG0AClbv1lNPvqy+4y/R1P7dlez3KFBboY/mvK0nnq/U
bV+fqo9Hs2KxWMsbmKaipqkji7ssyTRbaSdLsWhUOmoVmN/vP2ZtTU1NSkpK+iKvBQAAToC4
nQO07MM35ek+VhOG91FKgleGYSg5I1cTLvqKEksWa+m2SklupaQmqra2Tkf3x5ihkKrDhlKT
vZKk1ORk1dbWt3iOaQbU2BBT8lGBxu12t/rncsXtTw4AwGkjbv81Li05qNyC/KM7ZmR4klSQ
l6ID+0olGSrs1EnlxTsUjDWPQPU15Wpw+ZSfcijYdOrcXrt27dLRfUDhimJVWoXKzz52jw8A
ADi1xG0A6tS5q7Zt3Kio2TzYRBtLtWlnpTp36SBJat99kIyqTdq0u/LIvBzLDGvVovnK6jZE
WamHeoA6DxghY/dybdhbe6S3yDKjmv/BbHUcOkJZ3jZ7NQAA8CW577777rvtLuJkyG/fXhvn
vK5lu2qUnpqiWDikfTvW65UXp8nTdZwumVAktyRPYqoyXbV6/a3ZSsjKk9cKatnstzV/c72+
8tVLlJ10aHm8y5+qdKNSr7+7UClZOXJFA1r24Wuas9PSjddeohTf8WfJaDQqr5fEBACAXQwr
jpcjhRsqtWzxIq1Yv1mNTTElZ+Rp6BmjNGJwb/ncnwosZlQ71i/TrPlLVVkfVn7XPpo8cYI6
Hdos6AgrFtGWNYs1b+EKVQUiatetSJMnT1D7rOTjrsmyLAWDQSZBAwBgo7gOQKciAhAAAPaL
2zlAAAAAx0IAAgAAjkMAAgAAjkMAAgAAjkMAAgAAjkMAAgAAjkMAAgAAjkMAAgAAjkMAAgAA
jkMAAgAAjkMAAgAAjkMAAgAAjkMAAgAAjkMAAgAAjkMAAgAAjkMAAgAAjkMAAgAAjkMAAgAA
jkMAAgAAjkMAAgAAjkMAAgAAjkMAAgAAjkMAAgAAjkMAAgAAjkMAAgAAjkMAAgAAjkMAAgAA
jkMAAgAAjkMAAgAAjkMAAgAAjkMAAgAAjkMAAgAAjkMAAgAAjkMAAgAAjkMAAgAAjkMAAgAA
jkMAAgAAjkMAAgAAjkMAAgAAjkMAAgAAjkMAAgAAjkMAAgAAjkMAAgAAjkMAAgAAjkMAAgAA
jkMAAgAAjkMAAgAAjuOxu4CTpb66THWByDGvp2fnKyXhk9c3o2FVVVapKWoqMSVNGWkpchkt
vxeLNKmqqkrhmKWklAxlpCbKMFppCAAATllxG4A2LHlPCzaUtLxghbV75z595Qd/0LhemZKk
UF2J3pz2qraXNcjrcSkcMTXgrCk696zB8rk/DjeWAlUHNP21V1VcEZLXYygcMTVk/MWaMqqf
3GQgAABOG3EbgEaef51Gnt/y87LN83Xfi6s0uGuGJMmKBvXeq8+r3N9X3/zuJGUmelS6Z6Oe
e2aaktKzNWlQJxmSzGiT3n75P6rPHq47rh2rtASPyovX6ZEnn1V6zg80uldu274gAAD4wpw1
B8gMae6HczVk0rlK8x7qsqnet1mr9sZ0yYUTlZXsl+Fyq6Bzf02dMlxL585TY8SSJNXtWa0V
B3265MKJSk861C6v2yBddc4gvf/+XB17sA0AAJxqHBWAqorXa21FsiYO73b4E0sHdm5SaueB
ykv3f9LQMNSx5wCZdXtVWReUJO3ctEmF/YYqL8n9qTsa6jpkuLRng0oarDZ7DwAA8OXE7RDY
0WKBas14e45GnT9V2Ynew5+aKispU/suQ+Q9aiJzQlqGcl2WSuqD6pydpINlFercZ5yOnurj
TixUTnpIFVUN6piSeuTzcDj8mfWEQqET8FYAAOCLcEgAsrRr/ULtieXrssE9PrW6y1IkEpPP
62v5FY9XyV5DkYgpSQpHI/J7vS2aGYZH/gSvopFos89jsdhnVuR2uz/zOgAAOHkcEYBioVrN
XbBaZ0y8Tsm+5qN+brdLoaZWemMiETVGYvIcXt7lcbnU1NTUopllxRQKhuR2N79vYmJiq7VY
lqVgMChvK2EKAAC0DQfMAbJ0YMsKHTQLdEafjkcNYbmVnZOpyrIKHd1fEwk0qNp0Kyc1QZKU
k5Wp8orKFnc3I5WqbfApIyO1xTUAAHBqivsAZEaCmjdvsQaMHquMxKOHnQy169ZbVbs2qDbQ
fAir/MAORfzZyklNkiT16NNLezauU33zZqrYtkGBzJ4qTIv7nxIAgLgR5/9qW6ravVpbqtM0
anCPFhOYJSm3cz918lfog6WbFLMOreSKBCr1zoy56jdyjNL9h36irO7D1Mm1R7OWbpJ5+Lux
QLmmvTlHoyaOV2Kc/5IAAMQTw7KsuF2/bZlRTXv4j1LRFbpyfL9WA5BkqfbgNj35+H/kyu+h
DlkJ2rlpg9J6jtENV56jRM+hb1mWpZp9G/XYUy8qqbCnCjJ82rZhrbIHnq9vXDZG7uM8DuPj
OUBJSUkn7D0BAMD/Jr4DUKxRq5atV9eBw5WZ9NmrrqKhBm3etFE1jVHltO+qnl0KWz3eIhyo
1ZbNW1QbjCqvYw/16Jgr1/9wFhgBCAAA+8V1ADoVEYAAALAfM1cAAIDjEIAAAIDjEIAAAIDj
EIAAAIDjEIAAAIDjEIAAAIDjEIAAAIDjEIAAAIDjEIAAAIDjEIAAAIDjEIAAAIDjEIAAAIDj
EIAAAIDjEIAAAIDjEIAAAIDjEIAAAIDjEIAAAIDjEIAAAIDjEIAAAIDjEIAAAIDjEIAAAIDj
EIAAAIDjEIAAAIDjEIAAAIDjEIAAAIDjEIAAAIDjEIAAAIDjEIAAAIDjEIAAAIDjEIAAAIDj
EIAAAIDjEIAAAIDjEIAAAIDjEIAAAIDjEIAAAIDjEIAAAIDjEIAAAIDjEIAAAIDjEIAAAIDj
EIAAAIDjEIAAAIDjEIAAAIDjEIAAAIDjEIAAAIDjEIAAAIDjEIAAAIDjEIAAAIDjeOwu4OSy
FIuEtW/nZq3ZsFWhmKHsdl01qH8f5aQnf6qZqdqKA1r20XJVNkZV0LmXhg3qq5QEb/O7Waaq
S/do+fJVqgnEVNitr4YN7K0kX5z/jAAAxJm47gGKhur0xnOP6MV3lig5u1AdOxSqYd86PTt9
9qdaWdq3ebH+8Y/HVR5LUucOBdq1fKYeevwFldWHP2llWdqzdp4efPjfqlWKOrbP09aF0/XA
46+qtsls+5cDAABfmGFZlmV3ESeHpUX/fVTLGjrqG1efqxSf+8iVcDgsn88nSYo0lOmRB/+p
XufcoLOHdpXLMBRtqtf0px9Wfftxuv7CM+U2pGhjqR645x8actk3NWFgRxmSzHC9nvvX3+Qq
ukxfO3vg8VVlWQoGg0pKSjoZLw0AAI5D3PYAxer36v3l5br80nOahR9JR8KPJJXsXKdqTyed
2b+LXIYhSfL4UzVu8njtWf+RaoJRSdLBTctUk9ZHI4sOhR9JcvlSdcH5E7Vh8WLVxdrktQAA
wAkQtwFo/9YNcnXspw6p3s9oZalkz07lduujVH/znyIrr6MSIvUqrw9Ikop37VHX3n2U2DxL
Kb1Tb6UHi1VaHT3BbwAAAE6WuJ29W15WqszUPC14/y2tXrNGu0uqJHeCeg8coakXn6f8NL+k
mKqr6pXZObNFEnQnJSnTY6qqvknKl6pqapXVIbPFc1zuDKWkmqqta5ByMo58HolEjlmbZVmq
r68/QW8KAAD+V3EbgOrr61W8uUTdC8boipu+p4KsFIVqSjXn3em67++P6ac/vUMZvkNhxOf1
tbyB26NEj0fm4RlSpiz5va30JhmG/H6/jp5KFY1GW3z2yVcOfQcAANgjbgNQQkKCegwepvMn
jz7yWVJmgS64+usqu/e3WrjugC4cViCXy6WmcFPLG0QjCkSicrsOzfhxGy6Fw+GW7SxToVBI
LlfzPqTExMRW6/p4EvSn5yEBAIC2FbdzgLKys1VWVqIWfTCuBHXr0l5VFZWS3MrKTldleaWO
nsMcCTSqOuZWduqhnprszAxVVFa2eI4ZrVJ9vVcZGSkn4zUAAMBJELcBqGP3nmrYuU77Go6e
nGypsbFBScnJkgy169ZLVbs2qi7YPAJVHixW2J+h3NRDy9W79+qh3Zs2qvGo21Xu2KSGtO4q
SD9qdjQAADhlxW0ASszvq7G9E/Taf99XMPZJP1B96WZ9tDWoof27SJLyOhep0F2quSu3yjw8
ZycSrNb7M+eo1/DRSk84FGxyew5TYXSn5q3cro+3PTSDVXp9xhwNHz9WyXH7SwIAEH/ieCNE
KdJYpucefVR7ohkaUtRdClZr2crNOuvS6zXljJ6H9/OxVLF7nR5/4kVl9BysLtlJ2rJ2uaz8
wfrG1y5W6uE9hCzLUvmOFXr0mf+qoNcQtc/0a9OqJXJ1Gac7rpkin9v4rFKOYCNEAADsF9cB
SJYly4pp3/YN2lxcIrc/Tf0HD1ZuWoIMw2jWLhqq05pVq1VRH1ZB197q37Oj3IZx1O0shQM1
Wrt6jaoaI2rfrUj9uhce2UDx+EoiAAEAYLf4DkCnIAIQAAD2Y+YKAABwHAIQAABwHAIQAABw
HAIQAABwHAIQAABwHAIQAABwHAIQAABwHAIQAABwHAIQAABwHAIQAABwHAIQAABwHAIQAABw
HAIQAABwHAIQAABwHAIQAABwHAIQAABwHAIQAABwHAIQAABwHAIQAABwHAIQAABwHAIQAABw
HAIQAABwHAIQAABwnFMqAMViUTU1Ncm0LLtLAQAAccxj14Ord6/TO4s3a/TZF6lLTqLKd67U
I48/q91lDeoyeLxuv/kqZSV57SoPAADEMdt6gD545VE99sIsJaYmyAzX6Im//1Uzl26VL8Gt
WS89qAdenCP6gQAAwMlgUwCKauPGzeo+fKTy/Yaq927W0nU7df7NP9Y/HnhIXz+7SB99MEs1
pj3VAQCA+GZTAAqqvi6irMxsSdL+7WtVEszS6BF95HK51L17FzXVlak+ZE91AAAgvtkUgJKV
nZuo3bt3KWaGtGLJCnnadVT3nHRJUkVFtTy+dCX67akOAADEN5sCkEuTJp+t4rnP6tLLvqrH
31ml4aPPVn6GX5YZ1KKlK9V+8EDluO2pDgAAxDfbVoGNuOyb+lFlVG8v2qSBo87XHbdcLJ8h
VW5ZrL2xAl1z/mQZdhUHAADimmFZbLrTlizLUjAYVFJSkt2lAADgWLYtgw/VV2rb9h1qDB+1
1CsW0Jply1RcUmNPYQAAIO7ZFoBm/vsvuut3jylkHDXQZXj01hO/0x8efV0xe0oDAABxzqYA
FNaKj5arQ79ByvIeFYBcPo0YOlC7V65QecSe6gAAQHyzbSPEcNiUy2j98YYhmbGwonQBAQCA
k8CmAJSk3n27aM28Gdp4oL7ZkReh2j16/d3Fyu7WRzkJ9lQHAADim22rwKq2zNV1t/1MRkFf
XX7pJerfvUBV+7bozdde06q9Qf3krw/r0hFd7CjtpGIVGAAA9rMtAFmWpS2L39R9//y31m7d
o4hpSYZbHbr30zW3fF9XTB4kTxxuBEQAAgDAfvbuA2RZCjbU6MDBEjWGIvL4EpXfrr2yUhNl
HL06LE4QgAAAsB8bIbYxAhAAAPZro6MwTC17+1m9Om+7Lrrxdo3pk6V3X3xOu6qbjvmNhNQC
XXbVZcrwtU2FAADAOdooAFkqK96shQuXa9glX5eUqsXvTdfCPY3H/EZafpHOvpwABAAATrw2
GgKzVF26TwcrG5TfsauyU32qrqhQU9Q85jdcbp+ysrPksW2v6pODITAAAOzHHKA2RgACAMB+
bTQE1hpL0XBQlVV1ai2BudxeZWVnx10PEAAAsJ9tAejAuln68a/uVUldU6sBKC2/SA88/oA6
0lECAABOMJsCUEzPPXq/dlTEdMFllykv2duihT8lX6lfsrq6A1s0b+W2lhf82ZpyzigdmV9t
WQo1VGnlihWqaoiqoHMvDejXTX538+4ny7IUrC3TylVrVBOIqrBrPw3s3UleN91UAACcTmwK
QCGVl9Zp2NQ79MsfXnXSnrJr3VKt3WlqZP9OzS/4/Ppkm0VLpTtX6vGn/6uComHqkp2kj2a+
oDmLe+nm665QVtKhn8iyLB3cskSPPz9DnYvOUPtMvxa98aRm5wzT7V+/WMleQhAAAKcLmwJQ
snr26qBl4UPDXydrz+eDJaXqO/xyTRrd/ZhtooEq/ffVNzXwgut14chechmGxo89Uy8/9i+9
PX+Nrp0yTC5DioWqNO2VGTrzkps1ZVg3GZImjRupJx/8m2Ys6qWrxvc9SW8BAABONNu6Lc6/
9HLt/Wie9jXGTtITTJVXVCgvL/czW5XuWqcytdPYIT3kOnz8hichQ5PPHa9dq5eqJnSovtLN
H6kssYfGDO52JLC5EjJ0yQUTtXrBAjUce0U/AAA4xdjUA9SkTTurlNK0Tff/7R/qU5jSokVC
Sr4uuuJiZbScHnR8zDqVl0sjslM/o5Glg8U7lNOtn9IS3M2uZBd0kS88R+X1AWUlpqp4Z7G6
9hmm5ObNlNm1j1Ib31dJTVQ9smxcVAcAAI6bTf9ihzXz5f9oV0Wjdk1/VnNaaZFeMFBjp37x
AGQ1VKos6Na2NfNUYhxeVp/XTt27dVLCkbX1MVVX1SqrY3aLrjBPYpIyPaYq60NSXqoqqmuU
3S+rxXNcnkylpcRUW9soZaUf+TwajepYWyxZlqWGhoYv9mIAAOBLsykApej3z7ytqHnsPRgN
w63ExC/+BMuboYnnjFSwplrVkmKRJq1c9KGeDXh15XU3aWiPfBmSTNOS39fKeRser5I8HpmH
h7ZM6xjtDJf8CX6ZZvMxsHA4/BnvZsjjobcIAAC72PSvsKGEpOST+gRXYrbOvWhq8w+tmLYs
fksPP/akOv32p8r1Sy7DUDjSSliJRhWMRuU63DXkkqFIJNKynWWqKdQkw9V8Kvexdnr+eCdo
v9//RV4LAACcALZ2Q1hmTHU1NQrHWs4gNlweZWRmntidoA23eo+aop4zZ2vDrhpN6JOhzOw0
ba+okqnmM8KjwUZVR93KTk2QJGVnpmtrVZWk5ivKzFiN6hvcykhrOY8JAACcmmwLQNHGCj3+
j79q1keb1dgUbXE9La+v/vrPe9ThSwyDtcr6eAjKLclQu649Vfn2JtU3jVS6/+lFCkkAACAA
SURBVJMZzlWle9TkS1NuyqGenG49uum9DzcpcN4ZSvrUROia4s2qS+6qggyGtAAAOF3Ytgx+
7kv/0JP/XaS8noPUMd2tJneGzr3oEk05s48azVRNOnusUtyff59j2blhuTYVlzY/ZsMytXPV
XBVH2qlvp0Orw/K6FCnHPKBFa3bJPDxpOdpUqznvz1XXwSOVnnioiLzew5Ub3KZF63YfuafZ
VKu33p6jwWPO+lK1AgCAtmVTt0VE8+cvVKdRl+ieP3xPr/7pTlXua68bbrlN6arSjuuuV1rn
/spoZc7x8UrySdNffFTvpLZT/749lOiRSoo3afX2cl187Y3K9h3e8ycpW5dcep6eeu4ZVew9
U11ykrR59VLVJXTTzeMGyX14ao87IVuXXXaennrlKZXtGqEOmX5tXLFQDRlDdMfoPifgNwEA
AG3FtqMwGuqj6jq0txI8hxKGacUky5Lhy9I5Z/XV0y+8pqln/UiJX3Cb6IKew/SdH/TT7u2b
tGXHPjXELGV1G6YfXtpfWYfn9RxiqLDnGbrz+520YvlKlVfVqWjcpRpS1EOJvk9+HsMw1L7f
KN35nS5auXK1KqsbNOScazS4bzf5OQYDAIDTim1HYWRkerWzqkKWvMpvl6Oy5XtUU9+kjOwE
JSUlqmb3FpUHpU5f+DR4Q15/knoUDVOPomGf09RQcmaBxp1zwec0cyktp70mTGn/RYsCAACn
AJu6Llwa0H+gdq1eqcqIpZ4Dz1BC2Sb986kXtWzxh/rPGwuUnNte6awUBwAAJ4FtS5fGX/xV
bY4sVHlFUL0HTtQNVyzUE/99WLNejCqzsJtuv+VrSmdiMQAAOAkM61jnNbSxWCSoXTt2qCEU
U2Z+R3UqzDppp8Tb6eONEI+1USIAADj5TpkA5BQEIAAA7GfbEJgVbdCMV17S+p0HFW0lgiWm
d9CNt92obOYBAQCAE8ymAGTp1ft/rj+9uERJSUlyu1oOdqXlFemqb9yo7LYvDgAAxDmbAlBQ
y5etVZfhF+uRe3+q7CSvPWUAAABHsmkZvE8pqQnq3HsA4QcAALQ5mwKQR+PHjdHWjRsUYgo2
AABoY200BGYpUFet2samI590GTlFqS/erQ+Wb9ewDsktvuFye5WdkyMPp0wAAIATrI2Wwcf0
9sN3668vLWj2aSjQIJcvSb5WUk5afn89+OQ/1DHOVouzDB4AAPu1UQ+Qoe5Dx+lrns7H/Y2E
lHylMT0IAACcBGyE2MboAQIAwH62zbA5sHGx/v3sNJUFzOYXorV68m9/0vQFG+wpDAAAxD3b
AtAb/3lAry7YorSEo0rwpMms2qh/Pz9DQXtKAwAAcc6mABTQrp0H1bNvkY7OP5Kh3r16qm7v
NlWQgAAAwElgUwDyKiHRo4MHD8ps5erBkhK5PEnyMQkaAACcBLYFoLPOGqkd86fp+VnrFYnG
ZFmWYrGodq2coaemL1ev0aOVa9tRrQAAIJ7ZtgrMbDyoH93xTc3fVKZuRcPUp0ueag5s19JV
m5XZfYTue+Ae9c5NtKO0k4pVYAAA2M/GZfCWQjUH9d+Xntd781eoMRyTy5OgQaMm69prrlTn
nJa7Q8cDAhAAAPY7JfYBMmNRRWOmXG6PPO74PvuCAAQAgP1snWVjWaYq9m3Xhi3Fqg9ENWjM
BBW6azR3xRb1Gzpa7TL8dpYHAADilG0ByDKbNO3B3+nx6fNVXdsoU8n69ROD1KG3oWf//Av1
uv4P+vl1E+wqDwAAxDHbxpuW/fch3fvCHI2+9Dbd95f/U17C4YISCnXOuP5aMmeBArYPzgEA
gHhkUwCKaua776rruGv0i+9+TT07ZMttfHzNUJcunRQo3auqJnuqAwAA8c2mANSk+tqw2hW2
l7uVq7U1dZLo/gEAACeHTQEoST17ddCGZQtV0hBudqWp7oDemfORMjr1VHaCPdUBAID4ZlMA
MnTJtTfLtX+B7rzzx3rl3cUKRqNa/v40/fA739FH+6TLr56q+NsGEQAAnAps2wfIskxtX/6+
HnrkKS1du0MR05JkKLdLX11747d09QWj5HMZn3uf0w37AAEAYD9bN0K0LEvRSJMaGxsVaorI
7fEqKTlFSQk+GUb8hR+JAAQAwKnA1o0QDcOQ15egDB+TfQAAQNtpswAUDtZo9YrVCkSPr703
IV1Dhg9REifCAwCAE6zN4kVj5S795f/+n4obj699esFAPfnyk+pMAAIAACdYm8eLDgPH6rpL
z1O73DR91iwfjz9VeRwFBgAAToI2C0D+5GydOXqE3l+yQo/+a5s69ijS2RPHaejwM9SzY57i
cMEXAAA4RbXhKjBLsWhUjfU12rJmuRYu/UhzZ89ReUBq17WPxo8fqzFjx6t/j3Zyx+kKMIlV
YAAAnAps3AfIkmXGtH/7Ws2Zv1CLFyzUpl375U7O0/iJE3TWhHM0blgfeWw7rvXkIAABAGA/
W/cBas5S5b6temfGW3rpxWkKJPc9NAk6znICAQgAAPvZu8bKshQK1GpPcbFWfbRAS5at1pr1
m+RNK9SQYUOU0tpJqQAAAF9S2/cAWZZqKw5o06aN+mjRAq1Yu1G79hxQRmFX9R80RBPHj1Gf
Xr3UPi8zLidG0wMEAID92iwAhRurNPe9dzR77nwVVwTVvn0HJfo9Ss/rpLHjzlK3Th2UnZ4c
t0dgfIwABACA/dosAFXvW6Vbv3arol3GaOqk4cpIS5H7M7p4fElZGjtxrFLibCNEAhAAAPZr
s3hhyJDb49G+LUv06JYln9s+vWCgis6KvwAEAADs12Y9QJGmem3dtFWh2PG19/iS1btfHyXE
2URoeoAAALDfKbQM3hkIQAAA2C/OthkEAAD4fAQgAADgOI6ZYlyzd50efuJF1SR306/vvFGJ
vk9NLjLDWrNotmbOWaiqhqjyu/TR+RddqD4dspvdw4w2adWC9/T+/GWqCURV2LWfLpo6Vd0L
0tr4bQAAwJfRRj1AlvZuXKTXZnyg+rAkhTXvzVc0f/XONnl6rKleb781Uz0GDVM0VK9PT3uy
rJiWzXxRry/Yrqlf/65+8+v/0/i+6XrukX9qw/5afdzSMmNaMuM/mrGiRFfefKfu/uXPNaa7
Xw/f/4B2VjW1yXsAAIATo40CkKm1s1/XUy++p6ApSU16498P6c0FG0/6ky3L1OaP3ldVcl+N
HdhFR++zGCjfqZlLi/WVG65Xn4658icma+i4i3TxyI56d+Z8hc1DEShUsU3vLt2nr95wnXq0
z1ZCUoqGTb5SlwzL1OvvzJN50t8EAACcKG0UgAz5/D7V1ZSorLJebbfszFJj+Q7NXFSs8y+Y
KH8rb3tgxwZ584vULT/1U+W61XfoSAUOblLVoS4rFW9YpaQeZ6h7buKnvm1o2NixqtywWhVN
LKYDAOB00UZzgFzqe8ZZSnx6ln79kx+oe/sMbSgLyZjzsn66b0Gr30jK6Kzbf3C7cv1f/KmW
Gdb7099QtzEXqVtOkmrrj25hqnT/fuV2Him/u3nXUEp6tlLNsEobAipM92vf/hJ17txfR29L
5MvspGxPucoqQ8prl6jjFY1Gv9A7AQCAL6/NJkG3K5qkn921X8+89oG2bC5VfTgmVRzQpkht
q+1Tcy2Fv+S40q4VH2hLpIO+d2YvtX7ohqlAY0jpBWktrhsJCcrwGWoMHAoqjcGg0tJSW9zB
cCUpOdWjYCgk6ZMAFAqFWn2iZVlH9gICAAD2aLMA5PL4Ne7SmzViylfVFKnVr2+6Vq4xt+nX
35jSanvD5VZKwhd/XqRur155Z5Uu+9YPleQ59pljliSXq5WxMcOQ22V8MglakmG0PmLocrl1
9Lheq/f8+F6WpeTk5M9+AQAAcNK06TJ4w3ApMTlFifLq/KtukNF1kDIyMk74cywrovdfe0Xt
z7xI3bN8R4abYqYpWZaisZiiMUNutyGfz6OyxsZDAefT9wiHVdsUk993KMj4PV4FAoFWnxVo
DMnr9Tb73OfzHaM2S9Fo9DMDEgAAOLls2gfIr/Ou+YZkWYo0BVVbV6dgKCyvP1GpaWlK8ntl
HL1c638QqSjWql3lqtnwnNZ88MnnViyqhmBYv/v1L5RUMFA/vet65RXma2XxfkWtAfJ+6pmh
+lrVyKP81ENHVhQW5GregYOy1KdZUIoFDqo6kKac7JQvXC8AAGhbtm2EaFmWilfP0j8feVqL
Vm9RU9SU4fKoW/8zdMMt39Z5o/rI/QUzkC+3p/7vN39s8XnNrpX6w3Pz9JsffUdJ/kOv3r5H
kQLz31VJ9UR1zDo85maZ2rN1rTwZnZWdduizHv0H6tXHZ6ukYawKjxxRb2n7ymXydOmvAka0
AAA4bdg2DlO9Y5G+f9cvtb7M0mU33K7f/fa3+u6t1yqpsVi/+/ldenfVnjapI72wp4Z38ev1
t95XRX1IlhnTgR1r9OYHazRm8rgj84eS2/XTGZ0sTX/zA1U3Nsk0ozq4dYWmzd6k86eMd86W
2gAAxAHbToN/6u4b9cxqt/7x0N9U1D79yLBSoHq3fvatW1SSf77+/cAP9SXmQbfQWg+QJDU1
VGjm669p/d4KGTJkGV4NG3++Jp/ZTx7Xx5VZCtaWasbr/9W2/dWSIVmGTyPOvlSTh/c4xiqz
ljgNHgAA+9kUgAL6ydUXqHH4HXrwR1e1uPrBY7/Qn94o01OvPKqOJzABxSJNqq4PKiszXa6j
5hiZsYjqausUjpryJ6UoLTmxxa7RkmRGw6qrq1M4aikhOVWpSf7/ab4SAQgAAPvZNHLjkc/n
UnkgIMvSUUHDUiAQlMvtk+foXQe/JLfXr5ys1ndWdLm9ysjKbvVas3YenzKyck5sYQAAoE3Z
NAfIp7POGqmN77+i1xZvVDAUlmmaijQFVbxmjp6cPl89Ro5Wvvfz7wQAAPC/sm0OUKxur+76
9h1avLVS3foOVOfCDNWV79Pa9VuV2nmY7rn/ryoqiL+l5QyBAQBgP9sCkGQpULVfM6a/pg8X
rlYgHJXL41fRGeN15RWXqGtey2Mn4gEBCAAA+9kYgD5hmjHFYqZcLrfc7vjeIZkABACA/U6J
7WtcLveh87QAAADaQHx3twAAALSCAAQAABzHpgAU0/5d27S/vLbVq9Wle7Vzb6nMNq4KAAA4
g00BKKD7fnSr7n9pfqtXl09/WHfcdY+qY21cFgAAcIRTdggsEqhSQ5PdVQAAgHjUpqvAwoFa
7di5WxEzqLpQTEb5Xq1du7ZZm2BdqV56e5ESMsco40SehAoAAHBYm+4DVLplnm6/42cqDUmR
cJPk8sh71IFfZiyqmJGk7/zhQV0/qei4T1k/XbAPEAAA9mvTABSo2qcPZy9UINqk1594REbP
ybpkXFHzRp4EDRs5Vt3bZf5Pp6yfLghAAADYz6adoBv1+2/dJNfIb+rnN05u+8fbiAAEAID9
bApAliLhcKtDYPGOAAQAgP1sOgrDkMdlauXiWdq+r6LV/X78yTk6+/xzlOZt8+IAAECcs+0s
sNkv3KdfPPiawsfY6ye9YKCGnU0AAgAAJ55NASikWe99qIzuY/TnP/w/5SW1TDkut1eZLIMH
AAAngW1DYC5DKho1SQO6drCnBAAA4Fg27QTt18iRw7Vr5w5FbZiCDQAAnM2mAGRp9IWXy9o0
W4u2lam+vr7FX0NDo2KEIwAAcBLYtg/QvXd9V28v2yRvRqEyk/0tWqTk9NJv/vIbtUts++pO
JpbBAwBgP5vmALmU176zRvjyj9kiKaNQ3lP2qFYAAHA6s6kHyLnoAQIAwH70sQAAAMexaQjM
VPmB/Qp+xhIwl9un/MIChsEAAMAJZ1MAatSfv3ed5hQ3HrNFesFAPfnyk+rMSBEAADjBbApA
Cbr+h7/ReYFoiytmXbH+8sDr+sb3blOOz4bSAABA3LMpAHk1aPSE1i9ZYX307pvaV20q2baT
ygAAQDw79WbYGD6NGNZf8995T3WsTwMAACeBbTtBW9ax/kyFmkJqrNirmqA91QEAgPhm22nw
T/3pt1pXFmp5KdqoZUtXKn/olcpmAjQAADgJbFsGX3Zgj4r3BVq5ZqjHsEn67o9uUXKb1wUA
AJzApp2gLUXCEZmtPdpwyef1yDCMti+rDbATNAAA9rOpB8iQ1/fJGnfLNBWJRuX2eOV2xWfw
AQAApw4bF5pbClTt1bQXntd785aroSkqtzdRA0ZO1PXXXaPu+an2lQYAAOKabYehRuv26Hu3
3qrlxXXq0X+Y+nXJV/n+7Vq2aqMSCwfqgX/dr6LCFDtKO6kYAgMAwH629QC99eR9Wl3q06//
9YIuGNL5yOfl2xfrjm/dpb898rIevftmue0qEAAAxC2b9gFq0vLlq9V38pW6cGgXGYZx5C+v
52h9/ZKztGfVcpWG7akOAADEN5sCkKlYTEr0J7R6NSExQZYVk2m2cVkAAMARbApAiSoq6qH1
c9/Vmn3Vza40VhTr9fcWKq9nf+W2no8AAAC+FNsmQdcVf6Trb/6+AontNG7iRPXqnKvq/Ts0
b84c7azx6jcPPKJzB7a3o7STiknQAADYz7YAZFmW9m9apH/+6zHNWbpBYdOSDLd6DRmjb3zr
25o4pJvicUsgAhAAAPazLQBJh8KALEuRSJOawlG5PT75/V65Dk+IjkcEIAAA7NeGc4As1ZYf
0I7ivQpHD81uNgxDhsslnz9RqampSkr0ywpWaeniJdpdWtt2pQEAAEdpswBkhev18O9+oF89
OE1Nn7G6y+Nz69l7fqo/PzlDLAIDAAAnQ5tthBioKdWG7Xs18ls/UYrvM3KXN1NTxg/XQ/NX
qDJ2rXLZCREAgBaKS2pUVRe0u4zTVpsFoHC4QYFGl7IyUvR5s3uysjIUDe1SoEnSF5wqY8Ui
2rFprdasXasduw8oFLWUkpGnwcPO1OgRA5Tg+VQIMyPavGqxPpy7WFWNUeV37q2zp5ytbgUZ
ze5pRsPauGK+Zi9YrppgVIVd+2nKueeoU078HdkBADi1TV+wRbNW7rK7jNNWmw2BJSZkKC3d
0rbtez53aGvb9p3ypxUo/UvsA1S9Y7mmz16urK6Ddf03vqnvfvsOXXr2Gdq66A09Om22Ppn5
bWrt3Nf14jsrNPKCr+rbd9yqfrlRPf3Io9pW2nCklWXFtOrDlzVtziaNm3qN7vjWLeqdVqd/
PvCw9tZGvnihAACgzbVZAPJnFmjUoL6a9cqjWrSpRGYri88sM6bilW/o+ZkbNXTCOKV/ieoy
uo/Q9++4VRNHDVFhXo4ys7LUre8Q3XzLNSpbOlt7AofaBSt26625G3TZ9TdqaO9OysrO01nn
XqEpAzI0Y+bCQ8vzJYWrivXm3C36yvU3amDPTsrOydeYi67XOX08en3mQtm2lA4AAPzP2iwA
Ge5EXfGNb6mrr0o/vuMW3fPIc9q4fbdKS8tUWnJQW9cv08N//ZVu+s7v5e0xWrddNelzh8o+
i8vtltvd8vXcPr+8hvRx/jqwY52M3H7q1SHjyNJ7w+XVwJFjVLd3raoaDvXuFK9fLl/XM9Sn
3SdDeIbh0qiJE3RwzQpVhIlAAACcLtr0NPisLsP0xz//Vvfe+6CmP/2AXn7873J7fTLMqKIx
U25/iopGXKAf//gH6pThO+HPjwTrNffNt5U2ZIw6JkuSpZJ9+5TXZYQS3M3jVkp6jlLNsEob
AipI82nvvoPq0nVSi9Ppfdmdle0qVVllk3ILj3/MLhaLfen3AQA4l43b+MWFNg1AkqF2fUbr
z//orw3r12nD2nXaumu3TG+auvXspb79+mtQUQ8leE7M0i/LMrVv5xbVNjapZO8u7dxzQEn5
PXXT1I+DTEyNDUGl56e16G1yJSQow2eoofFQD1BDIKC0tNQWz3C5kpSc6lEgGJT0SQBqamo6
5v85LctSIBA4Ie8IAHCmaDRqdwmntTYOQIcfmpCmQcPP0qDhZ53cB1mWNq5YoN3VMTXUVau+
yaOR/bPl+VRvjyXJ7WolcLlc8riMI3N7LEmu1trJkNvtVmuTgI61m7VhGOwEDQD4UjweW/4J
jxtx/esZLrfOvepWWZapaCSshtpKLZz5hh5YvUV33nGtkt2GvF63GlvrjQmHVd8Uk897aB6R
z+1RMNhyvwXLiioYCMnjbf5T+v3+Vmv6+CgMt5sNjgAAX1y8HhnVVtrwKAz7GIZLXl+CMnPb
68JrblK70Hot2lgqyaXc/FyVHyxR9KjhqlBDvarlVl5qoiQpPy9bB0tKW3T0mKFS1TQkKzuT
vYAAADhdxG0AMk2z1aXphsuntNQEBYMhSYba9yxS/e61KqsLf9LIsrR/53oZqR2Uk3YoAPXs
P0AHNqxURfDTk5ctFa9ZIbNjkQpTSeIAAJwu4jYALf1gulZt2qnahoBi5qFT58OhgLavma81
+1wa0KudJCmzXW8NKpTenDlftYGwLNNUxf7NenPmco2cOF7J3kPBJrXDAA3JD+rNdxeoPhSW
ZcZUuWeDXn5vtc6dMkFeO18WAAD8TwwrTtfRFa9boBnvL1HAcsnn9ciQZMaiihqJmnTRZRra
o+BI22DNQU1/5RXtro0q0etSYyCkviOn6ILxQ+RzfdyzY6mxcp9emzZNB+st+b0uBRqD6j9u
qi4cU3TcSfLjOUBMggYAfBn3T1vKURhfQtwGIEkyoxFVV1eqIRCSaUleX6JycnPk97pbLHs3
o00qKy1TMBJTclqWcjLT5GplVCsWCam8rFyhSEwpGTnKTk/+nyaiEYAAACcCAejLietVYC6P
V9m5Bco+rrZ+FbTv+Lnt3N6E42oHAABOXXE7BwgAAOBYCEAAAMBxCEAAAMBxCEAAAMBxCEAA
AMBxCEAAAMBxCEAAAMBxCEAAAMBxCEAAAMBxCEAAAMBxCEAAAMBxCEAAAMBxCEAAAMBxCEAA
AMBxCEAAAMBxCEAAAMBxPHYXgBNryYZ9enPxVrvLwGnolzeMU4KP/yQAcAb+axdnKusCWr+z
zO4ycBqKmabdJQBAm2EIDAAAOA4BCAAAOA4BCAAAOA4BCAAAOA4BCAAAOA4BCAAAOA4BCAAA
OA4BCAAAOA4BCAAAOA4BCAAAOA5HYQAAcBpq565QX2+x3WWctghAAACchi5KWqTzMqbbXcZp
iyEwAADgOAQgAADgOAQgAADgOAQgAADgOAQgAADgOKwCizO57hoN8222uwychtwy7S4BANoM
ASjODPZtV9/0aXaXgdOQ37hLUoLdZQBAm2AIDAAAOA4BCAAAOA5DYABOe+U1jQpHYnaXgdNQ
bmayfB633WXABgQgAKe9+15eog3F5XaXgdPQfd85V93aZdpdBmzAEBgAAHAcAhAAAHAcAhAA
AHAcAhAAAHAcAhAAAHAcAhAAAHCcuF4Gb0ZD2r5xrZavWK3S6nq5/CnqN2i4Rp0xWCn+T+37
YEW1a+MqzV2wVJWNURV07q3xE8aoQ3Zqs/tZsYi2r1+m+YtXqiYQVWG3fpo4YYwKMpLa+M0A
AMCXEbc9QE21B/XMww/orfnr1WngKF35lat14aQR2rvyAz36wruKHmlpadOit/XMa3PU/YxJ
uurKS5SrUj3xyBPaVdH4SSvL1Lp50/X8jKXqO3KyrrxiqjLDxXrwoSd1sD7aWgkAAOAUFbc9
QPXlB1Qw9Dxdc0aR/N6Pe3s6qEuXdvrbb/+qzaVT1D/fq6bqfXrzwxU6/5pv64weuTIMQ+3b
t5P7lcc144Ol+ubVk+Q1pEjtXr3xwWpdfOtdGtIlU4akjh1uUuyZv2v6hx/pW5eOtvN1AQDA
/yBuA1B296E6t7tkGEazz90JWcpKiSkQiv7/7d13mBT3nefxd3UOk/MwzDBMIA1DFEEiSIAA
K2fJsle2LK9lOZ13vY/v2bvn7tZ3t75n79m9862jbDk8kq1kycrRlowSNkKAkARCZIYwMDl2
7q66PwYNDAzSEIampz6v5+F5oLq66tvNr6s/9fv9ugpw07z7fZJ5U2iYWDy4rsPpZe7ipay9
/4909S+hJNtN05Z3sCrnMmPCQPgBMJxuLlu5jH++9y06rrqYQvfQfYnI+eExkniJp7sMyUAG
VrpLkDQZswHoxOADgGXS/OFf2BWp4IZyP2Bx+MB+SmouIuAaun5OfilZZoyW/hAl2Xkc2H+I
ibWXccJqeEtqKOQxWjvjFJZ6R1yfaZpn8Ko+nWXpwyxnxjRNjFFql6Ptu7kPYRZvTHcZkoH8
zoswzbx0l3FmdLg/K2M2AJ3ITET5cMNrPPnSO1z1uS9R6AFI0d8bJrcmhxPjksPnI89j0duf
AKA3FCK3Nuek7TocQYLZDvpDYeBYAIrFYqesxbIsQqHQKR8/K5+wX5FPEg6HIZmh0wJTuhGq
nJlIOAKjdTwebclEuivIaDYIQBahzsO8/OyTfNhmcMOdd9NQXXLco+ByDvM2OBy4HY7BgG0B
Tudwdww2cLlcwybxU/XGGIaB3+8/3RcyIkmPB30k5Ez4/H4Mz+i0y9EWczjJzL4rSTevz4tj
lI7Hoy3ucqHof+bGdgCyLI7sfpeHHn2G3PqF3PPVyyjM9h3X22PgcjkJRyInPzeRoD+ewn10
zMvtdBKNRofZRYpoJIbLNTQceb3DD4dZlkUkEhkITaPAdGToGbykncvpxBildjna4pp+J2fI
6XTizNB2nxhuqoeMWGb+r49Q14H3uPe+x1l40xdZMbcet/PEcOCgqKSALS2tJBn6ZsRC/XRZ
TkqyB84MSooK2NjaCkwasgUz3kp3v4+C/KHXDEqXeFs+3e9OSXcZkoGCKcdJQ8EiImPVmA1A
VqKHh+9/hNnX/y2r5tXiGDYpG1TUTaNn/Vt09i+hJMt99MkWR5o+wvSXUZgzcJHD+mnTeOqh
d+m6ehH5no+3ZdG89T3ipVMoz74wvjqslAMr7kl3GZKRLow2LCJyPozZ8ZLW7RvZSzWrF9ad
IvwMKBw/lamFMZ579W3C8SSWZdLb3sSzz6/lossuJfto2Mmtnk1DXhfP4JQkzQAAGn5JREFU
v7KeSGJgvb7WPTzy/F9ZsWoZHn13iIiIZIwx2wPUfOgQZriFB3/9q2EeNZi/6mYaK3Mw3EGu
vOV2fv/gI/z0Z++RF3DT3trKhNmrWDZr4uA5scPl59rbPsdDDz/Gz3ZtJMfvpO1ICzWLb2Fp
Q/n5fGkiIiJylsZsAKqZs4y7xs855eOleccmKQcLq/jCPd/i4IED9EeT5BSVUVFSgGNIr45B
dmktX/7atzh44CChWIq84nGMK87VwIGIiEiGGbMBKLd4PLnF40e8vtPjZ0LtpE9dz+UNUl03
+WxKExERkTQbs3OARERERE5FAUhERERsRwFIREREbEcBSERERGxHAUhERERsZ8z+CkxE7CO8
bzyxHd3pLkMykC/qZbjbXMvYpwAkIhkvFfGS6g+muwzJQJapgRC70v+8iIiI2I4CkIiIiNiO
ApCIiIjYjgKQiIiI2I4CkIiIiNiOApCIiIjYjgKQiIiI2I4CkIiIiNiOApCIiIjYjgKQiIiI
2I4CkIiIiNiOApCIiIjYjm6GKiIikoEiTeMIbZqa7jIylgKQiIhIBrJSTqyEO91lZCwNgYmI
iIjtKACJiIiI7SgAiYiIiO0oAImIiIjtKACJiIiI7SgAiYiIiO0oAImIiIjtKACJiIiI7SgA
iYiIiO0oAImIiIjtKACJiIiI7SgAiYiIiO0oAImIiIjtKACJiIiI7SgAiYiIiO0oAImIiIjt
KACJiIiI7SgAiYiIiO0oAImIiIjtKACJiIiI7SgAiYiIiO0oAImIiIjtKACJiIiI7SgAiYiI
iO0oAImIiIjtuNJdwPlgWSahvh4MTxZBn3vYdcxUgt6eHuJJC28gSE4wgGEMs14yTk9PL4mU
hS+QRXbQhzHciiIiInLBGtMByLIs+juPsOGvb/L62reZff03uW7BxJPWi/W18uKTT/LhwXYM
w4GFizmXfoYVC6bjdn4cbiwi3Ud47qkn2Nncg2GAabhZsPw6ls2bhFMZSEREJGOM4QAUZ92L
T/GXbYeomtxIXXn+sGtZqSivPPEQB4xa7v7WFykMujm8530efPBxfDl5XDq9EgMwUzFeeuy3
tGfN4GvfXkau30nLrs384v77yS74exbUFZ3flyciIiJnbAzPAYphZNfwxb+9m5uvupSibN+w
a3Ud+ogNTXGuv3olRdk+DIeTcbUzuXblHP665k3CCQuAvv3v884BB9dfczn5QS8Oh4vySXO5
5fLp/PFPb5A4ny9NREREzsoYDkDZLFxyEUW5wWHn8nzs8O5tZFU1UpbvPbbQcFA1aQapnv10
9EUA2LPtQ0qnzaUs6/hOM4O6OfNINW2hpd8anZchIiIi59wYHgIbiRStR1opqWjAdUJK8mXn
kkeSlr4IVQUBDre0UVG7kBOzlDNQTn6gj/bOEOOzsgaXW9YnB6JYLHauXsQQyVRyVLYrY18s
FsPhdKa7jDNimjoBkTMTj8exRul4PNpSqVS6S8hoNg9AFol4kqxg8KRgY3g85HqdxOImAPFk
kkAgcNIWDMNNIOgjkRg6CBaJRE69V8s6af1zJZUyR2W7MvYlk0mMUWqXo82y1O7lzKSSKcjU
dq/gf1ZsHoDAAkxzmIOnZZEyrcFgZFnWKQ+yppnixATl8XhOuc94PE4wGDyzgj+F5fEQHpUt
y1gXDAZxDBPyM8GaubM4XF6S7jIkA91YUkTucb33mSTmdpGZfVcXBpsHIAfBoI9Dvb1YDM0w
VjRKd9wiGBh4i7ICftp7+07agmWGCfUlCfj9Q5a7XMO/tZ82NCYip+9QWQl7vTY/nMkZiX3C
yaqMbWN4EvRIOCgbP562pn3EUkODSX9PB30OD6VZA2fElePLaWraz4kjrvGu/XSmiikuGP5X
ZiIiInLhsXkAgnF100m1bmXPkeN6d6wU2zatI1gxjYLsgbOD6sa5RHdvYHfb8XN7LDa++SZF
DXMo8iIiIiIZYswGINNMEY/Hj/5JkDJNUsnE4LJEcqAvx184kdULa3nst7/lowNtxCIhNr3x
HC+sP8JVn1mCxzEwMOYtqOEzCyt55IHfsetQB9FwPxtffZxn3+/nxisWj903UkREZAwas4Pm
hz94nZ8+8keGjGzt/DXrnx3468T5V/LVG5diGA7mrrwVT/afee6Bn9DeF6ds4lRu/8pXmFyW
M/hUw3Ay/4rP48l9hSd+80M6QwkqaqZz99e/RlW+un9EREQyyZgNQBUzl/P9mctHtrLDTeMl
q2m8ZPUnr+byMmfpVcxZetU5qFBERETSRSM3IiIiYjsKQCIiImI7CkAiIiJiO2N2DpBdbZ1c
x3OfvzndZUgG+i9uN7qalYjYhQLQGGM6HCTc7nSXIRlI1ygXETvREJiIiIjYjgKQiIiI2I4C
kIiIiNiOApCIiIjYjgKQiIiI2I4CkIiIiNiOApCIiIjYjgKQiIiI2I4CkIiIiNiOApCIiIjY
jgKQiIiI2I4CkIiIiNiOApCIiIjYjgKQiIiI2I4CkIiIiNiOApCIiIjYjgKQiIiI2I4CkIiI
iNiOApCIiIjYjgKQiIiI2I4r3QWIiIjI6ds0fSrbfM50l5GxFIBEREQyUFdeDofKy9JdRsbS
EJiIiIjYjnqAREREMlBX71oOtq5JdxkZSwFIREQkA1mYWKTSXUbG0hCYiIiI2I4CkIiIiNiO
ApCIiIjYjgKQiIiI2I4CkIiIiNiOfgV2GizLpLtlP+9s3Ex3OEn5xGnMnTGJgEdvo4iISCZR
D9AIWZbF/vff4Ef33k+PGWT8uBJ2rH2KH/7yD/TEzHSXJyIiIqdBAWiEUuE2nnjqFZbceBc3
X7OSSxYt5Utf+xYViY947s0t6S5PREREToMC0Agd3raerpwpLGyoxDi6zOHJ5sorlrH1r3+l
V9eiEhERyRgKQCO0b+9+Jk6egv+EG+/mVk0mN7KPlq5kegoTERGR06bZuyPU2d1Dwfj8k5Y7
nHlkZZv09PVDUV4aKhsqnmynN/ReusuQjLQScKe7CBGR80IBaIRMLLzuYb4cDAOv14tlWue/
qGHEEq30hDakuwzJQJalcVwRsQ8NgY2Q03AQj8dPfsAyiUajOBx6K0VERDKFeoBGqDA/j20d
nSctN5Od9PW5ycvLSkNVIgLQE9pAW/eudJchGSiVmg3kprsMSQMFoBGqnVTHSy9uJXTFfILH
vWsde7bRn1NDWa7z1E8WkVEVS7QSjR9IdxmSgUxrmJ59sQWN24xQcf1cypN7eGPTLj6+7KEZ
7eTp517joqVLCeqdFBERyRjqARohhzePm269jvse+A2Hds6mIt/Ltk3rcExYypUL69JdnoiI
iJwGBaARMgyDktq5fPc/1vDe5vfpCidY+dlv0FBbjsMwPn0DIiIicsFQADoNhmHgzSpg/uLL
0l2KiIiInAXNXBERERHbUQASERER21EAEhEREdvRHKA0SSQSo7LdiuxKVtZfMSrbljHOHL12
OdrmVsynMqcq3WVIBvI7Axnb7qcVT8fr8Ka7jIxlWJZ1YdzEaowJh8PpLkFEREROQQFolCST
SU711lqWhdPpxOnU1aPFHlKpFKlUCrfbjaHLRohNmKZJMpnE5XLpfpEXIA2BjRKXa/i31rIs
IpGIPgxiK5ZlkUwmcbvd6S5F5Lz5uN2f6vtA0kvfwiIiImI7CkAiIiJiOwpAIiIiYjsKQCIi
ImI7+hWYiIiI2I56gERERMR2FIBERETEdhSARERExHZ0dSY5/1JRPtj0Lh2h2OAiw3CQW1RO
ff1Egp7jm2WMl3/7AP65V7J0WsXp78uMsPal51mzfjOhuMni6+7iqgV1APQ07+SpZ55jx/5W
PAUTuOfuL1MaiLF+3btUzVhIWY4u2icjd2DHZnY3dw/+2+0LMrF+MuUFOZzLi1+Hmjby05ea
+A9fvZHzeReo3R+8TTQ4gYaasvO4V8kUlmWxY/NfONwzzH3VDAc102ZTVZx9/gv7BApAcv4l
Q7z24vO4qhupyPMDYKYSbNu8jt//PsUtd36FWdVFR780LML9vRBPntGu3l/zJH/c2s+Xv/Fd
SrI9GI6BUGMlu3ngF7+kbOnt/KcvTMZpgMfrgmgLLz71BKsq5igAyWn56J1XWdeSzcy6MrAs
Iof28qdnnyC/Zg6fv/0GigLn5nBrJmN09YQ4979eSbL5rdcobryMityTa31v7Ut0lK9WAJJT
evvVp+nImUFtWc4JjziIJcy01PRJFIAkTVzMWbqSBdUFxxZZJu+veYynnn2ZqV//HD7X2Z82
7/joQxas+BpVxblDlsdbm9gTK+PO5bPIOv6BwHj+6d9+cNb7FXuqnDKPa6+cPfjvVLSHFx97
gB/95AG+8+07yfVcyLMOErz7xp9oqFw8bAC68Z5/SkNNklEMJw3zLmXV7Mp0VzIiCkBy4TAc
1ExqILLuzySTKTjF/XOS0X7aQynKCoeGmnBvJ1F8FOQEiPZ3097dT08ohjPUw8GDA+fLWbn5
JMO9dDe3kDLjtBw8SA/gcHkoLi7G7UzR1txKVsk4/Ed3H4/00ReFgvwsov29dPf2Y+Ikv7CQ
gPeEXiLLIhLqo7u3D9My8AVzyPY7SOHF79XNb+3G6cvl6s99mY7/9y+8sn4nNy2efNyjFtH+
Xjp7+sHhJK9gmPYEWKkk3V2dhGMJDKcb9wm9oclYiPa+OKWFeUNuNBvp7yacdFOQF+TYUotY
uJ/O7j5MC4LZeeRkB4iHumnv7iScSNHZ1sxBpwcAjz+H4sIcDKCvqw3Tk0tu0DNk/4loiI7O
HlIWBLJzycsODhnyi/Z3EbZ85Gd5CfX20NsfBoeLwuJivK4LORDKaDJTCTo7OogmUri9fgry
83A7j7UHMxmnvb2DhGmQk5dPlt97XLuy6OvqwPDnEvQ46OnqJBSN43T7KCoswOUcevKcSsbo
7OgknjTx+LIoyM/B6TAUgORCYnGkeT+BYD4u56kPjF271/GjNd18/5s3D1m+9bUn+cA5g7uu
mkfLrk08/uq7tB4O43ntWfasH2jqs5ZcTs+2dew+dJhEfw9PPPooTsCdW8rtt32W4uwefvNv
/5vP/OO/M6NkYLuHd6zjqbWdzJjo5IMdh0imUsSjYdz5E/nCHbdQnDXwhWClEmxd/yovv7GZ
lMOJ0+nE7faQjEdZcv2XmVebPxpvmlzonAEuX34xP3v1Ha5eNBmvAVgpdm18nWfXbCDlcIKZ
wuEv5JqbbqauPHcwsET7Wnn5mafZdqADl9uNw+nEEesDo3pw8z1N7/Hj53fyP/7uCxx/2N/5
9gus7ajkq7cuGVhupdi3dT3PvPwGUdOJ0wGm5WT+qpuYaO3msVc2cKQzQuvLf2Crb+DzVzZp
IbddswgX8NYzvyFafzM3XFJzdA8Wh3ds4onnXyWUdOB0QDIFDRevZNUljXiOfoZ3r3+BNUdy
qfP1sONAG8lUilion6zqOdz12asJus/hBCnJCJHuZp578gl2HQnj9jjBtCic0MhtN60m4IRw
VzNPP/4YB7piOBwGpuFj8eprWdhQhcMwgCRrn3qIvoqZ0LKT5o5+Uqkk4VCI2vmruXnVQtxH
v0L62/fz9BNPcKArjsvlJJVMUlo7m5uuWaEAJOlnmSn6e7vY9eG7rHlrG1fc+DdnfWY4YdZy
/mHWch7993+kZNVXWDb1uKG2+TMJ79/Af773Lb7xD39HcATbazu4g97JK/nsHasoys8mGeni
0Z//mHe2H+bKuRPAsti3+c889ucPufG2O5haXYbb6SDS18mvf/qDUZivIZmkuKYO58Mb6YjA
uAB07N3MQ8+v57ovfInpE0qwklG2/OVFHn/8ab7+lc+R63NhJqP88fEHOeydzF333E5RbhDM
JAc3v8K9r7afdg2d+z/goT/8mSU3fJb5U6vxOKGr7QhhI8D4kmX8w8yF/OZ/fY+Gz3+L+RN8
n7q9UOsuHnj0BRZcfTsLGyfidUDbge088vBjvBbMY+WcCYOB7NDu7UxZsZzPr5hEfk6AWG8L
v/jxj9nStIgFdQWfuB8ZW6x4L0/+7gHC4+Zxz82LyMvyEgv1cKS9ZyCQpMI8+cCvSNWu4Bt3
XITfBfs/2sDvfn8/OV/7DtPLP560kGT71o9YueIyVtdVk+1309G0hXt/9wKH58+iqsAHqRB/
uP/XuKd9hq//zWyy/R5C3S288Oj9PPRCUAFI0iXGYz/7V55xOQCLRDxOsLiW2z53J5MqCs7p
r2bOhXH187hy+QLcRwvzBAqom1jMwfDAL9nMVIw1a95i6dV3M6OuYvDA7w/m4Peqm9/uDJ8X
dypENAYEUmx4aw31i69mRnXJwLCVx8+MRSvYuP6HbDnQzaL6Ivqat7LpkIuvf2cVJR9PoHa6
yc/LBU4zAJkJNr71JuMXrOaSxhqcR9txQWkFZxY/LLa8/RrZUy5l8axaXEe3VzJhKtesWsjD
a99kSWMV/qO9O/VzlrLiktnHPhfZRUwcV0QkGj2jvcsFykrw0kM/4fXHhw73O9xebrv7u0wf
56dlz/vsjhTwzSsuJf/oPANfVh7VWXkAdOzYyJZQCf/1iosJHB3Kqm5YyMp523jtzY1Mv/XS
o1t1sWDFlcyfUTnYrgpLK8nL8RBPDAwTt+9Yz0fJKv7bqgX4j24rK7+M62+7iX/+lwcVgCRd
vFz3pbuZW5UHWERDvezZ8SF/evTX7Ft8LavmTzra1XlhMAyDE1OZYRwLNqlkJ+2dblbWjufC
qVouGMkUpsOLyw0k+9jbFGPe8vFYlsXg3YicWUyszOLAoXas+kKad+8gv346xefg12NmPMKu
lj4WLjoWfs5OjKY9rUy+/JrB8DPAYPyEOqIvbKUvnsDvHhgeNhyOkz4XxgX0+ZZzxHCz/OYv
s7xx3IkP4PEN9Coe3reL4trp5PqGb9cH9zVRWT9tMPwMPN3B5ClTePypncDHAcjAYRhD2pVh
GEPaVdOefVRPnjYYfj7mya9lYlFIAUjSx+PzEQgEAAgEghQUlzO1roJ//dGTNEz7eyqzz+dV
Ts5WklTKiVPznGUYfQf3E8mtpCgLiCeJpfr47f/9nzzsODkEzLo8jAXEojF8Pt85CdSWZZI0
TTyuc9VAU8TjBl7Pydtzudw4TIuUbjNpSx6Pd/C4Ppx4Io7L4zllL388HsfjOfnY7/Z4SKZO
73Io8Xgcr3e47xEDt9utACQXlmBxKUVGhM5QisoL65pZn8jhLCA3N8yRll7GVed++hPEPqwk
6/7yDpMvWk4AwB2gMCubi+64h0tqC08RcCyysrPo29OLacEwOem0ON1eigM+mtu7aRh/qvZp
gDEQlj6dj5JSD4ea27Hqiod8mXV3dYDPT/CchS0ZSwpLyun54BDx1Fy8zpMbdnFJMUc2HcJk
6K0qWo8coSDv9AZsS0qLee3DQ5jMHrItK9lLa3tMt8KQC4lF5/69tFh+CoOnPnj6/EHMcD+R
1LEzzESkl5aO3vNR5LAcrgDzZk3ipaefZn9bD6ZlkYj0sf29v7K3RfMc7MpKxfhg7Qus2+9i
9ZLGgYWGnykNFax7fS3R5NCwEQt109EbAQzK6xsI79rAjiN9x7ZnWXR3dw95js/nIxEJc/x1
5hLRPlraj1vP5WPOrHo2vPEGHeH4cdszSSQ/Pqt2k53j40hL2whemZOpM2fz0duv09YfG5zk
byYivL32TSrqZxLw6vxaTlZZ30iy+QO27Gs7NvyLRTKZwLRg/JSZcGAT7zUda7+JcCevvbmR
2XPnnNa+qhrmEN+zni0Heo4ttEx2rHuFrrwZ6gGSdEnRtONDvN0DM/otK0VH8z7Wb3ifhqXX
UH7CtUaO5yuroTT8HI8/+woNVYX0tDSxZecBwl0dFJecr/qHMgwHs5ddR3v/Ezzw8x/hcrvx
+gKUVNZTnKsrSttF5+F9bN48cFYbD/ew5d2NtEQDfP4rd1Ie/LgdGMxceiVb7/sVP7mvk4vn
NBLwQEdzEx9s28OCq+/gkhw/geI6Vi6o5OFf3cvipYspynKzf8cWmg42A8cuNBconUBl6kke
fPJlZteW0tN2gK0f7SPU105WfePgPmvmLmP6rt9y389/zcUL55DtMdi77T2yp1zGqovqACdz
Fy7kl08/RFZyBQU+g5iRzUVzpgz7RTG+4RIWbd/NL+69j8WLF5DjNtm+eT1NkWy+cNVczsF1
TCXjmDTv3c5mo+OE5Qbl1fWU5gXwFlRx4xXzeeR3P2ff/MXUlOXR09rE3g4Ht9x6LVk5ldx2
3SIevv8ntC65lEK/xaZ1a4mVzOHWWVWnVY07dwK3XjWPx+//KfsWLGJ8YRYte7eyfushbvni
V3F+73vf+945e+0iI2LS39dPV3srLS0ttLS00NrWjuXN59JVV7FoVv1x1wGyiPSHya+opiR3
YFzZ4QoyZepE2pp2s/9wG/7ialZcfjn1ZVl48sqoKj12vZ1wfw9FVVMoyh4aqKxknL6Ek4ap
tScc3E36usNMmNpIztGh41QiSsqVTXVVyZAu01g0hK+ggnGFAyHO4fZRN6WRWTMbaWycwZy5
87iocRIfbnyD0ikXU1HgP6fvolxYYuE+urs7B9t0b8Rk6kVLuHL1Msrzh14c0OkJMm3GTPJc
UXbu2sXhlnbcueNYvmo1U6uKBiZ3Gk4qaqZQXeRn7+5dHG7toXrGQpbPm0LM8DOlrhInYLgC
TJteT/v+3ew71II3v4LLLr+cqZX5uLOKqa4YGGZzuLzUTm2kPMdg585dHGntpLRmBvMa6/G5
B3pc88qqqSnxs337dlo6eimqmEhFSR4GEA33kV1STXnBwIUjDIeb6snTmVDsY8e27Rxu66J8
0hyuvXIFRdnH5i4lo2EcWSVUleYNeb+i4RB55RMoyvn0n9xLZgj3dtLV1T34GRj809pOTtlE
SvP8gEHhuIk0Tp5Aa9Mu9h5oxvQVcvElCyjK8WMYBgXjapheP569Oz6iuSPEtPnLuGLZAgLH
zTmLhkPklk2gOOe446pl0h+OUTmhhqDXBRgUja9jak05h/ftpOngETwFVVx3w/XUlOVgWJZm
qomMlmSklf/z/R9w3bf/O1OKT92rJSIi59f/B3MU3e4MqqDcAAAAAElFTkSuQmCC
</thumbnail>
<thumbnail height='576' name='Sheet 3' width='576'>
iVBORw0KGgoAAAANSUhEUgAAAkAAAAJACAYAAABlmtk2AAAACXBIWXMAAA7DAAAOwwHHb6hk
AAAgAElEQVR4nOzdd3Qc5aH38d9sX/Uuudty772Au40LYNNMJ4QkkHCTEFIg7U0juemNcAkh
N1wgJKGaAKYZXHDDuBfce5etavWybeb9Q7aRbUm2iMyumO/nHJ8Dq9ndZ2Qf7VfPPDNjWJZl
CQAAwEYc0R4AAADAJ40AAgAAtkMAAQAA2yGAAACA7RBAAADAdgggAABgOwQQAACwHQIIAADY
DgEEAABshwACAAC2QwABAADbIYAAAIDtEEAAAMB2CCAAAGA7BBAAALAdAggAANgOAQQAAGyH
AAIAALZDAAEAANshgAAAgO0QQAAAwHYIIAAAYDsEEAAAsB1XtAcAALHKMiOqLC3Qpg+W6oNN
u1UdtJSY3k7Dx07UqAE9lOj3yDCiPUoAH4dhWZYV7UEAQOwJa/2bT+v3f3lW+wqrzvmaQyNu
+74e/9b1HyuAig9v0ltvr1bygAm6bnz/VhktgJZhBggAzmGZEW15+3F999fPKuDN1nX3fEW3
XztVWUkeVZXkacW7b2qn4f7Yr3/y6BY9/+ST6nhzFgEERAkBBADnqC3eqj89+oKqHRn60nd+
qjuuGCyvs36qJyG+j268u4eqaoJRHiWA/wQBBAANWUFteusVbS0JaMCMG3TdpIFn4uc0w+FS
YsJHPz4joToV5x/V+hXLtGH3QVVWB+Twxiu3/yhdNWOCOqQlyGEYUv4mfeePz6mi+LAqJB1c
+W89+OCqU6/i0YjZd+rWiX3rh2FFVFmSrzXvzdfyTXsVMJ3q1G+ErpoxVd2yk+VoMCTLDKs4
b5+WL1yo9XuOKiK3ug+8TJPGDtCh1Ytk9ZmpmUM6nrX9ybx9WvjOfG3Zd0Jhw61OvYdr9qyp
6pSeJGeDFz+wdp6efGmFOo6/SV++dpQqiw5p/iuvaPPRcl17zzeV9+aftOqwpQm3fE6zR+Se
9X0yQ2V6+rc/1+5ge3323rs1oH1y6/wdAa2AAAKABsyaUq1Yv02SU+OvnKE0r/OCzync8a6+
9JVf6ETAPOvxxe++pVffmKRf//7HGtIhSaou0NIlS2SeWnkZzNujpXl7Tm3tVfyQK888t2D3
cv3sR7/R2oPFDV5wgV5++TX99HcPa2KfdBmqj5mti/+pn/z6CR0t/2hW6r1F7+qpP3tlOH26
60djG+xgUNuXvKgf/vwvOlYZ+ujxRe/q1Vdf09d++DNdN6qrTidQ2fG9WrF0qfrkjFW49IB+
9d1vauGW43L4EjXypm8pPdHUqqXzddjorGkjcuVrsP81h1bqn68uVcqwa5WSmHDB7yPwSeI0
eABooK66Unn5eZLRWf17X9yMhdOboNHT5uihPz6pd99bplWrVum9t17S3TMHq3TfUj3+j0Wq
k6Tc6fpg1Wr98w9fVYakwTd+V6tXrz71Z5l+fHt9qARLdul3P/2NNuUbuvWB32nx8pX6YPki
Pfz/7lZi5W794hcPK68yKMlSye6F+n8PPaa8cJJuuPeHeu3dpVq9erUWvfmirh2SonDk7LGe
2L5ED/3yUZ1wZOveHz6ihctW6v0l7+q3D94hd8kuPfLfP9P7+06et49muFJ/+8UPtGhrkboN
vlzXXHuNcjO8Gj5hhjpn+JW38R2tOVStM2fVmHVatWCJqiSNmDZL7RMuHJLAJ4kAAoAGTNNU
JBKRklOVfhGzP5KU0WO8vvPDb2vWhMFKT4qX2+1WUnY33f2lO5Xqcalw7zYV10kyHHK5XHI6
63/0Go76/z/9x+mof3zX6kXafLBcI67/or528yQlx3nliUvR2Nl36DPThqh093It21Eshau0
5NU3lB+Qptz+oO7/3Gx1TE+Qy+VSSk53dcmKO3ugVo2Wv/ZvHa506Oq7vqO7rrlcqfFe+RLT
Nfnmr+reG8coWLBDryxcp3NPDz668hW9vKlCtz/wC/35j7/W9x/8hgZ38Cuh81BNH95NgfIT
WrhkvXTqxOJgRZGWrdsqI6G3ZoztftYhOyAWcAgMAM5lSKqpVU3k4q4SYjicqi05rlVrV2jl
6q0qrKhSxLSkcIWqQxF5IyGZ5oVf57S92zerwkpQbqc05R870uArljp27SCZG7Rt5yEFe3fS
5n0HJEdHzZo9RgnuCwRbVb427Dkupztb02aMkqdBlRgOjy4bP1lp81Zrz8ZtqtIMJTZ4allZ
lW65/+f6r+tHyedq8LuzM17jr5ypuUse1vJ33lXpZyYozS0VH9mkzbtL1H3CdeqdzuEvxB4C
CAAa8Hi8SkhIko6eUF5xSINTL/AEy9KJbYv0k5/+UZsOl8jhcDa4NpBVH0ItVFleKitSqmd/
86CebWKbiqIS1UXaKxAMSild1T7pwqflm3W1KgsE5HDmKifr/B//CUkpcntcqi4oVoV0VgB1
m3iH7r9xjFyNzOR0GTBWI/o8r7c+XK4lu8p1w4B47Xh/mfIjLn1+ynQleDnYgNhDAAFAA56k
NA3r1VPv7dyglcu36Ioe4+Vp5vCNVXtcT/35f7X5aLWm3PYNfeHWq9SzXWr9mVRlm3TjrK8o
1PTTG+V0uSRHnIZPnKK+HVIa3abzkFy5Tx1CU2mhCqrDyk3wNvu6DqdLbqdTllmuyiqdXTiS
IuGQLMuUw+/VuTmVlJLSaPxIkiu5k264epzmfzhXb//7DU3JuUwLV+2SK3mQrp7UnbUWiEkE
EAA05ErQpCun6K9vbNCad17U1mmDNLxz04uh604W6kBRidw5o/Str9+ubJdDF7vcpbaurtHH
czp0kss6rqyBk/X1z05s8vWsYKl6duigRdu2a+HCDzXstss+OmXfiihy7iG8pHT1zkzR2oN5
2rzluAZc3v6stTl7d36o8sqw2o/tpfSL3Id6DvUYN0tDc+bpw7XLtGJoRLuOlGjQ1Z9X5+ab
DIgawhwAzmIoa9AM3TalryoPrdcff/eo1u89rkDYlGVZCgVqdPzgDi1bu0OWJTmcTrmcDpmV
xTpWVCXLshQO1ir/yD7Ne+k1FYbC572DPy5Ffr90ZNM67SmulGlZMiMRhSL1p2z1HzleHZLC
Wj73Kb21Zo+qAiFZliUrElZVebF2bVyqd9bsl+FJ1pTpk5XktbTw77/VI8/M09adu7T9w3X6
629+oFfWnDj7jV1pmjj9csWrTi8++bh2HClSKGLJjIRUeGCdnnnuHdW6czRjygi19JytuLRu
unLSMIULt+uvf3tehUrT1Amj+ZBBzGIGCADO4fAk645v/EB5Jd/XgjWv68H7N2nE0P5K9DpU
V3lSu7ZuUdKE/9KEkf3kzeis0X26adO7W/XTbz6oIX3ay6wt057tOxVOTperkfmb7G4DNKBn
O83fslLf/vq3NahnOznCLo249lbNHtld7QdO1R2zV+iPzy/Xz7/9Nc0fOVSZSX5Z4YCKThzU
1q0HNO6+RzRzdHd1GXuTvnPXHv3un+9p7uM/10t/kRxOtzK7DVWnTL+OVTWcBXKo76RbdNuq
jXpqwXw98I1DGjYgV26zTns+XK8DRTW6/OZ7dc2oHi3+nhkuv66YPVOPvLRahQUlyuxxhcYM
7njhJwJR4nzooYceivYgACC2GPIkZGj8tGnqmuFXReERrV+3Xtt37lFBWVBdh4zT9VdPV6+O
6TKcPvUeNEDO8mPauGGjdu7drzpXpqbf8iX95MtTtGDufJlpubpq1hQln1pY4/SnafDAHqou
PqGdWzZr+87dyiuq0YDxUzWoc7rk8Kj3sMvVt2OSKouOatOmzdqxc5cOHy+UJ6Wbrrrxdt12
9VilxnlkONzqMXySpo8bovbtO6nf4BG6+qbP67vf+qJqt72p1ftrNWzSVRrZI7P+vT0JGjp+
kjr4wjqyf7s2bPhQew4clS+7l+746nd0/x3TldTg9P8Tuz7QO8u3KWPABM2+vG/z37OMDsp7
/1XtKopo7G1f1pyRXS/dXxHwH+Ju8ADQDMsyFayrVV0gJPPUIS+vzyev2/3R2V6WpUg4oKrq
OlmSXB6f4vxeOayIKiqqZDndSkiIV8M7aliWpUioTtU1AZmWJYfTJX9cnDwuZxPvbclwOOT2
+OT3eepvrdEcs0KP3H+n/rWlTg/89kndOqbhbIwlyzRVW1ujYCgsS4bcbq/i4nznvW44UKOq
moCc3jglxl1oQU9A/3PfHD23L0m/fuR/NKl3xoW+vUDUcAgMAJphGA55/fHy+pvdSE63T8kp
vnMedykppfGzuAzDkMvjV7Kn6Re+mPeuOLpLuysc6t6pg5IS4uQ0pFBtuTa/N1eLtxcpIa2v
+ubmnPvKMhxOxcUnKq7RV/2IyxunFG8zW1mWLElWJKC9K17U6xvy1XvCLPXvmnaBVwaiiwAC
gDasbO8S3fejuerdt4+y05Pldki1FQXavGmbapzJuvbGu9S/kWv+tJq6fD3z+N+183i+dm3e
oNqkXrrjzuuUybV/EOMIIABow1J7XqbP3ViiNavWa8329aoJmXJ7E9Rz6BTNuv4mzZo07NL+
oI9Ua/MHy7TySIU69R+lH33165rS/9wZJyD2sAYIANoyy5JlmQqFwoqYpiyr/vCa0+WS2+WU
caG1Qv/x+5sKBAKn1ke55XF/Au8JtAICCAAA2A4HaQEAgO0QQAAAwHYIoE8B0zQVDp9/uX0A
ANA4AuhTwDRNhUItvd80AAD2RQABAADbIYAAAIDtEEAAAMB2CCAAAGA73ArjUyQSiUR7CAAA
tAlcCboNCIVCMk2zya9blqVIJNLsNgAA4CPMALUBFxM3hmHI4/F8QiMCAKBtYwaogUioTnu3
b1ZZXeNf96d2VP/eHc+pRkuhmnLt3bNPlXURueMS1SU3V+kJvqbfJ1CtQ/v3qriiTk5PnNp3
zVW7tAQ1dfvAC/0VRSIRhUIh+f3+ZrcDAAD1mAFqIFB9XPOe+YdqM7soznV+jmR0v1x9GgaQ
FVHBgc2a+9JbKom45HM7FQkFFFSirrrtDg3vlimno+HrWCrP2615r83TgeKg/D6PzHBQAcur
UVOv0/QxvdTI23JnZQAAWhkB1ECoskDFtdn6ygPfVjfvhU+Qqyo6oLnPzVWo8zh96dopyk7y
qbY8X++/9bJeePIfSvrml9U7M/7MzE6kqkCvv/SiDjm76857Z6lrdrJCVSe1afmbeumlp5Wa
/T2N6ZYsegcAgEuL0+AbqMk/oYrMHOW4L6ZAItq2/B0dNrrqjpuvVruUODkcDsWntte0Wz6r
AQn5WrB4kwINlu7s3bhUO076NOfm69U9J0VOw5AvMV2jp83RjEHJmj9/kaqCLGQGAOBSI4DO
MFVYWKjkrEx5L6J/rOrjWrOtQIPHTVCm/+wnGK5kTZwwWif2bVRhWfDUo0FtWbdBWQPGqVd2
/FnbO9zxmjh5nEp3btWh8ppW2h8AANAUAug0q05FhdXKTE9vcjFyQ1XFhTopj3p1yjlve8OQ
OnTpKrOqXAUVlfUPBgt0+Lihnr266LwJJsOQr2MPdXIW6NDx6lbYGQAA0BzWAJ1iBWtVWFar
+M4OFRcXS6pffOx0eRQXHy+Py3nW2pyqilLJcCspIb6RVzPkS0lTUqRORRU1ktKl8lIVReI0
Pq2Js8Mc6crMsFRQeFJSdmvvHgAAaIAAOsUKhVQTrNaHC/6lDxfUP2YYTiWkpKtrjz4aN3W6
BnXN1OmTuiKRiFwut7xeb+MvGB+vZIelUMg8/QSFfF7Fu92Nb284lZgUr8JQqHV3DAAAnIcA
OsWRkKN7vvsr3dPgsXCgVgXH9mjle+/pqUf+oKm33qPZY3qcOm7YsssncbklAABiB2uAmuHy
+tUhd5Dm3HWvrhudrbWLFup4Vf39tpxOl8LhkAKBQONPrq5WuWnI7a7/Fhsul9x1AVU3NcNj
RVRZUS1PUzNEAACg1RBAF2IYcnri1H/oCDnqjutEUZUkKSEpVbJCqqhqbNGypbqyk6pw+pWV
FFf/UHKqMp01Kj7ZxGWmzRIVFRvKyU6/NPsBAADOIIAuktPhksNhnLkqc0JmtjKNkPYczT/v
YJhlSXmHD8mRmKys5MT6Bz3Z6tbJob17DivUyBPqju3TUTNHXdvFXfJ9AQDA7gigU6rLilRa
FWziqxHt3b5REXeO2mXVB40R116jB+fow/eXq6j27KKxwuVatnyNOvQcrqzk0zco9WjwyBEq
3rZSewrOnjUyQ9VatuR9pfUdpK4pBBAAAJcaAXRK6dFNeuyP/6P5y9freEmFwhFLlmWqtrxQ
a96dq9c+OKKhk69QuzMXPXSo39gZ6qYjevalt3SirEamaaq69LgWvvgP7arrrJlTh6jhHTVy
h45Xv4w6vfLSq9qfX6aIZamuskRrFv5bC3bUaPbVUxXv5q8EAIBLjbvBnxKqLdfODSu1cMVG
1ckpl8Mpw7AUCQUViLg0ZPJsTR/dV3Ee50dPsiIqPLhVL7/8uopDLnld9TdDDSlRV99xp4Z1
TZfDOPtmqBUn9mjeq69rf3FAfq9bZjiooOXVqOlzNGNU949VpOFwmLvBAwDQAgTQWSyFA9U6
cuiQSsqrFbEkty9BXXN7KC3B28RNSi2Fasq1b98BVdSE5I5LUtfcXKUlNHF9IEmRYLUO79+n
ovJaOT1x6titu7JT4y/qCtSNIYAA2M2W/QVavOFAtIfRZricTn1tzqhoDyOmEECfAgQQALt5
Z80+PT5vfbSH0WZ43E7N/elN0R5GTGHBCQAAsB0CCAAA2A4BBAAAbIcAAgAAtkMAAQAA2yGA
AACA7RBAAADAdgggAABgOwQQAACwHQIIAADYDgEEAABshwACAAC2QwABAADbIYAAAIDtEEAA
AMB2CCAAAGA7BBAAALAdAggAANgOAQQAAGyHAAIAALZDAAEAANshgAAAgO0QQAAAwHYIIAAA
YDsEEAAAsB0CCAAA2A4BBAAAbIcAAgAAtkMAAQAA2yGAAACA7RBAAADAdgggAABgOwQQAACw
HQIIAADYDgEEAABshwACAAC2QwABAADbIYAAAIDtEEAAAMB2CCAAAGA7BBAAALAdAggAANgO
AQQAAGyHAAIAALZDAAEAANshgAAAgO0QQAAAwHYIIAAAYDsEEAAAsB0CCAAA2A4BBAAAbIcA
AgAAtuOK9gAAAGipNGel+rsPRnsYbYbbzcf9ufiOAADanCGeveqb8my0h9F2uHySvh3tUcQU
DoEBAADbIYAAAIDtEEAAAMB2CCAAAGA7BBAAALAdAggAANgOAQQAAGyHAAIAALZDAAEAANsh
gAAAgO0QQAAAwHYIIAAAYDvcDLUZoeqTWjz/dR0uCSh31FWaNrTTeduYkZBO5u3X8hWrVFwV
ki8pU0NGjVHfrjlyO43ztrfMiMqLjmrNBx/ocGGl3HEp6jt0lAb37iy/2/lJ7BYAALbHDFCT
Itq7+m0t2XZSRfs36kBBxfmbmAHtWPG6fv27x5UXjlenzp3kqTump//0O728fKuCEeucJ1g6
+uFiPfzHR7TxWFAdu3RRsrNSrz39qP76whLVnbs5AAC4JJgBakLZoc164/1DmnXr3do39yEF
G9mmYM9avfT2ak248xu6ekRXOQxJVliXD16kR57+l7JzHtDkvtk6PQ9UfWK7nn9libpMuF2f
uXK43IYhydKEUWv12P8+p3krumnO+O5ynT9xBAAAWhEzQI0wg+V6752FSho4SSO7ZzSxUY3W
LVsuR7exmja8q5wOQ4ZhyHC41WnwFE0dkqw1y1apIvTRtM621UtUFd9dMyYOlcfhqN/ecCg9
d5iunzxYa1YsUWlN6BPaSwAA7IsAOo+lfWve1Y7KNM2YNEKeJr5DkfLj2p4X0NARg+Q/Z62P
4fBoyNChKs3fp6LS2lMvW6Wd2w+q06CRapfgOm/7viOHy5G3TwdO1lyKnQIAAA1wCKwhy1Kk
4pBefnujRtxyn7ql+WRFGp+RqSgpVo3To645med/0TCU3aGjXNXrlF9ZpR5ZcVJtoY4V+zQm
N7vR6nSld1Xn+FIdOV6p0Z2SP+bwWUQEAGgcnxFnI4AaiIRq9O7c5+QbNFMT+3dQ/QqdxlVX
lcsw3Irz+xv9ujM5RalGQCfLT80AVZSrxOlXSryn8Rc0kpSe4VJxSamkjmd9KRwON/sP1zRN
maapqqqq5ncQAD4t6uqiPYK2xbL4jDgHAXSaFdGxLUu1/IBPX/7+WPncF1qJbMnpdMrlauJb
6PUqzjB0ulssy5LcLnmdTZ/q7vfHqbyR0AmHwzJNs9nRGIbR9FgA4FPGdDrV/E9FnMUQnxHn
4LtxSk3xQb29eINGzrpdnRNcupgTsSzLkmWZanQpVSSs0LnzR6Yls5mZnFA41Oj7ut3uZsdh
mqbC4bD8TcxGAcCnTdDtViDag2hTDD4jzkEASbLMOq1d9JaKfL100+BOCgY/OundjIQUsSQz
HFIgEJAMhzwetzwenyJmSHV1AUnn/6OyqqpUHnEqzl8fL4bPJ3+gTpXBJs7ysoKqKKtVXNz5
r+VsZtZI4rguAAAtRQBJCuTv0dJN+3SifId+8K0ljW+U97juf0Pytx+jn//k80pOSZcRDqqo
rFxqd260WKosKlSVL07tkuLrH0rKVDt/lfJOVErdzl84bQWPK6/Io/HtmzjtHgAAtBoCSJI3
u68e/NEvZDYykWJFwnrxf76v0JB7dOfk3jIcbsVJMrI6qmeSpc3bD2h835yzDoJZlqU9u3Yo
LiVHmakJ9Q8609W3b7rWfLhVlaNyldjwO2+ZKty+TUVJXdUj23cJ9xQAAEhcB0iSZDjdSkhM
UlLS+X8SkxLldkgub1z9/yf45ZBkuFI0cnR/ndi0VNvyqj46DGVZqineq8Xv71KfEZcpPe70
4SuH+o+8XKFjm7Ru57GzFu/VleXp7fdWq8+IMcpOJIAAALjUCKCPzVC3YZM0oqOhl55+Suv3
HFN5RbkO716nf/zfvxTqPFbTRvc467YWOb1GafyANC14+VktWbdLZRUVOnFwu/79/L+0o7a9
rp8xSr5GbqAKAABaF4fA/gPu+Cxde9eXlP7um5r3xO9VXFknb2KGBo0Yp3uvma4M/9mLlw1X
vCbd8Hklvb9IC+b9n+YWVcrlT1KfoZfpy3Omq2NS82d7AQCA1mFYnELULMuyFArWSU6PPK7G
zsayZJmmQqGQIqYlw+GU2+2W09H0TI5lmQqHQopETMlwyOV2y+l0XNSp940Jh8MKhUKc4gjA
NoJbXlJg8c+iPYy2w+VT4tfWR3sUMYUZoAswDEMeb3NhYchwOOXxNn+q+tmv6ZDb4xXzPQAA
RAdrgAAAgO0QQAAAwHYIIAAAYDsEEAAAsB0CCAAA2A4BBAAAbIcAAgAAtkMAAQAA2yGAAACA
7RBAAADAdgggAABgOwQQAACwHQIIAADYDgEEAABshwACAAC2QwABAADbIYAAAIDtEEAAAMB2
CCAAAGA7BBAAALAdAggAANgOAQQAAGyHAAIAALZDAAEAANshgAAAgO0QQAAAwHYIIAAAYDsE
EAAAsB0CCAAA2A4BBAAAbIcAAgAAtkMAAQAA2yGAAACA7RBAAADAdgggAABgOwQQAACwHQII
AADYDgEEAABshwACAAC2QwABAADbIYAAAIDtEEAAAMB2CCAAAGA7BBAAALAdAggAANgOAQQA
AGyHAAIAALZDAAEAANshgAAAgO0QQAAAwHYIIAAAYDsEEAAAsB0CCAAA2A4BBAAAbIcAAgAA
tkMAAQAA2yGAAACA7RBAAADAdgggAABgOwQQAACwHQIIAADYDgEEAABshwACAAC2QwABAADb
cUV7AOeyLEuWaUqGQ4ZhyDAa28aUaVoyHA45GtsAAACgGTE3A1RZuEdPPfJ7zV2yVVYT25Qd
3ajHfvcHLdqcJ/MTHR0AAPg0iLkAqi07rkVvvKKVWw83GUCmGdDq+f/WO8u3KEQBAQCAFoq5
ALoYkWCtgmFLtbXVspqqJAAAgCbExBogy4qosqxMIVMqK69U2JSCdVUqKSmR85wlPmaoWsvf
nq+8gKFeaRlytsmEAwAA0RQTARSuK9Aj3/m6tpRJ4WCN8msiKlj4jL664ZXztg1Ulyq/sEwO
f44mTh4uF2ugAQBAC8VEAFlWRGUlhSoskSwzorAlmTWVKgzXnr+x06NeQyfqms/erRk9kz75
wQIAgDYvJgLI7WuvHz3xskKmVHzgA/3oO79Uxsyv6qG7p513CEyGIa8/XglxvqiMFQAAtH0x
EUCGw6mU9ExJkqM6R1275SqtY3tlZmaeH0AAAAD/oZgIoIbSOo/QL/76tAynq22eogYAAGJe
zAWQ4XDK63NGexgAAOBTLOYCSJKC1UVavWyJtu47oXCT1/kx1HHgRF0zabDcTBUBAIAWiLkA
MoNlevUvv9KjLy9XXaS5LQ2NmJOjqycOlru13tyyFA7V6mRJqWrqAjItyeHyKCUtQ8nxXhmN
3nfMUiRYq4KCQtWFTDndPqVnZirB1/SozHBAxYWFqqoL1b9+emb967fWfgAAgGbFXABVFRzU
whWrFHRl6TP33a0+WQlNhIGhtE59Wm32xwzVaffG5Vq+frsKCk6qurZOEUtyujxKycjSkMum
adLoPvK7GryhZaqq+JDefGWeth48oUC4PoAyO/TUdbfcqO4ZcedEk6W6sny9984bWrP1gKoD
YTmcbqW266YrrrpWw3tmy0EFAQBwycVcANXWlKmqMqL+V96p++64Qa5PqAiqi49o8cpN6jDg
Ml1540DlpCfL7ZQCVaXa/MFCvfby0yqPfEG3TOh7JsjqKo7rxSf/T3m+PvrCt+5Wt4wEVRQe
0DtzX9Djjz2jr3/zbnVO9p55DytQprdfeEprS1J0693f1MCuWQqUndCy+S/rmccfk+97/08D
sn3MBAEAcInF3OqZxKRspaf75XZ/sm0Wn91dX7rvW7pu2nh1zk6Vx+WQYTjkS0zX6Ok364bJ
udq+/H0VBk4/I6IdK97Wrtpsfe4Ldyg3M1EOh0Mp2d114z1fVHdrr956b4uCDfESu0gAACAA
SURBVNYwHdi0VOuPSjd/5g4Nzs2W02EoLq29pt3wWU3t5dK81xephru7AgBwycVcAPkz2uvy
Qb21a8sWVYQ/uRhwOJzyeNyNrvMxDIfSsrLkCFUrEKp/zKot1LrNR9V7zAR1SnJ+9DzDkNOX
pYnjh+nY7g0qqgifepWwtq1fp5Reo9W3U8pZszwuX7ImT75M+Tu26FhFI1e/BgAArSrmAkjO
RE285mqlHFmhBVsKVFtb2+SfQCj8CdwN3pIZqtbu7Xvkb99D6XH1j9aWFOhEyKW+3Tued8jK
MKSu3XsoVFGiwvLK+gfDRTpwOKge/XrKf+533TCUnNtH7UJ5OnCi5lLvEAAAthdza4DKj2/X
v55bINMb1DO/+r4+6JTaRKUZ6jn2Bn1xznh5LuGimUhduZa++qzeP+rVbfeMV/ypwVSUnZTl
cCstKbHRscWnZSgxWKuCimpJqVJ5iQqC8RqdGd/4G7mylZMR1on8k9KAzBaP07Is1dXVtfh5
ANAWmeHwhTfCWfiMOFvMBVCgukSb161RfqWksu0qOtzUlobqsi+T2cozQFX5e7Vu5zGFaquU
d2S/9h0rVdf+I3XfN65Q+wYLmsPhkFwuj3w+b+MvlJCgFKepQODUufyhkAJ+nxI9TZweb7iU
lJKgokDgvC/V1dXJNJs/HGhZlkKh0EXtIwC0eQRQy/AZcZ6YC6D0bqP1p3++qtBFhI03PkWe
Vj6IFyjP1/bt22RGwqqtrpIVMeXyeFRTWalIkleuM7NNpwfYxPSTYcjR4GvWRRyrczRxxpvD
ceGdtCxLfr//gtsBwKdByOtVMNqDaEsMQ/HxTRyBsKmYCyCXJ045HeOi9v7pvcfrvt7jZUbC
qqupUklRgXasX6Fnn1yvUVfepOmjespl1C+aDkfCCoWCkjznv1BtrSpNS05nfbwYDoecwaBq
m/ytxVJ1VbVczvNvA+LxNPL6DYTDYYVCoYsKJQD4NGj8wrRoDp8RZ4u574ZlWS38c2nG4XC6
FJeYok65vTXjps/r+rGd9cH8eTpQUn+IKj4hWbJCqqpu7KwtS6HyMpU7fMpI8tU/lJyidKtW
pRVN/M5ilamk2FRmRtql2SEAAHBGzM0AVZcc1Fvz3tXJC85tGurQf5yuGjegwWGpS8RwasCw
0Zq/6jkdOl6sXhkdlJSVrRQzpH15BRrWNfns7S0p7+ghmQlJyklOqn/M107d2ke0Z88xXTGg
nc6d5wme2KdDgSxN7phwiXcGAADEYAAd1qv/elL7Ki+0paERc9I0feyAVtmJcCgkp9vd5FWY
q6sqFAyb8p06HGXEd9CIvqmav2qNpo/sqZQGp6JZkWqtWbVeOV2nKDPl9OErrwYOH6zn3/9A
BycOUo/0jxZPm+FarV2xWvE9+qlrCut4AAC41GIugFI6DNR3fvmwqptYKmNV5+vvf/u7vEOv
0VduGtdq9wLbvPhFHXZ21+gBPZSWliKfxyWHpEgkpLKSPC16a6GcGb3Up/OpQ1SGSwPHTtGa
J57Xq++u0Q1ThynJ71awtlxbl72h9SfidceNIxTn/CiMegwbp05rn9Ibby3WHddNUkaiX5FA
jfZvek9vbziuaXfdpiRvzP2VAADwqRNzn7behAwNu2x80xtYAVXuel8Pf3BA6d9tJ2crHf7K
at9By197U2sWO9W+Uzsl+n1yGFIkWKu8o4flzhqgm26eray4jw5epXTspxtvmKF/vPCyHt+/
UVlJPtWUF+pQXpVmfvZeDWifdNaMkjeli264cbb+9fyr+stfdqtTVopC1Sd1OK9Efa+4TRMH
ZMXeoiwAAD6FDOtizs+OMcc2vawvfvlh3fCr53T35C6tFg2WGdbJE0e0a/9BlVXUKGJJHm+C
uvUbqB7t0+Vs9DR1S4HKIm3csFnFlQH5EjM0YMgQtWvmUFa4tlzbP9yko0UVcvmS1WvQEHXL
Tv7YN0E9fRYYp8EDsIvglpcUWPyzaA+j7XD5lPi19dEeRUyJuRmgixGX1kHp/rB2btmu8MQu
rXYtIMPhUnqHXI3tkNuSZ8mbmKXLJk2/6Ge4/MkaPGaSBrd8iAAAoBXEXACZkaCqq+pnXxpl
hbVr03odr7aUEgyozU1fAQCAqIu5ACrL26qHf/NnHWvqnqBmSHmHDqrC8KlX315ysWgGAAC0
UMwFUKi2Qnt3bG32NHinN0njr/uC7prZ/7zr6QAAAFxIzAVQRvfL9dd/v9v0ITA55PX75fN6
5KJ+AADAxxBzAeR0eZWS1sQd1gEAAFpBzAVQQ5FQnUpLS1VVWa1A2JQ/PlGJySlKTvDJwY3w
AADAxxSjAWSprmivnnj8b1qwYq3yS2tkSTKcHuUOGK1rbr5TN00fJg8NBAAAPoaYDKCKIxv0
4P0PaOOxaiXndNXlk3srI07KO7Jf27av1MM/2ajth3+gn31pemzuAAAAiGkx1w9WsFSvPfU3
bToW0hV3fU/33jhZOamJ8rik2poaHd62TH/6/aNa8tyjWjr5Mk3tmfixr6AMAADsKeauolNd
eFQrP9yu5IHT9OA916tbu3T5fR45XR4lJKWo/2Wz9LV7rpO3ukjL39+sMFdCBAAALRRzAVRT
c1LlZSH17D9YKd5GznM3nOrQb4ja+00VFeQrYn7yYwQAAG1bzAWQy+WXxyOdLC1VU/dpDVSe
VGXIkN8fJ04GAwAALRVzAZSc2VG9u3XQgSWv660PDytknh1BtWXH9NpzL6nA8mrw8MGtdiNU
AABgHzG3CNqZkKObbpytJdv+Vw9/75taM+kKTRo7RGl+p/L2btbihYu1cfdRtRt2rWaN7MAC
aAAA0GIxF0AynOox8VY9dH+ZfvXX1/Teq3/Xwlc+mgVye/zqNuxqfef7/6V0L/kDAABaLvYC
SJLDHadxN39Lz0+6RssWr9ShojJFTEtuX6L6DBury4f2kt/NsS8AAPDxxGQAnZaU1UOzb+0u
S5YsSzIMQwarngEAwH8oBqZRTJUe260VK1Zof36FzjvvyzBkGA45HA4ZhqFwTYmWzX9Vc197
TxWRaIwXAAC0dVGfAbKClXr9id/q0cUl+u0zTyv3Atu7PF4dW/+W/mf+Yfl7D9fVfZNZCA3g
kqqsCSgY4jeui5WS4JPTGQO/XwPNiHoA1ZUXa9OuPcoafI1GdryImHElaPzMqfr7vEe0fu12
zex7efR3AsCn2l9f36D3txyJ9jDajMe/dbXaZyRGexhAs6Ke6DXVhSopCqhzpy7yuC5uLich
q6uyE00VnMhTmF/KAABAC0U9gBwOt5wuSzW1NTIv8r5e4WCNAkHJ5XRzJWgAANBiUQ+g+MRM
tWuXov0fblBeRd2Fn2CFdXjzOuWFnOrSPVeuqO8BAABoa6KeD57kLE0YPlCBY6v157+/rdLa
iBq/BZgly7JUsGeF/vbPBbJ87TV+bB81crtUAACAZkV//bDDr6mf/bIWrNiiFc/9Wvfu2aTP
3Hadxg4fqLR4jwzDkBkJqiRvnxa/NU//fOF1FYY8uvLe+zU62xPt0QMAgDYo+gEkyZ3cXT/4
xU/03//9B63e8K5+tXW5kpMT5fP55fM4VVtdpbraGpWWVcoZn66Zt9+rb9wyLtrDBgAAbVRM
BJBhOJTRa7x+9rsOWjL/Vb2+aI0KSsp0srBUoYjk9ccpITFVgwdO1s23zdFlg/sowcvBLwAA
8PHERACdlpyTq+s+/4Bm3VGj/KNHdPT4CVUFpdS0TLXv3EU56YnRX7QEAADavJgKoNNcnjh1
7N5HHbv3ifZQAADApxATKgAAwHYIIAAAYDsEEAAAsB0CCAAA2E5MLoI+raLosLZs2anCk+UK
hH2afP21yggXa9XqtapN7KZpo/te+O7xAAAA54jJAIqEqrR63t/16LPzdSy/WHWhiAwjRz1m
XKusuIg2vP6MXt6doM4vP6E+iUxiAQCAlom9ejBD2rbgH/rJH59RYcCv6Td/VjOGdjnzZYcv
S1dMHy2rbJdWrD+qi7yBPAAAwBkxF0DBsqN67sV5Kk/opd88/pR+9M0vaFjX9AZbGMruO1Qd
XGHt37VXIQoIAAC0UMwFUEXpCeWdKNWgSbM1tFNio2t8nO44eb2mystLZZqf+BABAEAbF3MB
ZJmmLEtyuZpenlRbdlwnqwx53B4ZrIIGAAAtFHMBlJSSo5zsJO1Y84GOVQZknXOIKxKs0OoF
i1Ukl7r06C5XzO0BAACIdTGXD970zrpm6mUKHF6hH/7493pv/W5VBsKSTBUf2aan/vhzPT5v
ndxpvTRzQl9xT3gAANBSsXcavMOrsbc/oAdOVujRl17Td1e+duZLP7rnc5KkuIzu+toPf6B+
qeQPAABoudgLIEkuX7JuvP9XGjRxpd55Z5kOF1fKtCw5nB517DdCs2dMVfeOGdEeJgAAaKNi
MoAkQ05PnPqOnKa+I65QOBKWZUmGwymn08HVnwEAwH8kRgOoAcOQy+WO9igAAMCnSEwGkBUJ
av/mD7RxX0EzV3o2lNV9qMYP68mZYAAAoEViLoCsUJXmP/lr/eZfi1UbjDSzpUMj5jygy4b2
jL2dAAAAMS3m2qGqYL9ef2eJahSvCTOnqmOqr4ktDXUc1FNOFgQBAIAWirkAqq0pVVl5UD0m
fEG//MkX5KVwAABAK4u5AIqLS1NSildWcpKc3OcCAABcAjG3fDg+u4smDe2nXVu2qZo7nQIA
gEsg5maADHeSpt10o16+77d6c9Vuje3kb3JbX2KastKS5GCiCAAAtEDMBZAsUzVVtbKsSv3t
oW/qhbimrgFkaNCV9+rH914tL3fEAAAALRBzARQ4eVh/ffQvOloRkdtbrWqrqQByqC4YauY6
QQAAAI2LuQAqLzmiQ0dLlDH4Oj372PeU6mlmmZJhcFsMAADQYjEXQG63Xx6fW7n9+ivZ45SD
BT4AgHOYAbdCpYnRHkbb4W7qmnr2FXMBlJTZSX1zO+iDo8cUsWJwgACAqAuVJ6lqT7doD6PN
MDwepUV7EDEm5k6Dd8Rn69qrJ6p44wrtOBmUaZrN/LFksQgIAAC0UMxNsFTk79aCtQeVZB3Q
L7//ffVpF9/Eloa6jbxad84aLTdHyQAAQAvEXADVVRRo1bLlKq6Vijcv18HNTW1paETcAN1+
9Wg1dZ4YAABAY2IugFI7DdVPHnlCdc3dCP6UhIyOau4kMQAAgMbEXAB54lLUd9DQaA8DAAB8
ijF/AgAAbCfmZoAkyQwHtHvDUs1fuFxHi6ubuNqzoZ5jb9AX54znMBgAAGiR2AsgK6zt7z6t
b//2GZXUmvL7vaqrrpHTn6BEv0dmOKDK6jrFJabKk1sqk9PgAQBAC8VcAIUr8jT3lTdVHIjX
nd96UL3dh/XYw0+r3fTP6htzxihUsk9/euRJdZlxtz43axyzPwAAoMViLh/Ki4/r4NF8tbv8
On35phka1KuTPE5DiRkd1K9fPw0eP1O3TMjV0neXyp2SJu6UAQAAWirmAigcrlMo5FTXzp3l
PFM3liKmeeq/PRo0ZYqSjq/Rv9/bJbOpFwIAAGhCzAWQ2xMvr89URWWlLMuSPy5V8fGWjuWd
OLMY2puQpgR3SHt37lKIAgIAAC0UcwGUkJimjPQUHdy7X3URS0lp2WqXmaEjaxZrw9FyBQO1
Orxtk07USE6nM9rDBQAAbVDMLYL2pOZoVJ9cLZv3vtaeCGhKpw6acfkgvffEQv3g61/XsF4p
2rp2vaqcXg0bNVzumEs4AAAQ62IugORM0Kx7HlTqqIPKsmplGWka/5kH9EBVSP/7ygotPGIq
Maur5tx1r24b2z72prAAAEDMi70AkhSf01PTc3qe+X93fLpu+trPNPn2UoUiksvrV1pqCjdB
BQAAH0tMBtD5DDk9ccpuFxftgQAAgE+BmAggyzIVCoYkh1Nul0uGIUmWQoGAIk1c6dnhdMnj
vjTDt8yIwhFTlmWdei+nnA6HDKOxiw5ZsixL4XBElmXJMAw5nS45mrlAkWWZioQjMi1LMgw5
nU45HA5xSSMAAD4ZMRBAlvI3ztU9D/5Vfa/7hn761WsV75KkMv3wlqu0+Fio0Wdlj7xDcx//
plpzTsgyIyo6tF1LV6zUh1t3q6SyVnK61S63vyZOmqIxQ3rJ5zo7U0I1JXp/wXwtWrFWJVVB
eRMzNWjkOF0ze5oy484/Sy0SqNSmlYv07uL3dbS4Si5/svoMHaOrrpyu3KyEVtwbAADQlOgH
ULhCi15fpIJar742c4LizhmR0xOnjIxUNeyOQOVJFW99Rx8c+LKuyPW1zjBqy7Vy/gt6e/0J
9R40TLd9eZY6pCXKDFdr26olWjz3aeVX3qmbJvfX6awJVRdp3j/+T5uK4zT7ngfVOydRpcd3
a/68t/TYEyf1lXtuUlb8RyuVrFC1lr3ydy3YWaUp19yt/+rVXnUlR/TeO2/qsUcP674H7lPX
FDczQQAAXGJRD6BARam2HtivpD4TNapz4nkf/lm5Y/Tjn3xNOQ0659iGV/S9X76gzZv3aHLu
ILXG1YDqyot1oNjSrXf/lwbmZst15nBXiibOulWJ3mf12vuLlTe8rzonOSSZOrDhPa07GtFt
X/mCBndIkGEYSk0Zo7syUvToH/6mhWuH6pZJfc/EW/7uNVq6rVhX3HyPpgzuVH8GW2qKbrw9
RcEnHtcbC9boSzeMPW+WCUB0ZTlK1c11PNrDaDPcRjjaQwAuKOoBVFtVoqLCSnUdm6s49/kp
4/LGq12HTurY4FiXLzREOZ7nlHfkqMLmIDlb4Vx4b2oH3XjHZ5UY38hBNYdLXbr3kXvNOyqr
Cqhzkl9WqFRrVm1Tu6EzNahjg3AzDMVn9dYV43rrzQ2rVTKqt7LjHZIsbVm7Qu4OQzS6f6ez
Tt/3p3bUVVNH6+dz1yh/xnB1Tfb/5zsEoNXcHL9EN6S+E+1htBnxjjmSUqM9DKBZUb+MTsQM
KhQy5PX6z1lkbMgfn6j4OJ/OXXvsdPnk8Ziqra2W1cQi6ZZye32Nx88pFaWFCpt+xfk8kqRg
8XEdqHZq6IDu530TDcNQr779VFOWr8LSyvoHzWLt3VOuXoMHK/Hc7DQcyu4/SJkVh7TvRG3r
7BAAAGhS1GeAvN5UJSUbOnr8qMIRU94z0znJ+t4Tr8o0XPKds8yntuy4SioNpfv858VRq7Ms
lefv0utvrVDWgGvVObV+lqq87KQsl1uZKcmNPMlQUka24utqlF9RrYFKlsqLdKI2QUPaJzb6
Noa3vdpnBpWXf1Lqk/YxhmkpFGp8wTiA/4zZWr9p2UQ4HJZxiX8emZHIJX39TxtL4jPiHFEP
IH9Sirp06Kh1H67WprzPaWy31FOHkwz54uLP294K12rDkqUqNlya2avnJb0VhhkO6OiudXrx
pbfk6Xq5bpg+Qp5TwRUM1Mnp8Mjn8zb6XCMhQSnOiGpqT/2DCwRU4/Up0dPE5RsNj5KT/TpZ
XXPelwKBgEyz+bu+Wpalurq6i943AC3Ah22LBAIB6RL/POLDvKX4jDhX1APIGZehmVMu06tr
XtBjjz6l7G/fo+45SXKcO7VjWTIjQW1b+pL+/sYGeZK6a8JlPS7RMTxLgcoSrV78lhas3qHu
o2fp+pmXKdXvOmsbwzBkGE2MwOWSp8GSbsuyJIdx/n414Ha71djvmdYFfvs8ff0h37lTZQBa
RcjpFAl08bw+n4xL/PPIdHMvgJYwxGfEuaIeQDJc6j/zM7puwUr9e/nz+vrxPZoz50bNnHa5
2ifHyTAMmeGA8g9u07yXXtDL85erPOzTrK9+UUPSLs3wy47t1IvPPae95YmadcdXNGFgl0ZC
y1AkElE4HFaj38ZAQNWWdeYQnWEYUiisYDO/SdbW1jR6scUL/aMNh8MKhUJy8wMBuCTCl/xY
+6eLy+mU4xL/PHI4W+P8X3vhM+Js0Q8gSU5/tr75379W4Gc/0ztrNujx327SE39wyOXxyedx
qrampj42Iqa8ye104z336/7bx7f+QKyICvau1p//8pLSh16hB+6dppwkb6PX5YlPSJZlhVRT
Wyvp/HU9kfIylcqrtNNndCUlKT1Sq7LqYBPvXaGS4rDapbd8/Q8AAGiZmAggwzDkzeyt7/zi
EU1d9pbmLfxAR/MKVFJaqpq6oOKTUpWakaNufYdpzg3XaGCPjvI5W/s3Mkvlx3fomb+/og7j
rtctV48755DX2ZLSMxRvhnS4oFiDO50TQJalwuPHFI5LUE7iqas7+7PVKSOgAwcLNblPznkz
SuGTh3W0OkWjm1gkDQAAWk9MBNBp/qQMjZt9ly6beatOFhWo+GSpqgOmEhITlZbZTpmp8Zfs
KslWsFIr331HpelDde81E5TsaX51kTOlowZ28mnt+q2aPrTrWUFmWSF9uGmz0nL6KSP11AyQ
kaB+g3vojS3rlD++n9onfPStt8ygdq3boEiHnspN4xpAAABcalG/DlBjnG6vMtt3Vt8BgzVi
+FD16dVDWZcwfiSpqviothwo0vgpU5R0MaeWGT4NGzdO5oH3tWjTEZlW/U1RLSuivK1LtHBT
mcZMvlzJ7o9G3W/keMVX7dOCFR8qfGZ7S6WHNuuVJZs1ZuIUpcVxjBYAgEstpmaAoqms5IhK
K0IqObxDi0t2NL6R26/+g4erXUr9ouTsXqN001VFeuYff9ThHePVMydJZSf2aNX6/br85i9p
bM/Ms6ItPqe/bpszWU89/6x+v3+bhvRqr7qTR7Vm3VZlj5yjG8bltsptPQAAQPMIoFO8vlT1
7NNTlcf3qLLJjZLVqdegMwEkh1f9xs/Wt7v21oqVa7V/X5F8ye30ua/foL7d2sntOHfOylCn
QVP09ZyeWvPBBzq4b6/ccSm69vP3a1CvzvxlAADwCeEz95SsnmN0T88xLX6ew+lWVtf+mtO1
/0VtbzhcSs3pppk3dGvxewEAgNYRk2uAAAAALiUCCAAA2A4BBAAAbIcAAgAAtkMAAQAA2yGA
AACA7RBAAADAdgggAABgOwQQAACwHQIIAADYDgEEAABshwACAAC2QwABAADbIYAAAIDtEEAA
AMB2CCAAAGA7BBAAALAdAggAANgOAQQAAGyHAAIAALZDAAEAANshgAAAgO0QQAAAwHYIIAAA
YDuuaA8A0fOXV9dp15HiaA+jzfjVvVMV7/NEexgAgFZAANlYQWm1DheUR3sYbYZpWtEeAgCg
lXAIDAAA2A4BBAAAbIcAAgAAtkMAAQAA2yGAAACA7RBAAADAdjgNHoghx4oqdIRLE1w0j8up
EX3aR3sYANogAgiIIau3H9M/F2yJ9jDajPQkv5763rXRHgaANohDYAAAwHYIIAAAYDsEEAAA
sB0CCAAA2A4BBAAAbIcAAgAAtkMAAQAA2yGAAACA7XAhRCCGxBl1ynSURnsYbUaqMxTtIQBo
owggIIZM9W/Q+PTHoj2MNsNIyJZ0Z7SHAaANIoBsbIR3l7L9e6I9jDbDbcyW5I32MAAArYAA
srGpvg2KJKyK9jDaDK9+HO0hAABaCYugAQCA7TADBAAXYjlkmUa0R9GG8L1C7COAAOACqvd3
Us26gdEeRpvhv8PD4QXEPP6NAgAA2yGAAACA7RBAAADAdgggAABgOwQQAACwHQIIAADYDgEE
AABshwACAAC2QwABAADbIYAAAIDtEEAAAMB2CCAAAGA73AwViCGRqjjVnciI9jDaDEdymhKi
PQgAbRIBBMSQUEWCao+0j/Yw2gxnWlq0hwCgjSKAbKz2aDsFduZGexhtRrzplBHtQQAAWgUB
ZGORar/CFRxAuFiWRf4AwKcFi6ABAP+/vfuOjurM8/z/vpVVVcoZSUhIQkiAhJDIGRsHwMbG
ue126nbbnuMOM93T3fObM2d2d2b2t7NnZ3d/PT3jtt1u2jZ2O2CMAWNjgzFgwCYIEIggISyU
kIRyqFLl+/tDQqgUQMIKQH1f5+gP1U3PjfWp5z7PvUIEHAlAQgghhAg4EoCEEEIIEXAkAAkh
hBAi4EgAEkIIIUTAkQAkhBBCiIAjAUgIIYQQAUcCkBBCCCECjgQgIYQQQgQcCUBCCCGECDjy
KoxBqD439Rcr6dCEkTrhai9cVPE4bFRWVmF3etGZzMRNSCDUbBh0Cq+7k5qqKlptTjR6E9Hx
CUSGBMl7poQQQogxIgGoD9Xnpqm2ggO7d3G48DTW3LX85gdLBhuZ5ovFfLxxC2X1HV0fKQrm
0ATufexRpk4IRaP0jjUqtoZytm/dyomyS/hUAAVjSDSL77qPRdkT0UoKEkIIIUadBKAeKp3N
VezesYOvD51mQvYckiKtNF9lis7mSja8+RYNYbk894vVJEaY6WisYOdH77Hu1bf42S+fJyXM
1FOz43M0se299RTaYnniuV8wJTESV9slvtnxER+ue42QX/89uRPMKBKChBBCiFElbYB6dLDv
k8+pVWN48e//mZeeWkNaTPBVxvdycu82StwJPPvMI0yMsqLRaAiJTuH+Z58nU3eBbTuO4VKv
THH+yC6O1ep47MnHmToxCq1GISgslqX3/ZC7pgWxecsX2Ny+UV9TIYQQItBJAOphYclDT/Dk
Q6tJigi6Zi2Maq/l8Ikapi1YQpzZf2RFH86SJbO4eO4o9a3u7k/dnCwoIDJzPhlxVr/xtXor
S5ctoOHsSSpaO0dwnYQQQggxEAlAPTQYg4LQaZUhNUa2N1zikldP5qQJ/cZXFJg4KQ1vezN1
re1dH7ovUVbpZXJWKsa+W11RsKZkkOCroazGNgLrIoQQQoirkTZA16mtrQk0OsKt1gGGKpjD
Iwl2O7jUZgcioLWJSx4z86PMA89QG0NslJfauiYgxm+QqqoDT9NnnM7O4dUeeX1yu204nA4H
ilY7qsvweDyjOv9bzfUc99fD6/OO+jJuJU6nE88o7xen14tLL19hQ6XodWNyrtxM5Oi5Tl6P
B53OgNFkGngEq5VQrQ+Xq/vC6fHgMpkI1usHHl/REhJq5ZLL1W+Q0+nEoBmWNwAAIABJREFU
d42woqoqXu/wLtKqKgFoONxuD5pRDijD3YeBTkUdk9B4rfNP+PO4PaijvF9OpSbz6RMPj+oy
biU6jYa/kx9YfiQAXbdr18r0vpk2lFqcwRoeaTQalKs0SlJVFVVVCQoKuvYyerFrdcjpMHQW
qwWNxTKqy/AZDDhGdQm3Fo2iwTLK+wTAodPhvvZoopvZYkY3yvvFaDSO6vxvNQqMyblyM5EA
dJ00Gi0erxuXywUM8NDDTjvtPtDpuhr8KFotWqcL+6AJ3Iet3YZe13+XGAyDP1QRum6buN1u
NJrhNemS3vbDoyjKsLfxdSxkdOd/Cxr1fYL/jxlxbWNyrohhkn3Sl2yN62QNDgOfm3abfYCh
Kq6WZlq1JqJCumtlQsOIVuw0tQzy+97XTEOjSkx05KiVWQghhBBdJABdp+CYWCJwU1pV13+g
CtUV5WAJIS6k+1lCxjgmJaicK6ka8LaTq6aUclcMKQmDNJIWQgghxIiRAHSdFHMCc6ZHcWz/
Ppoc/u17VE87+/cdJD4tl5jwy7evjOTMyqPu5D7O1/u3xPe5bezfvZ+QzGwmhUkAEkIIIUab
tAG6XoqWaQvu4OCp9XywdTcPr5xPhMWIo6OBIzs/prA5imeezMOkudJ2IC1vEWmHX2fzx5/x
xAN3EB9hxdPZzpmDn7O9sIk1P3kWq2F0u1kLIcStwOuz43BdHO9i3DR8Wvm670u2SLf2S+f4
ZMsOmnt6ofuor6ihRbOHl5uLesZLzL2dNQumABASn8FDD9/Lux98wisXjhNmNuC0tdDQqrLm
yR+TGWv1azqpD07g/ofX8sGGj/njK6VEhVnwOjqob3Ewe/UTLMiIlCo5IYQYAoerkvqWz8a7
GDcNg9YA/Hi8i3FDkQDUTWcMJiU9g+heDXQyMjL7jRcRHXLlH0VH4tT5/OJvp1BUdJrmDhcG
azhTpk4lJmSg5wMpRCTP4LmfpnLuTBEXG21oTcGkTplKUnSw9DMRQgghxogEoG5BoXHMXxZ3
HVMqGKyR5M1bPOQpdKZgsmbOJ+s6liaEEEKI70/uuAghhBAi4EgAEkIIIUTAkQAkhBBCiIAj
AUgIIYQQAUcCkBBCCCECjgQgIYQQQgQcCUBCCCGECDgSgIQQQggRcCQACSGEECLgSAASQggh
RMCRACSEEEKIgCMBSAghhBABRwKQEEIIIQKOBCAhhBBCBBwJQEIIIYQIOBKAhBBCCBFwJAAJ
IYQQIuBIABJCCCFEwJEAJIQQQoiAIwFICCGEEAFHApAQQgghAo5uvAsghLiiOTSE71KSxrsY
Nw1jaCgJ410IIcRNSQKQEDeQsomJfL5s0XgX46YRajSxcLwLIYS4KcktMCGEEEIEHAlAQggh
hAg4EoCEEEIIEXAkAAkhhBAi4EgAEkIIIUTAkQAkhBBCiIAjAUgIIYQQAUcCkBBCCCECjgQg
IYQQQgQcCUBCCCGECDjyKowAdj45kXqva7yLcdOI02rQjnchhBBCjAgJQAHs1JTJnIsKG+9i
3DRWaHUYxrsQQgghRoQEICGEEEKMiK37izl4pnq8izEkEoCEEEIIMSKqG9o5+d2l8S7GkEgj
aCGEEEIEHAlAQgghhAg4EoCEEEIIEXCkDZAQQlzDiazJfKcf71LcPB42mQgd70KIcbHEVEhK
8BfjXYwhkQAkhBDXUBsTzTmfe7yLcdNw6yUtBqpUXQ1JplPjXYwhkVtgQgghhAg4UgMkhBDX
4Pa24HDVjHcxbhqq6hnvIghxTRKAhBDiGtpsx6hv2TfexbhpeH33gLQCEjc4uQUmhBBCiIAj
AUgIIYQQAUcCkBBCCCECjgQgIYQQQgQcCUBCCCGECDgSgIQQQggRcCQACSGEECLgSAASQggh
RMCRACSEEEKIgCMBSAghhBABRwKQEEIIIQKOBCAhhBBCBBwJQEIIIYQIOBKAhBBCCBFwdONd
gEDkcXbwXUkx9a2daI0WEielkxAVjDLeBRNCCCG+B3tFPB2Hp413MYZEAtCYUmmuPM2mjzZT
0QbBZiNet4MOp4ZZt9/PqoVZ6CQFCSGEuFn5FPBpx7sUQyIBaAx52mvYsmEDNcZMnnlhJROj
Q3DbWijcv433PnqTyLjfMj8tHI2EICGEEGJUSRugMVR6dA9nm82sfWgNKTGhaBQFozWcWbet
5e6ccLZv/xKbyzvexRRCCCFueRKAxoyLwsMFxGYvJiPG7DdEozOz5LZFtJw5SVlL5ziVTwgh
hAgcEoDGiquO8osaJmck9W/noygYJ6QzUV/HhYu2cSmeEEIIEUikDdBYaW2mXjUTGW4aeLg2
kuhIuFTfCMSOSZG8vg7cnpYxWdatQEUd7yIIIYQYIRKAxojq9eAxGrHo9YOMocEaYuGS2zNm
ZWpq20dt0/ExW97NTlXvB4zjXQwhhBAjQG6BjRWpPBBCCCFuGBKAxoii06F3OOlwuwceQfXS
3mrDYBishkgIIYQQI0UC0FgJjSBGa6ehaZBeXt4GLjUqxMVEjm25hBBCiAAkbYDGiiGW1GQt
pWcv4MpNwtC7J5iqYq86R5Uazz0TzIPOQtz6VLz4fM7xLsZNw6feHE+cFULceCQAjRk9ObNm
UfDZAUpq85geb+kZ4nPb2LtrP5FZOSSHSgAKZO32Iqob3h7vYtw0Os2RwKrxLoYQ4iYkt8DG
0KSZS5ge7eLD9z7k3MUmvKqKo62BA9vf54uzDu67ZwUWvewSIYQQYrRJDdAY0gZFcc+jP4DN
W/jLH/8DnU6L6vXg01tZ9dgzzEiyyhvhhRBCiDEgAWhMKQTHpvPIMy9SeaGMxrZOtAYz8RNT
iAkzS/gRQghxUzudkcZp183xSicJQONAazCTkjGNlPEuiBBCCDGC6iPCOT9p4ngXY0ikwYkQ
QgghAo4EICGEEEIEHAlAQgghhAg40gZICCGEECOi03mB5vZvx7sYQyIB6Bahqiruwd4zNojc
+HxiLLGjVKJbkE8Z9jYeromhKdyefteoLuNWYjFYRn2fAEyLycGss1x7RAGAQWMc9f0SZ50g
58ow6DS6MTlXJoaEMjchadSXMxIUVVXlPeU3OKfTic/nG3S47EIhhBBieKQG6Bag0WjQarUo
ioKiyNOEbhQ+n0/2yQ1GVVVUVZX9coORc+XGdKvvFwlANwGj0XjV4R6PB5fLhcFgQKuVl0Pe
CFRVxel0otVqr7n/xNjxer24XC70ej06nVz+bhROpxONRoPJZBrvoohuPp8Pt9uNTqfDYDCM
d3FGhfQCE0IIIUTAkQAkhBBCiIAjAUgIIYQQAUcCkBBCCCECjgQgIYQQQgQc6QZxC+jdDV7c
OLRaLRqN/Ma4kSiKIvvlBiT75MZ0q+8XeRCiEEIIIQLOrRvthBBCCCEGIQFICCGEEAFHApAQ
QgghAo40ghbD1tlcQ0WrSlpSPDrt92947bK3UlNTh83pQdGZSU5JxGy4cmi6OtuouVjbNVwT
xMT0iVh08sqP4bK31HKxwcPE9ERuzQfbCzF6fB4XVRdKCUnMIswkHU5uBRKAAlhnaxVbP9hE
ncP/c41OT0RcCjNm5JCaFItJ7x82Lp36ite+cfOPP/0hoUHfL4i0XzzDxk2f8F1tKz4VFHMi
z77wJKmRXYemra6Y9zds4UJd93Allmd++xPSrFqqjn3Bpn2NPPTCw8QbbvBD2eemcM9Wvi6q
pnevA1NIJFOmziBrcjIRoRa0o9iT7+KZr3nrs1Z+/k/PETVqSxm6zqpjvL5pH0sfeoGc+Bsh
krXw6Rsfcr69c9AxQpOmsXbVbQTfCMUdTx4b+7ZvodiTwFP3LkY/Aj+EhsVexZtvbKbN6xtw
sD4sg6efvIsgABwc3b6N/c3BvPjICvTa67vx4XG0s3X975j53B9YkDRC6+tsY+enH3MpaAoP
3TEXQwD+rrO3nGfj+k9p8ftUwWANY+r0PKZOmUREcBCjcWm8wb81xGjyumycP3ua8NlrmBJ7
+SWEKh63k8ri47y2ZwdZi+/n6bWLMGlG4ehTnXz18fuUudJ45qfPkxIbCl4v9HS79LF78zuU
O9N56qXnSY0NAZ+vZ3hHYxWnTlWzyncTdGRUfTRUl3GxVc/iedmYtAA+2hpq2L3xdT4xxLHi
/oe5Y+akW+JxBh5HBwe+3EpU/lqmxg38gktPRyOnTp0ie9XAX2Jjz0VF8RlsKbOZmxE74BhB
4fHopeEA+NzUlZ+n2KPFp6rAGB+z3g5KTpWQtHgFU2Kt/QZrgmK4kiW8NFSVcao2Ap8PGMOQ
cfH0Pg7VW1mzZAaagc5rr5vqCyWUW8O5GS5jo8HjauNcURGT7n6MlLCuz1TVh62php0bXmV7
eBZPPP0DsiaEjvhRJgEowCmKQnruIpZnBvsPuPNuqgp38oe/bOXbadNYmhkx8pc4Zw2nSx3M
e/Y2UmNDuz7ze5t9I2eK6sh7+iXS4/oPz1zxI15ZMdKFGl3B0SksWrqcYP2Vz+697z4OfrmF
j974HXb333DvnBTG+gf1SPO6HZw4uJv0SasHDUDBmSt45QbcgfGTZ7J8+ZTxLsaNzRDGgy/9
Aw+OayH0TJ45j+VToq8xnoU7n/tb7hyTMvlrKi9i/7lo7l08Y+CMaI7k6b/5lzEv141HIWvO
cuYl+H+68u472PjGq6x/Zxt//6vHCR7hHx/yW0YMQmFCWjYpkUFUVteMziI8HlyqCatFP8gI
TpxO0FxnlfXNQmMIZu4da/nBnTPYtfkjqlqd410kIYQYdzprDMvvXoGp/jhnLzquPcFw5z/i
cxS3DlVFVUGjDCWANLHx5Y0k3f0Ac1Ij/YZ4HW18vukdzLkPsywrCntzOZv+spE6eycNjkZ2
vLuOw0HdjSpMsay6M5+CXZ9S1+GkDvhmyzrO7bockiJ58IXHSLYYaTi7h7d21/OjH68lrFc7
pR1/+b9YZj1FToyXsuIiDh09RVunB3NkAguX3ca05Kh+P8Zc9lbKik9wqKCI+rZOrOExzJo7
C0dtLZMXLiPaeL0bcWg0OjM5y1cy6cD/y/7CSpKWpvf6daJia6rj5NFvKTh9AZdPQ0xyFgsX
zGZiTBh9706qPg/11ecpOHiIkqoGvGiJjE8hUmlE7XPKXzi8jW0XrLz08NJ+Zao48SV7T7u5
54G7CevV5sXncXKp8hz79n1LVUMb6M0kp01j9pxcEiydfPSXjyhraOViM9RsfIXT2y8vU2Hy
nFWsXDQFHeBoOMsbbx3i3p8+ToJfGy4VR3sjp48f5khhCR0uH8GRCeTPm0tWaiJBvfa1z2Vj
x6a3CJ39ONPCHHx3toiCE6dpsXuwRk9k8dKlTEmK6reNRo5KZ1s9p44eoaDoHDaXj+CoCczI
n830ycmYuxt1qF43jbXlHDpwgHNVDagaIxPSpzJvdh6JMaF+v0Q7q47z9r5K7l95G2pbDYUF
hzhbXodH1ZM0NZ/bF+UTbr6yQ1RVxd5az4nD+zl+tpxOD4REJzF/0SImJ0Vj6P0DoqOODdu+
JHPeXcRpWzh6+FvOlV/CozWRlb+ExbOz0DhaKCsp4lDBSRo7XITGp7Js+TJS43rfgnBQ8OlW
yoKmsHZZjn+Npeqlqbaco4cOcvpCLV5VS8zEDPLzZ5KWFDsOtxA9nNm9lSOdE/jBXXPR+S1f
paO5jjOFBRwtKsXm8mIKjiBjei7xmga8iQvJSQjyn53qpbWhlpKi4xwrOkeHWyUqKZMlixeQ
HBuCApw//Cnbvj5LS2M1ts5y/r//W97ThkXRxPPkX/+gqx2ex8a+TzfTEjWLlQsyrtyds1fy
p/X7uePhVVjcLRQfP8LRkkrcHohOnsby2xaQEGbus54+2houcrLgCCdKyul0ezGHxjA1dybB
rlosaQvJiBm4NvbGpWAOjiXI5KKpqQ0STaB6aW9uoOJ8MUdPnqKhtRPQEByTzMJFC0lPikbf
64RvqyzikwOnuW31I8RZfNRXnGHPnv3U2LUSgMTAVJ+PipJjVLSq3J8+cQhTuKg8dx7z4v61
F6rXQ01FKcGTuobpTCFMy59Dsu0SdRWtTJo2g8lR3bfgdFYiwyOZljuHZFcz9cUXSJg8gxlJ
l+/zmwnp/gJ0tdVTXFqFq8/N87ryYuptn3GwvpR2fQxz8nLI0Pv47th+/vRaGS/96lekRei6
LuaqitfZyKZ1r3G40s70/LnkTwnHZWti5/vraCKJn85fdl3bcLi0QdHkZafwzelTtC9MJ7T7
7Gy7eJZ33nqHi8oEFs+eSZDWw7nj3/DqyVM8/qNnyU4M7ZmH6vNQcnA773y0C0tKDvm5+Zh0
0F5fzeFDxbj00/yWaWu6yLnKsAHLY2+5RHmFA1evJjqqz8mJ3R/zwfZDxGTNYUb+FHB1UFq0
l3frHfzNY/OZMmMmkc3N7K3/jpjMPKbHX77oKkQmRvR82XtdbZQWX8Dh828D1NlYxnvr3+Zs
s5F582Yx1aqnsbKYD9f9gUnz1/D0mvkYui9wqtdLbUUpZzu2sb+mGIc5nvycHCYbfJQU7OXP
f67m+ZeeJz1qdC789kulvLP+HUpbTcydP5tpVj3NNWVs++gDND98kVmTwlBVH98d3cHbH+3G
mDiduXmz0Xo7KT6+j99/e5BHnvkJ+akRPW1EPJ0tnDtTyCdtVZSVXyRxah45ebNxt9dy4KuN
lDe5+OVjS3uOX3vdWda9vp46TSxz83MIM2toKDvFn/7jd8xf9RhrlmVjvPyF4HVQcf4MVZea
aa1vIDU7j+y8JDoby9n53mtUVizDU3OGRjWc/JzppOo9nPr2K958u5mfvvQ0MUGXv1i8NNVU
UmWNxb8JkEpV0desf38brvB0FuTlYdJ4qSw5wcYPqvjRT58jvk+eGH0+Wi9VcaHDhP+VQqW5
/ATr33mfamcYc+fmMS3EhLuznfOHP2Xr+Xoe/Nm8fnM7sWcTe8uK0EelM2N6LkbFw8n9X7Ku
vJaX/uopYs0awuLTmDUnhMqTe2i8ZGX2nPyeEK4owfRsAtVLfXUF9UzxL5vXznclp/lycxtV
ZRVYJ05lZk4eiruVI/t28lplC7/5+UNYuuepqj4azx/h9bc20G5MZG7+dCKsRly2Fop2baCk
3stTP5s/0ht2TKiqF1VV0Om6L4juNnZseIODVT7yZueSN9mKxuuisuQ4f/jdYe558q9YkZvU
s73dna2UV1Ti8HipLvqaP77zKTHT5pIzY6IEINGbisflorHuAicPH+Tr4xeYs+ZJ8idaRrT9
jyEonNx5i6CjlF2fnGDyjHwWTYrxGyc6MhqoYs/6T5iYlc+i3Gvd5/dnd2q497G/YnpqbM8X
7tycyXS8/J8cP1tJ2oJJAPg8DnZv+DNHW8J58de/ID3K0jOPyTEK6zdf+B5rOjyKRkNcfDwd
FTXY7V5CQ7Sg2vjs3bdpi5nHrx5fTZipa20WLZzLng3rWP/2Vv7Lb3/YcyFsqyzgjfd2s/CJ
l7hrVqrfL6HJcTre+qz1e5Wx+uQePtxxgkU/+Dkr85N7jotlt91Jh60Trd7K9Py5ONsbKNq7
iZRpc1g0NWQYS3CzY8NbVOum8stf30+s9XJNx2Lm5u3j1Tc+4vPEZFbnJ/jV6tgdCmue/BmZ
E6N6aiPmZafw8r+/ycnvLpIelfq91ntgnWx563XqzLP55fNriO3pGraEu5x2vGpXrWXHxRO8
v3k/mXc+zUPLp/X8yl+0eCHfbn2Td958n8TfPEe89UqtjqezE9OEafz88R8T1fO5ypQYHf+2
/gj1jy0lBvB0NrP1/fewxS/it0/dRfDl2rHFy5h55BNe+3AjsfGxLMnq1ahbBWNUBn/9/IuE
GrUodAVbo72ez05/xwNPPMvsjPie7ZgzKZLfr9vI+epWYtIHDsuXeVvP86c/byJ5xQ959M5Z
BOm6Z7J0OQ5bO8qN1HvO2cDbr6/Dlb6Sv3tkBeFBV74O5+Rm0vaf/z7gZJ3eIB554ddMig3u
Of7z0qP5P3/8iOLyBmKzYohMnMKCxCkUtRdxxB3NwoUL0Q63GtJtx2NJ5JlfPEFS5JXr0vS0
KH73+w2UNjzEjO7LoqvlAm+se5vgvEf46ZoFWA1Xqrnys5J4+Y0Nw1v2DUOlvuI0Lc4oUpLC
uz7SBrFo7XOsiYr0q81Tlywl4YN/Z8fOHczIeJpYi39r96bvjrD9029Z/dyvyUuLRqvILbCA
p/q8bHn1v7K9+2qnqipej4fwidk88OyLTEuOHuv+HSNi+vzbyU6N9Su7wWwlNjwMj9vD5R+t
9uZz7D1Uzaq//m+kRfatUh5rXb9y3G43Xq8X0GIrO8bhSxaefGxxT/gBUHRW8pbdzoH/80eO
lz/IwpQg8HRw8Kt9hMy4nRV5/uFnZDg4snc/4TPuYMXMiX7bVtFoCQ7u3xtnuNy1J9lzxsOj
v1xBjLX3t6VCbMZs7p51kk0HDnDHjAcx9bqXkr34LqZOjPDrKqsPCyPObMbj8QyrDIc/foWT
nw7cVShj7oM89fB8TIC97AjfVFv48a/vIKZPv3iD8cqxdOrgXrxR2axYkOXXAUmjNzNn5QMc
PPgvHDh9iQfmJPZsU0NkIksXz+sVfrq2QXBCIqGus7i7P2ls6qCwHJ78hzuw9nk2VnLeCpYc
P8HX3xSyIOvOKxd7g5mcvDzCjFfGVzQags1mIhImMC01zu+WltEYhE6vxePxXn3DqW5OH9iL
Y0Ieq5fmXgk/3WU3WYYThIfCQ0XxCQ639Z+vKSKB7LQJV5nWR+XR3ZQqafxyzVLCgob+VThn
+SomxWr9jn+zORijTovD7R50umEzRrF42WK/8AMQFJJAZIgbd89h7aX00B6qTNn84z3zsBhu
/jaTqqritLVwvugQH287RPqyB5lk7d7iWhMxA9zKUzRacvPy2VJ8BJvNAZYr283VXM2nu45z
1w9+zKzUqJ7rhASgQKdoWXjvs8xO7rpgq143ba1NnD97hr1b3+f8tPncvSQP803W91fRKP2D
m9L/M3t1OXXWdHKTg2+A7ucqPp+KRqNB0WgAH9XlFQTFJpAY3v8ibwmJIz42iMrKWnwpk/Da
2jlfW8/U23MwjkY3MlsNxdUwc3l6zy2okaVyqfw71NhkJkUG99tXisZE5vTJtO4vpNHjJaHX
MakoSv/nhAz02RBkLlrDqlnJAw4LCo7qfoikh/KSUqwpk0mO6F/WK7xUlJURO3U54ca+55CC
1hhNZkYMxaVluOYkYuw1bIAjuGs9e/3v9IEzLpP0CP2A2yt92mT2fXaeRjfE9uprcPXNcn37
VnU7KS4rJzVzLWHmwTo2jCQ3JQUHqDX1/xqLmLr06gHI56L8wkUSU6cSHWIa1hoPdG0ZnUuH
MuA1qe8xgNdOeXkDqVMX9NTo3XxUPvnTv7K7V95XVR9en4b0RfezeumMPu34VLxuF81Njdg6
Xd2PYoDOS814fV1tV3vzYGLe7SvJT/P/QS8BKMApCkTGJ5Oa6t8Nfmb+XGrPHebNdzahWCK4
f+6t8XyavjrtHagWK5YbYN1UVaWlpRmLJZwgkw7w0N7WTuelGja88+f+jUe9LsoudZLc0oIX
cLtdOBwOwsJCR+eCbLPRojUSZhmtRhw+2lo7sAZbMegGvjQZQsOx2O3Y1dF7dlBw1ARSU691
y8xLa4uN4OA49Lqr/Tiw09bqITw8bMAut4oCIaGheBptuIHraWtvjQgf9MneQaFhGNwX6HQB
o5xJfF4PHR0dWMMj0I3J6RTEisdf5PZrdoMfgM9Hh8NBkNmK9qZ/5oQHm9OD1WK5qa/RU+cs
J637LheKgsEUTGJyMpEhZr/wo6peGstPsf2LPXxXXUeHrRNvd+BRvW46zUn95m0Oj2TKpIn9
zkEJQGJgioa4jDyWZR9k89GTrJkz6aZ/Ns1AjCYTOFpxoqIb599OqtfNuZJzRKY9TrARQMFg
MKAzmomOjet+eKK/uIRk4tK62jkpPb8YR+mJagY9Jq+HzpGs5vejYDTqcbpc+AZ5Yp3qdODU
6dCN+4Veg9FkwNlkx+u72oMADRiNCp2dg3ThVcHldKIY9Nf9TBKHw8FgJfA4nXgVPYPkyRGl
KBr0BgNOu50xft7g8Gk0mPQGXC5H18MRb64Kbn9aLUadlnqnk/F4JuXIUEjNnsvchGuP2V5z
mnWvr8eUvpgnXnycpJjwnp6OHef38Y/rDw55qRKAxFVo0Om0uEbtC2/8BSelE9e6j8KqDuYn
h4zftUP1UX/2aw5VWfjRE5ndJ6aG6NgovHo7c5esIDHs6vUDBpOJYIuFi9U1+NKDR77rd+gE
Joc7OVtykcUZcdf8zlBgmO1vNMQnJ2PfvJuLbXbCzX0ezql6uFBSiiYpgRjteH+96pg0OZn6
b4potDkINgxWK2YkKWUCB0rO0rFkMtY+xfb5bJwvrSJ6yVqup15NB3gvFFNh95Fs7ldFSFXJ
OdT4SUSNQeNjjcFEWlIiX5Sexb40g+AbuS2KxkB6WhKbPz9FQ/sCkkJH6zkXCl7v8NqgDZvW
QnpaNHuOnKJt5SzCjeN9boyumpJCmq0z+Lsf3kOIVvO9artv4CNUjDdHSzWFJZdISpgwhIPM
Qkioh5YWu1/9g+p101hXRavtGg0ox0lQeCrz82L45P33OV1Wh8vjQ1V91FefZ8/eo9jHoAyq
z0NN6VHe3fglmUtXkRFj7g5iCtGTs4nqKGffsRJc3j6deFWVztZ66pq7Sqk1hzIjPYkjB/ZQ
1+bw2w8+j4Ompjb63jiyhoRCewttnl5jqyrOjiaqa5vw22uKlZnzplN5ZBcnK9v6lcXlcvfc
e9fpdISEhFJXXY17GM/4D0rMIS+qjV17jtLh6r10lfbaUr48VEx+/iy/BtDjQyF0cj5Z+mq+
+LoQu8v/+PZ6PT2NhjNnzsVZdYwjZ6r9tr/qdVN2eAen2uOYk51wXeE7PMTI5PBmdu46hrPP
e7GaLxxj78lGZs7JZkze3anRkzN7Nh3nDnHwTCUev/3e1WZjkFfYZOJFAAAMoUlEQVR3jQMN
E2YuIMVdxsbNO6lsaMPrU/F53TReLOPAni+p/n4dJgEIi4zEUXuRJtdorriWlPyFxLYV8cHW
vdS22PCpKj6Pi0uVpezds5cG2ygufqypKqrqQ6V3Gz8Vr8tGecXF7hrZoZEaIIG9vYWmpiu1
PD6vm/qKYr7+eh9l7VYeXzhjCPeWLaROjuHzPZ+RHn0faTFm2huqKTh0mHNlVdS2ukkc3dW4
Lhq9mWX3P07Nn//E2+teJS42CoMWbG4t8ZHRGJpHNrh5XJ20NDfh7j7zOtvrKTz0DUdPnic0
YzGP3j0HU697jdrgZO5dmc97n39AZ1MNi+dkE2Ex4rK3cO7kMY4WFZNxx49ZGW4GjZHpS+4k
pfBl/vTm+6y+axlJUVYcbXV8u2c3RcXn8eiz/MoTMiGViPZ32fTFQe6aPRmNx86Fs8c5XHiG
6po6dJHTe42tkD7rDvKL1/HBG69Rf+dKstPiUNw2Sk8WcME7gUfumotOAa3RQm7ONN78agt7
YwzkpEThc3TQ7jYxKSV28NsjuhBWrl3Nn97dwZvOZlYsnUu0VU9j5Vl27NhJoyWLRxdkjupL
Y532dpqamgYcptEbCbFa0Cig6KO478G7ef3Drfy5tY4VS+YQbdXTUneBg8fPkbtkNVmJIcRm
zGV5zll2bFhPS/0K5k+fhNbbydmjX/PFvkLmrH6StPDra1cVFBrJqlXLeOW9j/iLs5Elcy4/
B6iIzdt2Ykidz9KcgRt0jzwF88SZrF18nG0b3qLx4nIW5U3BpFGpLj3OqXIHt9+/hhvlWXwa
0wQefXItb733GX98pYjYiBAUfNjabUQlJBE6Ap1CI9NySVX288GmnaxeOpNgg0rjxWbiczIJ
vvbkQxYUnsbjT9zDune38+q5AqJCLSh4aW+1MWFiAhZj3QgubXxFJWcSuuNDPtq2j5Xzs9Ar
HmrLznL4WBEN9fW4fUPfshKAApzq9bLt9X9hW+8PFS2hEbFk5ebz48cWkx5nGWzyXjTMW/0E
LR9/yLv/+T+wuRWiJqSSN3sWjyy+k13v/W6U1uD7UjCFJ/HMz37L+ZLTVNQ041W0ZEydga9m
P9+VXhjRpVUX7eJfinb1/G8MDicjcwa3P/Is+VNT6X/XQGHqkrU8HRLPrn0H+I9//ZhOjxe9
OZS0zGzyb3uQeTlXnvFiCk/hmeefZ/tnn/HOy/+LdoeX4NgUlt22gjXJ4Xz8lf9PwbDEbB59
pJEPP97Af9ncgdESzuTpucy+/SGWNH7LlkP+D7bUW6K458nnSdj3JV9s+TMbG9pBH8TEtKks
viPvym03jZ7s2x9gdfsGdrzzn3xgc2KwRnLngz9iUsrALxq9LC5rCc//KJxdX37Fq//2BTaX
D2vEBGYtXM7DS+cTbRndKv6CrX+kYOvAw6KzFvHLF54kojuvJObewV+FRLPji128+m+fd5U1
Mp4ZsxcSEdL1Ta/ozCy57ykiE/ax86tNfPF+A6piIC5tKrc99BMW56Vdf3sZRUdS7p381BLN
F1/s5Pf/cxOdbgiOTmDh8ge4bWEuoQP0kho9euaveZqwhK/5ctcO/vuWt/GiJSYxnbkLl2Ed
i85hwxCXuYhf/G0WxWeKudRiQ2MMJnN6NqGeS7xaeuh7zz8oYhI//NETbNj4Mf9rzya8Gj3x
KXP5eU7mCJT+CkWjJTH7Nn49cRpnTpfQ1OFAawpleu4MDE1nefn82RFd3niKTMnlsUftbN66
nX/69O2u68/k6cxdcDv3hzfyz28PvQ2Qoqp9O4yJQKGqandj04EoaDTKgF3HVZ8PnwoaTd9u
miqqT+3pkoii9DzdVu1+i7vfG5FVFa/Ph9L3817z83oHH66qvu6Xw/uXw9f9Rvl+06gqPrWr
xeOA3eT7KNn/Ae/ubOaF/+cF4r5vG4ruZQ90tikaDQpctZZNVdWev57pFM3A3b9Ru/dtn/2g
ql37TavxW3dVVVF9vp5bZoqma7707Of+99n7TaMoPX99x+t9jGk0mp5j6vIwzeXl9dleKr3W
oft4HGj+Ax5b3dvB5/WBouk6lq+pa/yrXhAVBY3SZ3t075ee436Qc0e9XHXfs1sG22YDH9eX
5+Hz+dBo+3R3HqQMA23Xgc+57nMX+q3f5WX6T3N5vyrdx2Hfxfgfr4Ot63W75rXDb+RB120w
bTWn+cN/vM7S5/8H85KN3Yu8yrF2tfL0OfcVRek55we9JnXPb6Bz43I5FI12SOvScP4gr67f
xr0v/AM58TfSkyi7XLkODG19Lk8z0Lnk9yiRy989qq/7s/7zlxqgAKYoCtrraEyqaDSD/GJV
UDTKgMOUgZZzzeVffbiiaBhosGawaRQFjeI/zOf1YrPbsVqt/iHK2UbhsSKCkpcSMRLXjAGW
PbzJh/PloXTv2/5lGHDfKMrA+2fQ/XyVaQYYb7B9eNXjT+l6Ds61FnH1ciiDHwsjMn5PIbrW
5ZqjKShDOAYGO64vz2PAbTbEMgx+zl3l3B1wGgWN5mrn5giGnYEXMIxr1yDr5rLR6jUQYtL7
Bz6fmwtFBTSSxMTYXk9mutqxdo1jedBzf7Bh1zhv+pbD6+jAjgmrUddnXZwUFx7FYUwmbkQu
ZCPver6HBj+X+l8zrnY+SQASAc3rtLH93T9gD5/GzOypRIWaUVQPJw7toqAhlEfumTnoM1aE
EDexpnP84Z2vyZg2g+kZKYSYDXhdNk4d3su+gu/Iu/NR4m6Q9krX0ll9gpc3H2Nqbj5TUxOw
mPR4nB0c27+Db0/UsuDBp0b9hc43I7kFJgKaz+vmwpkCjhQc5cSp8zR32PGhJTUjh1VrH/B7
t5QQ4hbiaufwtwcoLCykpKyK9k43Wp2B+NTpLFyymHm5U/w6JNzIPLZGCg4f4mjBUUora7E7
PWj1RpIyZrJ02RLyslIw3CTrMpYkAAkhhBAi4Iz3wzSEEEIIIcacBCAhhBBCBBwJQEIIIYQI
OBKAhBBCCBFwJAAJIYQQIuBIABJCCCFEwJEAJIQQQoiAIwFICCGEEAFHApAQQgghAo68C0wI
IYQQ40ZVPdReKOHk8eOcKi3vei2J3kRCWhY50zNJTU4mzDLyb2WUV2EIIYQQYlx4Xe0c2/0Z
W74qIDQlh1k5kwkNMuB127lw+gQnSisJz76Lv35kyYgvWwKQEEIIIcae6uHkl+/xx0/O8MBP
XmRRViI6jf9LW+3NVZwo72Re7uQRX7zcAhNCCCHEmGutKmLrV4UsefhFlk5NQhnghfXm8ATm
ho3O8iUACSGEEGKMqZwv/JY202SWzJo0YPjpovQb5nXbKC85y8nCQk6XVWLvdKPRG5k4ZSZL
Fs8ndUIk2l7TnNzxJgc6M3l0bizHDn/LkRMltHV6JAAJIYQQYoypNs4XVxE9ZSXRxuF1SHe0
V7D1/a2Y0rNZetdMQs0GPJ1tFHy9g9dfP8+Tzz3D9ITQnvGdtlZKCnay7qyO4MQslq+6H6Pa
KQFICCGEEGPM1UZdi4+4WZH0ruBRVRWf14OvV+tkRaNBp9X2/G+0JvHUr35DWEgQSq/qoelZ
abz+v/8nuw6fY1rCLL/5GkMTuO+Ha0mNDemZRgKQEEIIIcaW14NbVdDp/Gt/HM3VvPK//5mz
DVc+C56+kn/72f09/+sMVsIH6BWvNccwc3oy2y/W4gCCeg0LmZBKWlyo3/gSgIQQQggxtjQa
tKh4vf4d0U1h8fzkN/+K29f1/+kv32JTzUAzULG11FN9sQ6bw42vu0P7hbr2IRdBApAQQggh
xpYxhOgQhbr6ZlTouV2laLRYQ8N7RrOY9P0m9XS2cOjLT9l9ogxVBVSVyzHK3lqPadLQiiAB
SAghhBBjSwkmNT2GwrNnaPbMJUI3aDcwf6qHs/u28v7eCh564iGy01IIsRjQdLfrOfzx7/ns
4tBmJe8CE0IIIcQYU0ibMQdTyyn2Hasc+mTuVk6eqiL/rvtZlDOFMKuxJ/wMlwQgIYQQQoy5
yOQcbps1iZ0frufI+Ut4h/JiCkWDVlHpsNmBK+Orqkpr7XeUVDQMPm0fcgtMCCGEEGNO0VmY
e/dDtLk+YOPrv+do9ixmZWcQEqTH67ZTUXyKQwUVRGZMuTKRLoQZuem8vm0LW0IgMyEMr6Od
cycLKK3tRO10Q/jgy+xNApAQQgghxoUxJJbVjz1HemEBhwoK+Pjdb+h0+9AbgpiQmsmSNU+Q
ldnrPWCKlvT5q3lKa+GzLz9mv82NyRrFtPzZPLQin6aCD/mqzuj3DCC9yYxV7d9vXl6GKoQQ
QoiAI22AhBBCCBFwJAAJIYQQIuBIABJCCCFEwJEAJIQQQoiA8/8DMbxlQQdEeyMAAAAASUVO
RK5CYII=
</thumbnail>
</thumbnails>
</workbook>