Files
tunmnlu/task_2/others-answer/DVA-CSE6242-Spring2021-main/hw4-ML/hw4-skeleton/Q3/Q3.ipynb
louiscklaw 9035c1312b update,
2025-02-01 02:09:32 +08:00

744 lines
26 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "DB0vv4pBcWu9"
},
"source": [
"# Q3 Using Scikit-Learn"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "GalZFbfhcWvA"
},
"outputs": [],
"source": [
"#export\n",
"import numpy as np\n",
"import pandas as pd\n",
"import time\n",
"import gc\n",
"import random\n",
"from sklearn.model_selection import cross_val_score, GridSearchCV, cross_validate, train_test_split\n",
"from sklearn.metrics import accuracy_score, classification_report\n",
"from sklearn.svm import SVC\n",
"from sklearn.linear_model import LinearRegression\n",
"from sklearn.neural_network import MLPClassifier\n",
"from sklearn.ensemble import RandomForestClassifier\n",
"from sklearn.preprocessing import StandardScaler, normalize\n",
"from sklearn.decomposition import PCA\n",
"from sklearn.impute import SimpleImputer"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"%load_ext autoreload\n",
"%autoreload 2\n",
"import tests as tests"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "7WLcC3HAlXUF",
"outputId": "afd04c19-13dd-4044-a352-40ad8c28cec7"
},
"outputs": [],
"source": [
"#export\n",
"class GaTech():\n",
" # Change to your GA Tech Username\n",
" def GTusername(self):\n",
" gt_username = \"mvegesna3\"\n",
" return gt_username"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Your python version is 3.7.3\n",
"✅ ALL GOOD\n"
]
}
],
"source": [
"%run helpers/verify_config.py # verify the environment setup"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "2Z1gV3UlcWvD"
},
"source": [
"# Q3.1 Data Import and Cleansing Setup"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "9VS44b2kcWvE"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"dataAllocation Function Executed\n",
"trainSets Function Executed\n"
]
}
],
"source": [
"#export\n",
"class Data():\n",
" \n",
" # points [1]\n",
" def dataAllocation(self,path):\n",
" # TODO: Separate out the x_data and y_data and return each\n",
" # args: string path for .csv file\n",
" # return: pandas dataframe, pandas series\n",
" # -------------------------------\n",
" # ADD CODE HERE\n",
" \n",
" df = pd.read_csv(path)\n",
" x_data = df.drop(\"y\",axis=1)\n",
" y_data = df[\"y\"]\n",
" \n",
" # ------------------------------- \n",
" return x_data,y_data\n",
" \n",
" # points [1]\n",
" def trainSets(self,x_data,y_data):\n",
" # TODO: Split 70% of the data into training and 30% into test sets. Call them x_train, x_test, y_train and y_test.\n",
" # Use the train_test_split method in sklearn with the parameter 'shuffle' set to true and the 'random_state' set to 614.\n",
" # args: pandas dataframe, pandas dataframe\n",
" # return: pandas dataframe, pandas dataframe, pandas series, pandas series\n",
" # -------------------------------\n",
" # ADD CODE HERE\n",
" \n",
" x_train, x_test, y_train, y_test = train_test_split(x_data, y_data, train_size=0.7,test_size=0.3, random_state= 614, shuffle = True)\n",
" \n",
" # -------------------------------\n",
" return x_train, x_test, y_train, y_test\n",
"\n",
"##################################################\n",
"##### Do not add anything below this line ########\n",
"tests.dataTest(Data)\n",
"##################################################"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "q09V5Ux5cWvI"
},
"source": [
"# Q3.2 Linear Regression "
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "tnHXBF1UcWvJ"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"linearClassifier Function Executed\n",
"Linear Regression Train Accuracy: 0.7839851024208566\n",
"Linear Regression Test Accuracy: 0.7316017316017316\n"
]
}
],
"source": [
"#export\n",
"class LinearRegressionModel():\n",
" \n",
" # points [2]\n",
" def linearClassifier(self,x_train, x_test, y_train):\n",
" # TODO: Create a LinearRegression classifier and train it.\n",
" # args: pandas dataframe, pandas dataframe, pandas series\n",
" # return: numpy array, numpy array\n",
" # -------------------------------\n",
" # ADD CODE HERE\n",
" \n",
" linear_regression_classifier = LinearRegression().fit(x_train, y_train)\n",
" y_predict_train = linear_regression_classifier.predict(x_train)\n",
" y_predict_test = linear_regression_classifier.predict(x_test)\n",
" \n",
" # -------------------------------\n",
" return y_predict_train, y_predict_test\n",
"\n",
" # points [1]\n",
" def lgTrainAccuracy(self,y_train,y_predict_train):\n",
" # TODO: Return accuracy (on the training set) using the accuracy_score method.\n",
" # Note: Round the output values greater than or equal to 0.5 to 1 and those less than 0.5 to 0. You can use any method that satisfies the requriements.\n",
" # args: pandas series, numpy array\n",
" # return: float\n",
" # -------------------------------\n",
" # ADD CODE HERE \n",
" \n",
" y_predict_train=np.where((y_predict_train >=0.5),1,y_predict_train)\n",
" y_predict_train=np.where((y_predict_train <0.5),0,y_predict_train)\n",
" train_accuracy=accuracy_score(y_train, y_predict_train)\n",
" \n",
" # ------------------------------- \n",
" return train_accuracy\n",
" \n",
" # points [1]\n",
" def lgTestAccuracy(self,y_test,y_predict_test):\n",
" # TODO: Return accuracy (on the testing set) using the accuracy_score method.\n",
" # Note: Round the output values greater than or equal to 0.5 to 1 and those less than 0.5 to 0. You can use any method that satisfies the requriements.\n",
" # args: pandas series, numpy array\n",
" # return: float\n",
" # -------------------------------\n",
" # ADD CODE HERE\n",
" \n",
" y_predict_test=np.where((y_predict_test >=0.5),1,y_predict_test)\n",
" y_predict_test=np.where((y_predict_test <0.5),0,y_predict_test)\n",
" test_accuracy=accuracy_score(y_test, y_predict_test)\n",
" \n",
" # -------------------------------\n",
" return test_accuracy\n",
" \n",
"##################################################\n",
"##### Do not add anything below this line ########\n",
"tests.linearTest(Data,LinearRegressionModel)\n",
"##################################################"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "WbqnCyHAcWvP"
},
"source": [
"# Q3.3 Random Forest Classifier"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "dTtIFJW7cWvQ"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"randomForestClassifier Function Executed\n",
"Random Forest Train Accuracy: 1.0\n",
"Random Forest Test Accuracy: 0.7316017316017316\n",
"Random Forest Feature Importance: [0.07481604 0.25521095 0.08551354 0.07373347 0.0754602 0.1630978\n",
" 0.12729624 0.14487176]\n",
"Random Forest Sorted Feature Importance: [3 0 4 2 6 7 5 1]\n",
"HyperParameterTuning Function Executed\n",
"Random Forest Best Parameters: {'max_depth': 8, 'n_estimators': 256}\n",
"Random Forest Best Score: 0.7858255451713395\n"
]
}
],
"source": [
"#export\n",
"class RFClassifier():\n",
" \n",
" # points [2]\n",
" def randomForestClassifier(self,x_train,x_test, y_train):\n",
" # TODO: Create a RandomForestClassifier and train it. Set Random state to 614.\n",
" # args: pandas dataframe, pandas dataframe, pandas series\n",
" # return: RandomForestClassifier object, numpy array, numpy array\n",
" # -------------------------------\n",
" # ADD CODE HERE\n",
" \n",
" rf_clf = RandomForestClassifier(random_state = 614).fit(x_train,y_train)\n",
" y_predict_train = rf_clf.predict(x_train)\n",
" y_predict_test = rf_clf.predict(x_test)\n",
" \n",
" # -------------------------------\n",
" return rf_clf,y_predict_train, y_predict_test\n",
" \n",
" # points [1]\n",
" def rfTrainAccuracy(self,y_train,y_predict_train):\n",
" # TODO: Return accuracy on the training set using the accuracy_score method.\n",
" # args: pandas series, numpy array\n",
" # return: float\n",
" # -------------------------------\n",
" # ADD CODE HERE\n",
" \n",
" train_accuracy = accuracy_score(y_train,y_predict_train)\n",
" \n",
" # -------------------------------\n",
" return train_accuracy\n",
" \n",
" # points [1]\n",
" def rfTestAccuracy(self,y_test,y_predict_test):\n",
" # TODO: Return accuracy on the test set using the accuracy_score method.\n",
" # args: pandas series, numpy array\n",
" # return: float\n",
" # -------------------------------\n",
" # ADD CODE HERE\n",
" \n",
" test_accuracy = accuracy_score(y_test,y_predict_test)\n",
" \n",
" # -------------------------------\n",
" return test_accuracy\n",
" \n",
"# Q3.3.1 Feature Importance\n",
" \n",
" # points [1]\n",
" def rfFeatureImportance(self,rf_clf):\n",
" # TODO: Determine the feature importance as evaluated by the Random Forest Classifier.\n",
" # args: RandomForestClassifier object\n",
" # return: float array\n",
" # -------------------------------\n",
" # ADD CODE HERE\n",
" \n",
" feature_importance = rf_clf.feature_importances_\n",
" \n",
" # -------------------------------\n",
" return feature_importance\n",
" \n",
" # points [1]\n",
" def sortedRFFeatureImportanceIndicies(self,rf_clf):\n",
" # TODO: Sort them in the ascending order and return the feature numbers[0 to ...].\n",
" # Hint: There is a direct function available in sklearn to achieve this. Also checkout argsort() function in Python.\n",
" # args: RandomForestClassifier object\n",
" # return: int array\n",
" # -------------------------------\n",
" # ADD CODE HERE\n",
" \n",
" feature_importance = rf_clf.feature_importances_\n",
" sorted_indices = np.argsort(feature_importance)\n",
" \n",
" # -------------------------------\n",
" return sorted_indices\n",
" \n",
"# Q3.3.2 Hyper-parameter Tuning\n",
"\n",
" # points [2]\n",
" def hyperParameterTuning(self,rf_clf,x_train,y_train):\n",
" # TODO: Tune the hyper-parameters 'n_estimators' and 'max_depth'.\n",
" # args: RandomForestClassifier object, pandas dataframe, pandas series\n",
" # return: GridSearchCV object\n",
" # 'n_estimators': [4, 16, 256]\n",
" # 'max_depth': [2, 8, 16]\n",
" # -------------------------------\n",
" # ADD CODE HERE\n",
" \n",
" parameters = {'n_estimators': [4, 16, 256], 'max_depth': [2, 8, 16]}\n",
" gscv_rfc = GridSearchCV(rf_clf, parameters)\n",
" gscv_rfc.fit(x_train,y_train)\n",
" \n",
" # -------------------------------\n",
" return gscv_rfc\n",
" \n",
" # points [1]\n",
" def bestParams(self,gscv_rfc):\n",
" # TODO: Get the best params, using .best_params_\n",
" # args: GridSearchCV object\n",
" # return: parameter dict\n",
" # -------------------------------\n",
" # ADD CODE HERE\n",
" \n",
" best_params = gscv_rfc.best_params_\n",
" \n",
" # -------------------------------\n",
" return best_params\n",
" \n",
" # points [1]\n",
" def bestScore(self,gscv_rfc):\n",
" # TODO: Get the best score, using .best_score_.\n",
" # args: GridSearchCV object\n",
" # return: float\n",
" # -------------------------------\n",
" # ADD CODE HERE\n",
" \n",
" best_score = gscv_rfc.best_score_\n",
" \n",
" # -------------------------------\n",
" return best_score\n",
" \n",
"##################################################\n",
"##### Do not add anything below this line ########\n",
"tests.RandomForestTest(Data,RFClassifier)\n",
"##################################################"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "BNeOPWIpcWvg"
},
"source": [
"# Q3.4 Support Vector Machine"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "9msZXyImcWvh"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"dataPreProcess Function Executed\n",
"SVCClassifier Function Executed\n",
"Support Vector Machine Trian Accuracy: 0.8324022346368715\n",
"Support Vector Machine Test Accuracy: 0.7272727272727273\n",
"Support Vector Machine Best Score: 0.7820526133610246\n",
"SVCClassifierParam Function Executed\n",
"Support Vector Machine Trian Accuracy: 0.7877094972067039\n",
"Support Vector Machine Test Accuracy: 0.7575757575757576\n",
"Support Vector Machine Rank Test Score: [4 6 2 5 1 3]\n",
"Support Vector Machine Mean Test Score: [0.77826237 0.63501211 0.782018 0.76341295 0.78205261 0.78033922]\n"
]
}
],
"source": [
"#export\n",
"class SupportVectorMachine():\n",
" \n",
"# Q3.4.1 Pre-process\n",
"\n",
" # points [1]\n",
" def dataPreProcess(self,x_train,x_test):\n",
" # TODO: Pre-process the data to standardize it, otherwise the grid search will take much longer.\n",
" # args: pandas dataframe, pandas dataframe\n",
" # return: pandas dataframe, pandas dataframe\n",
" # -------------------------------\n",
" # ADD CODE HERE\n",
" \n",
" std_scaler = StandardScaler()\n",
" scaled_x_train = std_scaler.fit_transform(x_train)\n",
" scaled_x_test = std_scaler.transform(x_test)\n",
" \n",
" # -------------------------------\n",
" return scaled_x_train, scaled_x_test\n",
" \n",
"# Q3.4.2 Classification\n",
"\n",
" # points [1]\n",
" def SVCClassifier(self,scaled_x_train,scaled_x_test, y_train):\n",
" # TODO: Create a SVC classifier and train it. Set gamma = 'auto'\n",
" # args: pandas dataframe, pandas dataframe, pandas series\n",
" # return: numpy array, numpy array\n",
" # -------------------------------\n",
" # ADD CODE HERE\n",
" \n",
" svc_classifier = SVC(gamma = 'auto').fit(scaled_x_train,y_train)\n",
" y_predict_train = svc_classifier.predict(scaled_x_train)\n",
" y_predict_test = svc_classifier.predict(scaled_x_test)\n",
" \n",
" # -------------------------------\n",
" return y_predict_train,y_predict_test\n",
" \n",
" # points [1]\n",
" def SVCTrainAccuracy(self,y_train,y_predict_train):\n",
" # TODO: Return accuracy on the training set using the accuracy_score method.\n",
" # args: pandas series, numpy array\n",
" # return: float \n",
" # -------------------------------\n",
" # ADD CODE HERE\n",
" \n",
" train_accuracy = accuracy_score(y_train,y_predict_train)\n",
" \n",
" # -------------------------------\n",
" return train_accuracy\n",
" \n",
" # points [1]\n",
" def SVCTestAccuracy(self,y_test,y_predict_test):\n",
" # TODO: Return accuracy on the test set using the accuracy_score method.\n",
" # args: pandas series, numpy array\n",
" # return: float \n",
" # -------------------------------\n",
" # ADD CODE HERE\n",
" \n",
" test_accuracy = accuracy_score(y_test,y_predict_test)\n",
" \n",
" # -------------------------------\n",
" return test_accuracy\n",
" \n",
"# Q3.4.3 Hyper-parameter Tuning\n",
" \n",
" # points [1]\n",
" def SVMBestScore(self, scaled_x_train, y_train):\n",
" # TODO: Tune the hyper-parameters 'C' and 'kernel' (use rbf and linear).\n",
" # Note: Set n_jobs = -1 and return_train_score = True and gamma = 'auto'\n",
" # args: pandas dataframe, pandas series\n",
" # return: GridSearchCV object, float\n",
" # -------------------------------\n",
" svm_parameters = {'kernel':('linear', 'rbf'), 'C':[0.01, 0.1, 1.0]}\n",
" # ADD CODE HERE\n",
"\n",
" svm_tuned = SVC(gamma = 'auto')\n",
" svm_cv = GridSearchCV(svm_tuned, svm_parameters, n_jobs = -1,return_train_score = True)\n",
" svm_cv.fit(scaled_x_train, y_train)\n",
" best_score = svm_cv.best_score_\n",
" \n",
" # -------------------------------\n",
" \n",
" return svm_cv, best_score\n",
" \n",
" # points [1]\n",
" def SVCClassifierParam(self,svm_cv,scaled_x_train,scaled_x_test,y_train):\n",
" # TODO: Calculate the training and test set accuracy values after hyperparameter tuning and standardization. \n",
" # args: GridSearchCV object, pandas dataframe, pandas dataframe, pandas series\n",
" # return: numpy series, numpy series\n",
" # -------------------------------\n",
" # ADD CODE HERE\n",
" \n",
" y_predict_train = svm_cv.predict(scaled_x_train)\n",
" y_predict_test = svm_cv.predict(scaled_x_test)\n",
" \n",
" # -------------------------------\n",
" return y_predict_train,y_predict_test\n",
"\n",
" # points [1]\n",
" def svcTrainAccuracy(self,y_train,y_predict_train):\n",
" # TODO: Return accuracy (on the training set) using the accuracy_score method.\n",
" # args: pandas series, numpy array\n",
" # return: float\n",
" # -------------------------------\n",
" # ADD CODE HERE\n",
" \n",
" train_accuracy = accuracy_score(y_train,y_predict_train)\n",
" \n",
" # -------------------------------\n",
" return train_accuracy\n",
"\n",
" # points [1]\n",
" def svcTestAccuracy(self,y_test,y_predict_test):\n",
" # TODO: Return accuracy (on the test set) using the accuracy_score method.\n",
" # args: pandas series, numpy array\n",
" # return: float\n",
" # -------------------------------\n",
" # ADD CODE HERE\n",
" \n",
" test_accuracy = accuracy_score(y_test,y_predict_test)\n",
" \n",
" # -------------------------------\n",
" return test_accuracy\n",
" \n",
"# Q3.4.4 Cross Validation Results\n",
"\n",
" # points [1]\n",
" def SVMRankTestScore(self,svm_cv):\n",
" # TODO: Return the rank test score for all hyperparameter values that you obtained in Q3.4.3. The \n",
" # GridSearchCV class holds a 'cv_results_' dictionary that should help you report these metrics easily.\n",
" # args: GridSearchCV object \n",
" # return: int array\n",
" # -------------------------------\n",
" # ADD CODE HERE\n",
" \n",
" rank_test_score = svm_cv.cv_results_['rank_test_score']\n",
" \n",
" # -------------------------------\n",
" return rank_test_score\n",
" \n",
" # points [1]\n",
" def SVMMeanTestScore(self,svm_cv):\n",
" # TODO: Return mean test score for all of hyperparameter values that you obtained in Q3.4.3. The \n",
" # GridSearchCV class holds a 'cv_results_' dictionary that should help you report these metrics easily.\n",
" # args: GridSearchCV object\n",
" # return: float array\n",
" # -------------------------------\n",
" # ADD CODE HERE\n",
" \n",
" mean_test_score = svm_cv.cv_results_['mean_test_score']\n",
" \n",
" # -------------------------------\n",
" return mean_test_score\n",
"\n",
"##################################################\n",
"##### Do not add anything below this line ########\n",
"tests.SupportVectorMachineTest(Data,SupportVectorMachine)\n",
"##################################################"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "c2qDYMjgcWv5"
},
"source": [
"# Q3.5 PCA"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "-C9BuGsqcWv5"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"pcaClassifier Function Executed\n",
"PCA Explained Variance Ratio: [8.88546635e-01 6.15907837e-02 2.57901189e-02 1.30861374e-02\n",
" 7.44093864e-03 3.02614919e-03 5.12444875e-04 6.79264301e-06]\n",
"PCA Singular Values: [3212.6611207 845.82919167 547.33280231 389.87962763 293.9941346\n",
" 187.48648707 77.15221185 8.88268374]\n"
]
}
],
"source": [
"#export\n",
"class PCAClassifier():\n",
" \n",
" # points [2]\n",
" def pcaClassifier(self,x_data):\n",
" # TODO: Perform dimensionality reduction of the data using PCA.\n",
" # Set parameters n_components to 8 and svd_solver to 'full'. Keep other parameters at their default value.\n",
" # args: pandas dataframe\n",
" # return: pca_object\n",
" # -------------------------------\n",
" # ADD CODE HERE\n",
" \n",
" pca = PCA(n_components = 8, svd_solver = \"full\")\n",
" pca.fit(x_data)\n",
" \n",
" # -------------------------------\n",
" return pca\n",
" \n",
" # points [1]\n",
" def pcaExplainedVarianceRatio(self, pca):\n",
" # TODO: Return percentage of variance explained by each of the selected components\n",
" # args: pca_object\n",
" # return: float array\n",
" # -------------------------------\n",
" # ADD CODE HERE\n",
" \n",
" explained_variance_ratio = pca.explained_variance_ratio_\n",
" \n",
" # -------------------------------\n",
" return explained_variance_ratio\n",
" \n",
" # points [1]\n",
" def pcaSingularValues(self, pca):\n",
" # TODO: Return the singular values corresponding to each of the selected components.\n",
" # args: pca_object\n",
" # return: float array\n",
" # -------------------------------\n",
" # ADD CODE HERE\n",
" \n",
" singular_values = pca.singular_values_\n",
" \n",
" # -------------------------------\n",
" return singular_values\n",
" \n",
"##################################################\n",
"##### Do not add anything below this line ########\n",
"tests.PCATest(Data,PCAClassifier)\n",
"##################################################"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Late Policy:\n",
" \n",
" \"I have read the late policy for CS6424.\"\n",
" \n",
"Please type 'yes' to agree and continue>yes\n",
"\n",
"\n",
"Honor Pledge:\n",
" \n",
" \"I have read the Collaboration and Academic Honesty policy for CS6424.\n",
" I certify that I have or will use outside references only in accordance with\n",
" this policy, that I have or will cite any such references via code comments,\n",
" and that I have not or will not copy any portion of my submission from another\n",
" past or current student.\"\n",
"\n",
" \n",
"Please type 'yes' to agree and continue>yes\n",
"\n",
"\n",
"Converted Q3.ipynb to submission/submission.py\n"
]
}
],
"source": [
" %run helpers/notebook2script submission"
]
}
],
"metadata": {
"colab": {
"name": "hw4q3.soln.ipynb",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 1
}