Files
tunmnlu/task_2/others-answer/omsa-main/ISYE-8803-OAN/hw1/hw1.Rmd
louiscklaw 9035c1312b update,
2025-02-01 02:09:32 +08:00

319 lines
8.6 KiB
Plaintext

---
title: "hw1"
author: "Mark Pearl"
date: "5/30/2021"
output: html_document
---
```{r setup, include=FALSE}
#Import the required libraries
library(splines)
library(tidyverse)
#Question 3
#read_csv("1,2,3\n4,5,6", col_names = c("x", "y", "z"))
coal_df <- read_csv('./P04.csv',col_names=c("year","energy"))
y = coal_df$energy
```
```{r question3}
#Question 3
#read_csv("1,2,3\n4,5,6", col_names = c("x", "y", "z"))
coal_df <- read_csv('./P04.csv',col_names=c("year","energy"))
#Initialize variables used throughout the question
n = length(coal_df$year)
y = coal_df$energy
```
```{r question3a}
#3a
knots_vector <- c(6:15)
error_a <- rep(0,length(y))
mse_a <- rep(0,length(knots_vector))
#Create lower order basis functions for cublic spline
x = seq(0,1,length.out=length(coal_df$year))
h1 = rep(1,length(x))
h2 = x
h3 = x^2
h4 = x^3
#Generate b-spline basis
for (n_knots in c(1:length(knots_vector))) {
H = cbind(h1, h2, h3, h4)
knots = seq(0,1,length.out = knots_vector[n_knots]+2)
k = knots[2:(length(knots)-1)]
for (n in c(1:length(k))) {
h = (x-k[n])^3
h[h <= 0] = 0
H = cbind(H,h)
colnames(H)[n+4] <- paste("h", n+4, sep="")
}
for(i in c(1:length(y))){
H1 = H[-i,];
Y1 = y[-i];
H_removed = H[i,];
y_removed = y[i];
HS = solve(t(H1)%*%H1)%*%t(H1)%*%Y1
error_a[i] = y_removed -H_removed%*%HS
}
mse_a[n_knots]=sum(error_a^2)
flush.console()
}
layout(matrix(c(1,1,2,2), ncol = 1, byrow = TRUE))
plot(knots_vector,mse_a,type = "l",ylab = 'MSE',xlab='# of Knots',main = 'MSE Chart for Cubic Splines')
min_knot = knots_vector[which.min(mse_a)]
points(min_knot,mse_a[which.min(mse_a)],col = "red", lwd=5)
text(mse_a[which.min(mse_a)]~min_knot, labels=sprintf("%s Knots MSE: %s",min_knot,round(min(mse_a),2)),cex=0.9, font=2,pos=3)
H = cbind(h1, h2, h3, h4)
knots = seq(0,1,length.out = min_knot)
k = knots[2:(length(knots)-1)]
for (n in c(1:length(k))) {
h = (x-k[n])^3
h[h <= 0] = 0
H = cbind(H,h)
colnames(H)[n+4] <- paste("h", n+4, sep="")
}
HS = solve(t(H)%*%H)%*%t(H)%*%y
plot(x,y,type = "l",ylab = 'Y Response for Energy',xlab='Year',main = 'Optimal Cubic Spline Function')
lines(x,H%*%HS,col = "blue")
```
```{r question3b}
#3b
x = seq(1,length(coal_df$year))
knots_vector <- c(6:15)
error <- rep(0,length(y))
mse_b <- rep(0,length(knots_vector))
#Generate b-spline basis
for (k in c(1:length(knots_vector))) {
knots = seq(1,length(coal_df$year),length.out = knots_vector[k])
order = 3
nbasis = knots_vector[k] + order - 2
print(nbasis)
B = bs(x, knots = knots, degree = 2,intercept = FALSE)[,1:nbasis]
for(i in c(1:length(y))){
B_new = B[-i,];
y_new = y[-i];
B_removed = B[i,];
y_removed = y[i];
BS = solve(t(B_new)%*%B_new)%*%t(B_new)%*%y_new
error[i] = y_removed -B_removed%*%BS
}
mse_b[k]=sum(error^2)
flush.console()
}
layout(matrix(c(1,1,2,2), ncol = 1, byrow = TRUE))
plot(knots_vector,mse_b,type = "l",ylab = 'MSE',xlab='# of Knots',main = 'MSE Chart for B-Splines with Degree 2')
min_knot = knots_vector[which.min(mse_b)]
points(min_knot,mse_b[which.min(mse_b)],col = "red", lwd=5)
text(mse_b[which.min(mse_b)]~min_knot, labels=sprintf("%s Knots MSE: %s",min_knot,round(min(mse_b),2)),cex=0.9, font=2,pos=3)
knots = seq(1,length(coal_df$year),length.out = min_knot)
order = 3
nbasis = min_knot + order - 2
B = bs(x, knots = knots, degree = 2,intercept = FALSE)[,1:nbasis]
BS = B%*%solve(t(B)%*%B)%*%t(B)%*%y
plot(x,y,type = "l",col = "red",ylab = 'y response for Energy',xlab='x for Year (1-69)',main = 'Optimal B-Splines Function Output')
lines(x,BS,col = "blue")
```
```{r question3c}
library(tuple)
#3c
#k = length(coal_df$year)
#k = 40
x = c(1:length(coal_df$year))
allspar = seq(0,1,length.out = 1000)
p = length(allspar)
error_c <- rep(0,length(y))
mse_c <- rep(0,length(allspar))
error_test <- matrix(0, nrow = length(y), ncol = 2)
for(lambda in 1:p) {
for(i in c(1:length(y))){
y_new = y[-i];
y_removed = y[i];
sm = smooth.spline(y_new, spar = allspar[lambda], df=18)
ypred = predict(sm,x[i])
yhat = ypred$y
error_c[i] = y_removed - yhat
#error_test <- rbind(error_test, c(y_removed,yhat))
}
mse_c[lambda]=sum(error_c^2)
}
#plot(x,y,type = "l",ylab = 'Energy',xlab='Year Index',main = 'Plot for Smoothing Splines')
#lines(x_new,sm$y,col = "black",lwd=3)
layout(matrix(c(1,1,2,2), ncol = 1, byrow = TRUE))
plot(allspar,mse_c,type = "l",ylab = 'MSE',xlab='Lambda Value',main = 'MSE Chart for Smoothing Splines')
min_lambda = allspar[which.min(mse_c)]
points(min_lambda,mse_c[which.min(mse_c)],col = "red", lwd=5)
text(mse_c[which.min(mse_c)]~min_lambda, labels=sprintf("Lambda with min MSE: %s",min(mse_c)),cex=0.9, font=2,pos=3)
sm_optimal = smooth.spline(y, spar = min_lambda, df=18)
plot(x,y,type = "l",col = "red",ylab = 'y response for Energy',xlab='x for Year (1-69)',main = 'Optimal Smoothing Splines Function Output')
lines(x,sm_optimal$y,col = "blue")
```
```{r question3d}
library(tuple)
#3d
# Data Genereation
x = c(1:length(coal_df$year))
kerf = function(z){exp(-z*z/2)/sqrt(2*pi)}
# leave-one-out CV
h1=seq(0,1,length.out=1000)
error_d = rep(0, length(y))
mse_d = rep(0, length(h1))
for(j in 1:length(h1))
{
h=h1[j]
for(i in 1:length(y))
{
X1=x;
Y1=y;
X1=x[-i];
Y1=y[-i];
z=kerf((x[i]-X1)/h)
yke=sum(z*Y1)/sum(z)
error_d[i]=y[i]-yke
}
mse_d[j]=sum(error_d^2)
}
yke_final <- rep(0, length(y))
for(i in 1:length(y))
{
X1=x;
Y1=y;
X1=x[-i];
Y1=y[-i];
z=kerf((x[i]-X1)/h)
yke_final[i]=sum(z*Y1)/sum(z)
}
layout(matrix(c(1,1,2,2), ncol = 1, byrow = TRUE))
plot(h1,mse_d,type = "l")
h = h1[which.min(mse_d)]
points(h,mse_d[which.min(mse_d)],col = "red", lwd=5)
text(mse_d[which.min(mse_d)]~h, labels=sprintf("%s lambda with min MSE: %s",h,mse_d[which.min(mse_d)]),cex=1, font=2,pos=4)
plot(x,y,type = "l",col = "red",ylab = 'y response for Energy',xlab='x for Year (1-69)',main = 'Optimal Gaussian Kernel')
lines(x,yke_final,col = "blue")
```
```{r question4a}
library(randomForest)
#Read in data files and construct
ecg_train <- read.table(file = "./ECG200TRAIN", sep = ",")
ecg_train_y <- ecg_train$V1
ecg_train <- ecg_train[, !(colnames(ecg_train) %in% c("V1"))]
ecg_train <- as.matrix(ecg_train)
ecg_train_y[ecg_train_y < 0] <- 0
ecg_test <- read.table(file = "./ECG200TEST", sep = ",")
ecg_test_y <- ecg_test$V1
ecg_test_y[ecg_test_y < 0] <- 0
ecg_test <- ecg_test[, !(colnames(ecg_test) %in% c("V1"))]
ecg_test <- as.matrix(ecg_test)
#Conduct feature extraction using B-splines
x = seq(0,1,length.out=length(colnames(ecg_train)))
```
```{r question4a}
# Option 1: B-splines
library(splines)
knots = seq(0,1,length.out = 8)
B = bs(x, knots = knots, degree = 3)[,1:10]
Bcoef_train = matrix(0,dim(ecg_train)[1],10)
Bcoef_test = matrix(0,dim(ecg_test)[1],10)
train <- seq(1, dim(ecg_train)[1])
test <- seq(dim(ecg_train)[1]+1,dim(ecg_train)[1]+dim(ecg_test)[1])
train_test_split <- c(train,test)
for(i in train_test_split)
{
if (i %in% train) {
Bcoef_train[i,] = solve(t(B)%*%B)%*%t(B)%*%ecg_train[i,]
}
else {
Bcoef_test[i-100,] = solve(t(B)%*%B)%*%t(B)%*%ecg_test[i-100,]
}
}
fit = randomForest(factor(ecg_train_y) ~ .,
data=cbind.data.frame(as.data.frame(Bcoef_train),ecg_train_y))
pred4a = predict(fit,Bcoef_test)
cf_matrix <- table(ecg_test_y,pred4a)
matplot(x,t(ecg_test[pred4a==0,]),type="l",col = "blue",ylab = "y",ylim = c(-4,4),main="Classification using B-spline coefficients")
#
X2 = ecg_test[pred4a == 1,]
for(i in 1:length(pred4a[pred4a==1]))
{
lines(x,X2[i,],col = "red")
}
```
```{r question4a accuracy}
library(caret)
library(e1071)
confusionMatrix(data=pred4a, reference=factor(ecg_test_y))
```
```{r question4a}
# Option 2: FPCA
library(fda)
splinebasis = create.bspline.basis(c(0,1),10)
smooth = smooth.basis(x,t(rbind(ecg_train,ecg_test)),splinebasis)
Xfun = smooth$fd
pca = pca.fd(Xfun, 10)
var.pca = cumsum(pca$varprop)
nharm = sum(var.pca < 0.95) + 1
pc = pca.fd(Xfun, nharm)
layout(matrix(c(1,1,2,2), ncol = 1, byrow = TRUE))
plot(pc$scores[ecg_train_y==0,],xlab = "FPC-score 1", ylab = "FPC-score 2",col = "blue",ylim=c(-1,1))
points(pc$scores[ecg_train_y==1,],col = "red")
FPCcoef = pc$scores
fit = randomForest(factor(ecg_train_y) ~ .,
data=cbind.data.frame(as.data.frame(FPCcoef[train,]),ecg_train_y))
pred4b = predict(fit,FPCcoef[-train,])
#cf_matrix <- table(labtest,pred4b)
matplot(x,t(ecg_test[pred4b==0,]),type="l",col = "blue",ylab = "y",ylim = c(-4,4),main="Classification using FPCA scores")
#
X2 = ecg_test[pred4b == 1,]
for(i in 1:length(pred4b[pred4b==1]))
{
lines(x,X2[i,],col = "red")
}
```
```{r question4a accuracy}
confusionMatrix(data=pred4b, reference=factor(ecg_test_y))
```