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Problem facing 

1. 因為個lidar sensor, 唔可以直接stream 個畫面出嚟，所以應該需要一條code 
stream 個screen 出嚟 （例如螢幕右上角，size 就要再confirm) 
 

2. 係LSTM +openpose方面，個model 基本上算係砌好。(參考

https://github.com/YJZFlora/Fall_Detection_Deep_Learning_Model）但係因

為d training dataset 係本身人哋GitHub 上面已經go through 左openpose 嘅
json file 再已經轉成左csv 檔嘅樣，所以當想加自己嘅dataset 時，係呢方面遇

到問題。試過將條片go through openpose, 但係出嚟嘅json file,係每一幀一個

file, 而唔係一個file 包含曬全條片。個思路係Video -> Images -> OpenPose 
skeletal point localization on human -> saved as json file -> converted into 
csv file -> ready to go for LSTM model for fall prediction 
 

3. 另外因為想嘗試整到real time，但係未話好有方向，暫時唯一嘅參考（Forum: 
Is it possible to output JSON data from the OpenPose library in 
real-time?https://stackoverflow.com/questions/57061757/is-it-possible-to-o
utput-json-data-from-the-openpose-library-in-real-time ） 
 

4. Soft alarm 方面，打算做得比較獨立少少，而且可以選擇on/off。其中一個soft 
alarm 打算用yolo v11認posture （image based), 例如認human sitting on 
chair, human sitting on floor, neither （呢part 嘅yolo已經train 好左）。呢個soft 
alarm 功能，係打算係係特定環境先用，例如病房，當human sitting on floor，
係病房算係比較唔合理嘅行為，所以soft alarm 就會響。 
 

5. 然後係gui 方面，呢part 暫時未有太多研究，所以暫時嘅諗法比較複雜。為左方

便train 同test, 會用個”lidar sensor” capture 出嚟嘅Depth images. 但係呢個

raw 嘅depth images要go through LSTM for skeleton based 嘅human fall 
detection （path1), 當falling 嘅時候，個red alarm will be triggered。然後同時

if switch on the soft alarm, 個raw 嘅depth images 要go through yolo for 
image based 嘅detection (path2), if sitting on floor, soft alarm will be 
triggered. 再另外為左保障私隱（題目要求），只可以display個lidar sensor 
capture 出嚟嘅Lidar output (path3), 同時想係呢個output 加個openpose 嘅
display (參考https://www.youtube.com/watch?v=9jQGsUidKHs） （PS: 所以

實際上要stream 到2個independent 嘅screen 出嚟，depth image and lidar 
image) 

 

https://github.com/YJZFlora/Fall_Detection_Deep_Learning_Model
https://stackoverflow.com/questions/57061757/is-it-possible-to-output-json-data-from-the-openpose-library-in-real-time
https://stackoverflow.com/questions/57061757/is-it-possible-to-output-json-data-from-the-openpose-library-in-real-time
https://www.youtube.com/watch?v=9jQGsUidKHs
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ABSTRACT 
With the aging population in Hong Kong, falls have emerged as a significant health threat, 

responsible for substantial morbidity and mortality among seniors, with significant implications 

for healthcare systems and quality of life among the elderly. This project focuses on designing and 

developing an artificial intelligence-based LiDAR sensor system that is non-invasive and accurate 

for real-time fall detection for the elderly, particularly in hospital settings. Enhancing safety in 

hospital environments by issuing timely alarms when falls occur, can minimize medical resource 

waste and improve patient outcomes. This project introduces the collection and preparation of 

datasets for normal activities and fall events, model development using YOLO and LSTM for 

object and human detection, and extensive testing of the system's effectiveness. 

 

We conducted a thorough literature review, comparing different types of LiDAR sensors, 

ultimately favoring 3D LiDAR for not only its non-invasive nature and superior depth perception 

compared to traditional RGB cameras but also their cost-effectiveness, ability to produce 3D point 

cloud data, and high accuracy. By comparing current human detection models, we can find the 

fitting algorithm for improving the detection outcomes to identify human pose and action for 

human fall detection and use the human skeleton keypoint recognition method. Compared to 

conventional methods, which often rely on intrusive surveillance or wearable devices, the 

combination of AI and LiDAR technology significantly enhances the ability to detect falls. 

Additionally, the project addressed several limitations of current human fall detection models, 

such as the confusion between lying down, sleeping, and falling motions, ultimately leading to 

improved accuracy and reliability in fall detection. 

 

The methodology section details the hardware setup utilizing the XT-S240 Mini LiDAR sensor, 

the data collection from various sources, including the UR Fall Detection Dataset, Multiple 

Camera Dataset, and YouTube dataset, data processing, landmark extraction, and the development 

of two primary models, YOLO and LSTM. We created a custom dataset specifically tailored to 

hospital settings, which involved capturing and annotating images of essential objects such as 

beds and chairs for the YOLO model. Furthermore, we integrated human pose estimation through 

 



 
 

OpenPose for body landmark extraction and applied LSTM networks to analyze temporal 

movement patterns indicative of falls, thus enhancing the system's ability to recognize dynamic 

fall scenarios accurately. 

 

To summarize the progress made to date, we developed a comprehensive dataset, which were 

annotated for training purposes. We developed two main algorithms: YOLO for object detection 

in complex environments and LSTM for analyzing temporal sequences of body movements to 

identify falls. Also, this project includes hardware functionality tests, LSTM model parameter 

optimization, and the challenges faced in preparing suitable datasets for YOLO training. 

 

In future directions, we propose further enhancements on the system's capabilities, a user-friendly 

graphical user interface, two operational modes to adapt the system to various environments, and 

exploring innovative soft alarm solutions such as voice activation features for alarm triggering. 

Moreover, the detection algorithms must be optimized further to ensure rapid responses in critical 

situations and thus the system's operational readiness in real-world applications.  

 

In conclusion, this report highlights the importance of developing innovative solutions for fall 

detection and combining advanced sensor technology with machine learning to tackle a critical 

health issue affecting the elderly population. The innovations introduced in this project will 

illustrate a step forward in fall detection technology, promising to contribute positively to the 

well-being of vulnerable populations. 
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CHAPTER 1: INTRODUCTION 

Along with the advancement of medical technologies and society leading to better 

healthcare, education, and income, higher life expectancy with averages of 82.5 years for 

males and 88.1 years for females in 2023 remained among the highest in the world based on 

the Department of Health [1]. As the population aging problem becomes increasingly 

serious in Hong Kong, falls have become one of the major threats to the health of the 

elderly, being the second leading cause of accidental injury death worldwide. According to 

the World Health Organization (WHO), an estimated 684,000 people die from falls globally 

every year [6], and many falls may also cause long-term physical injuries. Therefore, the 

development of an efficient fall detection system is important for medical and social 

significance. This project aims to design and develop an artificial intelligence-based lidar 

sensor system to detect falls for the elderly in real-time and issue an alarm in time, thereby 

improving safety at the hospital. 

1.1 BACKGROUND TO THE PROJECT 
Falls are a significant health concern among the elderly, particularly over the age of 60. 

According to the WHO, they place a substantial burden on the healthcare system, with 

approximately 37.3 million requiring medical assistance annually [6]. Falls can be attributed 

to intrinsic variables like muscle strength and balance, as well as extrinsic factors such as 

slippery floors and poor lighting [5], resulting in functional impairments, poor quality of 

life, reduced abilities [7], and increased mental health issues. Half of those who suffer a long 

lie following a fall die within six months [4]. The aging population exacerbates this issue, 

straining healthcare systems due to the high costs of hospitalizations.  

Conventional fall detection methods, which often rely on wearable devices or video 

surveillance systems, can be invasive and inefficient. These approaches face challenges such 

as constrained usage duration and capture space [2], which might lead to privacy concerns 

and a high rate of false alarms. Nonetheless, the integration of AI and LiDAR technology 

presents a promising, non-invasive solution for enhancing fall detection accuracy while 

 



 
 

respecting user privacy. Developing such systems is crucial for improving health, safety, and 

overall quality of life for vulnerable elderly individuals. 

1.2 MOTIVATION 
Falls are unpredictable and sudden, making accurate fall detection complicated. Because of 

the aging population and the rising frequency of falls, emphasis on fall detection is vital, 

presenting a major health concern that needs urgent attention. Besides physical injuries, 

these incidents may also contribute to psychological repercussions, including loneliness and 

anxiety. With advancements in artificial intelligence and sensor technology, safety and 

quality of life improvement for the elderly can be achieved, which is the main driving force 

behind our research. This can lead to more effective healthcare systems by reducing medical 

burden, as prompt detection can facilitate quicker medical responses, which can minimize 

the waste of medical resources such as hospital stays and healthcare expenses spent on 

treating patients with fall-related injuries. We have also been inspired to develop this system 

by our personal experience or understanding of the troubles faced by those around us who 

are at risk of falling, with the hopes of providing practical assistance. 

A fall can occur within a second, typically taking 0.45 to 0.85 seconds, and during a fall, a 

person's posture and shape change, which are important when detecting falls [3][4]. Thus, 

LiDAR sensors are particularly advantageous because of their high precision and heightened 

sensitivity to environmental changes, making them ideal and applicable for accurate fall 

detection. Combining AI with LiDAR technology enhances the ability to analyze data and 

increases the accuracy of detection systems. This focus also fosters research and 

development for innovative solutions that enhance the safety and welfare of vulnerable 

populations. Therefore, it is crucial to build an effective fall detection system to minimize 

the risks associated with falls and improve the quality of life for elderly individuals.

 



 
 

1.3 AIMS & OBJECTIVES  
This project aims to design and develop an artificial intelligence-based LiDAR sensor 

system to monitor and detect falls accurately and efficiently for the elderly in real-time and 

issue an alarm in time, thereby improving safety and quality of life for patients at the 

hospital. The system will utilize LiDAR sensors to capture data on a change in body posture 

and shape of the person during the fall, employing pose estimation along with human 

detection algorithms and a fall detection model. 

To support this, we plan to establish a dataset to gather data for normal activities and fall 

events, followed by thorough annotation for training purposes. The collected data will be 

used to train a deep learning model, to enhance fall detection accuracy. The LiDAR sensor 

will be integrated with the trained model into a complete system to conduct extensive testing 

to validate its effectiveness and reliability. We will also explore potential strategies to 

improve the efficiency of fall detection systems, employing a multifaceted approach tailored 

to specific application scenarios. 

1.4 SCOPE 
The scope of this project encompasses the design and development of an AI LiDAR sensor 

system specifically aimed at fall detection among patients, particularly the elderly. The 

project will be structured around several key components: 

1. Dataset for Training Purposes 

The initial phase will involve the collection and preparation of a comprehensive 

dataset for both normal activities and fall events, as well as bed and chair for object 

detection. This dataset will be processed and normalized to facilitate effective 

training of the model. 

2. Model Development: YOLO and LSTM model 

We will focus on developing two primary models: the YOLO model for object 

detection and the LSTM model with OpenPose for human detection and fall 

 



 
 

detection. This dual approach will enhance the system's ability to accurately detect 

falls in real-time. 

3. Model Training 

After the models are developed, we will conduct extensive training using the 

prepared dataset. This phase will optimize the models to improve detection accuracy, 

sensitivity, and overall performance. 

For future direction, the project will also cover: 

1. System Integration 

We will implement two operational modes within the system to accommodate 

various environments, such as a hospital ward and stairwell. This functionality will 

allow users to switch between modes based on their specific needs. 

2. Validation 

The effectiveness of the trained model will be validated through rigorous testing with 

the gathered LiDAR sensor data, ensuring that the system meets the required 

performance standards in real-world scenarios. 

3. User interface 

A user-friendly graphical user interface (GUI) will be developed, allowing caregivers 

to use the system easily. The interface will include features for mode switching, 

alarm location display, and soft alarm notifications. 

4. Innovation 

The project will explore innovative solutions, such as different types of soft alarms 

and voice activation features, to enhance user experience and system reliability. 

These innovations aim to improve responsiveness and ensure timely assistance 

during fall incidents. 

5. Demonstration: complete system with real-time 

Finally, the complete system will be demonstrated in a real-time setting, showcasing 

its capabilities in fall detection and alarm response. This demonstration will serve to 

 



 
 

validate the system's functionality and effectiveness in enhancing the safety of 

elderly individuals. 

 



 
 

CHAPTER 2: LITERATURE REVIEW 
Sensors and detection algorithms are essential parts of human fall detection, therefore the 

details and consideration of sensors, LiDAR (Light Detection and Ranging) sensors in 

different dimensions and human motion detection algorithms are compared and explained. 

To highlight how LiDAR sensors overcome the challenges in capturing data of current 

cameras, the working principle, advantages and limitations between the RGB cameras and 

LiDAR are compared. Different types of LiDAR sensors are also compared in order to 

discover the appropriate LiDAR sensors for fall detection. 

Various human detection algorithms have been studied and compared to find the fitting 

algorithm to introduce in the machine learning algorithms for further processing. 

A review of the current human fall detection models and their major limitations are 

analyzed. This provides innovative ideas and features of our systems on improving the 

detection outcomes.  

2.1 TYPES OF CAMERAS AND SENSORS USED IN HUMAN DETECTION 
2.1.1 RGB Camera 

RGB cameras capture the ambient light in red, green, and blue color models. It then 

combines this visible light and transfers it to electrical signals in image and video format. 

The RGB color images form in a color filter array (CFA) in Bayer pattern arrangement [8]. 

In the application of human detection, they capture the human body, and clothing, and 

reproduce images and videos which are the same as the human eye perceives. Commercial 

RGB sensors, typically webcams, such as the Sony PS Eye RGB camera, are proven in 

human pose recognition and motion recording. They are frequently used in research and 

commercial applications in human detection and recognition because of their simple design 

and low cost [9, 10]. 

 



 
 

However, the use of RGB cameras in human detection encounters a few challenges. The 

major concerns of RGB cameras are safety concerns and privacy invasion if they are 

installed in public areas, e.g. hospitals [11]. The identifiable features of individuals, e.g. 

faces, clothing and other personal attributes can be captured. This raises legal and ethical 

concerns that users’ images can be stored on the server and accessed by the company 

operators [9]. The use of RGB cameras in housing and public areas requires careful handling 

and storage of sensitive visual data. Moreover, the performance of RGB cameras may be 

limited under low and high ambient lighting conditions due to the highly sensitive properties 

to lighting conditions of RGB cameras [11, 12]. This may lead to incorrect evaluation for 

human detection use. 

2.1.2 LiDAR Sensor 

The use of LiDAR (Light Detection and Ranging) sensor technology in human detection has 

been increasingly high in recent years. LiDAR sensor is a device that involves optical 

remote sensing technology, which applies the principle of time of flight (ToF) to measure the 

distance between the target objects. Firstly, the LiDAR sensor emits ultrashort laser light 

pulses to map the target object. The laser light pulses reach the target and reflect. The 

photosensitive sensor detects the reflected light and calculates the flight time from the 

emitted light to reflect off the objects and return to the device. Consequently, the distance 

between the specific objects and the LiDAR sensors can be measured, based on the 

following equations [13-15], 

 𝑑 =  𝑐 · 𝑡
2

where d is the distance to the object, c is the speed of light (equal to 3*108) and t is the time 

taken for the light to travel to the object and reflect back. 

Compared to the RGB camera, the primary benefit is that the LiDAR sensor generates point 

cloud information, but not in RGB images. The LiDAR sensor provides limited data, for 

instance the human visual appearance, which is not shown in the data. This main merit 

avoids privacy concerns from the users [16]. Using LiDAR sensors provides depth 

 



 
 

measurements, which can be used in the 3D mapping of the environment for identifying 

falls.  

 



 
 

2.2 LIDAR SENSORS COMPARISON 

2D LiDAR 3D LiDAR 
4D LiDAR (Doppler 
LiDAR) 

Dimension 2, measures x, y axes 
3, measures x, y, z 
axes 

4, measures x, y, z 
axes and velocity 
(Doppler effect) 

Data Output 2D Point Cloud 3D Point Cloud 
3D Point Cloud with 
velocity data 

No. of Light 
Beams Emitted 

Single Multiple Multiple 

Range    Up to 100 m Up to 30 m Up to 30 m 

Accuracy ±10 mm ∼ ±100 mm ±50 mm ∼ ±100 mm ±50mm ∼ ±100mm 

Cost Lowest Moderate Highest 

Applications 
Basic Distance 
Measurements, 
Person Tracking 

Object Detection, 
Person Tracking, 
Autonomous 
Navigation 

Autonomous driving, 
Advanced 
driver-assistance 
systems (ADAS) 

Example 
Sick - TiM 2D 
LiDAR Sensors 
Series 

Intel® - RealSense™ 
LiDAR Camera L515 

Toffuture - XT-S240 
Mini from Toffuture 

Aeva - Atlas™, 
Aeries™ 

Unitree - 4D LiDAR 
L1 

Table 1: Comparison of different dimensions of LiDAR sensors [11, 17-19] 

 

 



 
 

By comparing the 2D LiDAR sensor with 3D and 4D LiDAR sensors, the latter provides 

three-dimensional point cloud data, which enhances the depth perception of human fall 

motion captured [11]. It allows understanding of video data in comprehensive and dynamic 

environment applications, such as rooms, and backstairs. Moreover, the 3D and 4D LiDAR 

sensors provide higher accuracy and resolution of image and video data. In our research 

topic, we currently focus on the spatial positioning of human fall detection. The use of 3D 

LiDAR sensors fulfils the data requirements and thus we apply the 3D LiDAR in this 

research. 

2.3 HUMAN DETECTION ALGORITHMS 
2.3.1 Body shape-based Method 

Current vision-based approaches mainly use the continuous video surveillance of cameras to 

detect fall motion based on various classification methods [20], for example using the 

human body shape-based or human skeleton keypoint estimation.  

In the human body shape-based method, collected video images in frames are transmitted 

for image preprocessing and segmentation. To extract the human body image from the 

background pixels, background subtraction algorithm is typically used as the segmentation 

method [21, 22]. Background model is built by using successive frame differences for 

labelling stationary pixels. The algorithm lists out a sequence of consecutive images and 

considers the corresponding pixel as background if the selected pixel remains stationary for 

N selected numbers of frames continuously. According to Figure 1, the difference between 

the value of image acquired I(x,y) and the background image B(x,y) is computed and the 

human body shape can be processed without background pixels [21-23]. 

 



 
 

   

(a) (b) (c) 
Figure 1: Extraction of human body using background subtraction algorithm: (a) Background image, (b) 

Human image with background, (c) Processed human body image [21] 

After the background subtraction algorithm, human shape image is further processed into a 

contour image in binary by edge detection. Several researches applied the shape model for 

human motion tracking. [24-26] proposed using human surveillance shape matching for 

tracking and analyzing human shape deformation to capture motion dynamics and even 

human fall detection. The algorithm behind this shape-based method is simple 

comparatively, because of the computation of the difference between the image model and 

background model. One major disadvantage is difficulty in distinguishing a moving human 

from other moving objects, especially for multiple persons moving and overlapping. The 

confusion in identifying the background objects and human body in a dark environment 

raises another challenge [22]. Also, it cannot provide detailed internal joint information in 

classifying similar poses, for instance lying down and falling [20]. This can lead to 

misinterpretation of the body posture and movements for system processing and computing, 

leading to inaccurate classification results.  

 

 



 
 

2.3.2 Skeleton Keypoint Recognition Method 

Human skeleton keypoint recognition method focuses on the association of body parts using 

nodes, forming the skeleton information of each person. Various open-source projects, for 

instance, OpenPose [27, 28] and OpenPifPaf [29], which are commonly used in human 

detection interpret the human skeleton for image processing. The method follows the human 

body's top-down approach and pinpoints the more than hundreds of nodes, e.g. knees, hips, 

and shoulders [27-30]. Therefore, these projects can identify full body, hand, foot movement 

and facial expression. 

 

Figure 2: Human skeleton keypoint recognition (OpenPose) [28] 

By using the model and feature fields mapping within these projects, e.g. part affinity fields 

for OpenPose and part intensity and association field for OpenPifPaf, a distribution and 

location map of human feature nodes is processed [27-29]. This ensures the framework to 

identify and join the nodes with the corresponding individual, even in a crowded 

environment where multiple people overlap. This method is able to estimate multiple 

persons' poses and avoid misinterpretation brought by overlapping. 3D Pose detection is also 

available in this method. Once the 2D nodes are identified, they can be triangulated based on 

their semantic understanding of detected joints, enhancing them to assemble the 3D pose 

image [27-29]. Since the 3D pose estimation provides detailed depth information, it allows 

better detection and differentiation of various body orientations and movements for further 

analysis and application, which enhances the accuracy of the analysis model.  

 

 



 
 

2.4 LIMITATIONS OF CURRENT HUMAN DETECTION MODEL 
We reviewed various existing proposed machine learning models of human fall detection 

found on GitHub and Roboflow. They all demonstrated the basic detection of human fall 

motion in images and video format. However, these models [31, 32] still pose some 

limitations, mainly the difficulties in defining the motion of lying down and sleeping from 

fall detection, as these postures are similar and share common features in machine learning 

algorithms. This would lead to an increase in false positive and false negative cases, thus 

decreasing the accuracy and precision of the human falling detection model. Therefore, a 

solution must be developed in order to overcome the distinction between lying down, 

sleeping and falling motion.  

   
Figure 3 (Left): False positive case, as the model labels the person who is lying down as fall [31] 

Figure 4 (Right): False negative case, as the model labels the person who falls as lying down [32] 

2.5 CONCLUDING REMARK 
Comparing the RGB cameras with the LiDAR sensors, the result proves that visual data 

captured from LiDAR sensors solves the privacy concern brought by the RGB cameras, as 

point cloud data is outputted instead of RGB images. This type of sensor can provide depth 

information, enhancing the mapping of the applied environment and accurate localization of 

human fall motion. This validates that LiDAR is the optimal choice for accurately detecting 

falls in different environments. 

From the comparison of 2D LiDAR sensor, 3D LiDAR sensor and 4D LiDAR sensor 

(Doppler sensor), we understand the requirements for considering appropriate LiDAR 

 



 
 

sensors in human fall detection. The result highlights the superiority of 3D LiDAR sensors 

due to their cost-effectiveness, ability to produce 3D point cloud data and high accuracy, 

which are able to be applied in human fall detection and other environmental object 

detection.  

Based on the study of the working principle of human detection algorithms, we understand 

the importance of these advanced algorithms to identify human pose and action for human 

fall detection. The study features the benefit of using the human skeleton keypoint 

recognition method. Understanding the strengths and limitations of the human skeleton 

keypoint recognition method enhances our further selection in the building of the 

machine-learning model for accurate fall detection. 

By comparing the limitations of current human detection models, we understand the main 

constraint is the confusion between lying down, sleeping and falling motion. This provides 

us with directions on developing an additional model to group the normal daily activities 

from falling motion to increase the accuracy and precision of our designed model. 

 

 

 

 

 

 

 

 



 
 

CHAPTER 3: METHODOLOGY 
3.1 HARDWARE 

 

  

Figure 5 (Left): XT-S240 Mini sensor [15] 

Figure 6 (Right): XT-S240 Mini sensor dimension [15] 

 

  

Figure 7: Comparison of raw image captured by camera (Left) and XT-S240 (Right) 

 

Our LiDAR-based fall-detection setup uses XT-S240 Mini to detect the environment. 

XT-S240 Mini is a pure solid flash ToF LiDAR with a big FOV of 106° X 80°, high 

resolution equivalent to 240 lines supporting 76,800 pixels/frame, and a frame rate of 1-20 

frames per second. For its indoor detecting range, it can reach 12m [15].  XT-240 Mini can 

 



 
 

support real-time monitoring, typically used in volume measurement, access and security, 

and body counting. A key consideration when configuring this sensor is based on its 

cost-effectiveness. Due to its mature silicon-based semiconductor process, reliability, 

consistency, and stability are guaranteed even with a comparatively low cost. 

Another fascinating feature of this LiDAR sensor is it can directly output a 3D point cloud. 

The single emitted laser pulse generated from the LiDAR can be bounced back as multiple 

returns when encountering numerous surfaces along its path. Based on the detection order, a 

LiDAR system can distinguish between different types of returns and capture very dense 

points produced by laser pulses [33]. As shown in figure 7, with every point captured and 

rendered in real-time, the 3D point cloud displays the precise locations of objects and 

formulates 3D representations of the surroundings within the environment. LiDAR differs 

from cameras as it does not capture color information but instead records 3D distance data to 

form a point cloud. This process creates a privacy-protected, anonymized representation of 

the scene without detailed visual information. 

This LiDAR sensor also outputs Depth images, a 2D representation of a scene in which each 

pixel encodes the distance from the camera to a point in the scene. It provides information 

about the spatial layout of objects in the image enabling automated object recognition and 

classification, allowing for the identification and categorizing of features like humans and 

infrastructures. Further detail will be discuss later. Moreover, a software development kit 

(SDK) is provided to support the processing and streaming of depth and amplitude images 

captured by XT-S240 Mini. It removes invalid noise, optimizes image quality, and highlights 

essential features within the pixel. 

 

 



 
 

3.2 DATA SET 
There are 3 different data sets, namely – ‘UR’, ‘MC’, ‘YOUTUBE’. There are 484 videos, 

including 252 videos with falls and 232 without falls. 

3.2.1 UR Fall Detection Dataset  (UR) 

 
Figure 8: Example of video in UR Fall Detection dataset [35] 

This dataset contains 70 (30 falls + 40 activities of daily living) sequences. Fall events are 

recorded with two cameras (camera 0 from the side angle and camera 1 from the directly 

above the angle) [35]. However, the activities of daily living events are recorded with only 

one device (camera 0), so only the data from camera 0 is used for the project. Also, from a 

side angle, the image frame is easier for AI recognition. Using camera 0 can also mimic the 

view of a camera set from a room.  

In order to match body landmark data with the labeled UR dataset, it is necessary to 

transform the labels. The UR dataset originally contains label files for each frame in CSV 

format, with each row representing a sample of data corresponding to an image frame of a 

video. First, the sequence name - camera name can be ignored because all of the samples 

used for this project are from camera 0. Second, after reviewing the original data, a new 

labeling system was implemented. In this system, all non-falling situations are classified as’ 

0’ while situations where personnel had fallen down or are falling down are now classified 

as ‘1’. 

 



 
 

3.2.2 Multiple Camera Dataset (MC) 

Figure 9: Example of video in Multiple Camera Dataset [36] 

This dataset contains 24 scenarios recorded with 8 points of view, in total 192 sample 

videos. The first 22 first scenarios contain a fall and confounding events, the last 2 ones 

contain only confounding events [36].  

Each video may contain some personnel performing a falling action. For the accuracy of 

extracting body landmarks, each video is tailored to contain only one person at a time. This 

dataset does not contain any label file. Therefore, each video is separated into 2 parts: one 

only contains frames of personnel who have fallen down or are falling down, and the other 

only contains frames of all non-falling situations. Later, all the frames of the first part are 

marked to be fall(1), while all frames of the second part are marked to be not fall (0).  

3.2.3 YouTube Dataset 

This dataset contains a total of 23 videos recording falling action, which are all sourced from 

YouTube. It includes videos of teaching the elderly how to fall safely and videos of various 

settings for the elderly to fall. For later labeling, each video is separated into 2 parts: one 

only contains frames of personnel who have fallen down or are falling down, and the other 

only contains frames of all non-falling situations. Later, all the frames of the first part are 

marked to be fall(1), while all frames of the second part are marked to be not fall (0).  

 



 
 

3.3 DATA SET PROCESSING 
3.3.1 Body Landmark Extraction 

OpenPose, an open-source tool, is used to produce body landmarks for frames of each video. 

[37] OpenPose was the first real-time multi-person system to jointly detect the human body, 

hand, and foot, which are key points in single images. Our system utilized the 2D real-time 

multi-person keypoint detection with 25-keypoint body/foot keypoint estimation. 

All body landmarks for each frame are stored in a JSON file. The generated body landmarks 

for each frame contain 25 key points [37]. 

 
Figure 10: Body landmarks mapping [37] 

For fall detection, body landmarks of the face are unnecessary. Therefore, after reviewing 

the body landmarks from JSON files, 4 key points: {15, "REye"}(right eye), {16, 

"LEye"}(left eye), {17, "REar"}(right ear), {18, "LEar"}(left ear), are removed for each 

frame. 

In case of an unstable connection with Google Colab or a crash with a local machine, The 

body landmarks are stored in CSV files, which have a higher loading speed than re-reading 

all JSON files. 

 

 



 
 

3.3.2 Normalization 

 
Figure 11: Code for data normalization 

To normalize data according to the size of videos in different datasets, the width and height 

of the videos are divided as the above parameter.  

 
Figure 12: Code for counting the number of normalized data of “fall” and “not fall” 

There are 22151 frames that are not fall(0) and 13128 frames of fall(1). 

 

 



 
 

3.3.3 Train-Test set Split 

 
Figure 13: Code for train-test set split 

The data is randomly shuffled to ensure that each data point creates an 'independent' effect 

on the model without being biased by the points that precede them. Subsequently, the dataset 

is split into a training set and a test set in 6:4 ratio. 

 



 
 

3.4 PROPOSED ALGORITHMS  

 
Figure 14: Overall workflow of the proposed algorithms 

In our algorithms for this project, two modules are typically used to detect falls in two 

distinct environments: ward (room) settings and backstairs settings. The main difference 

between the two modules is the inclusion of YOLO object detection and some soft alarms.  

The ward (room) setting is more complex than the backstairs setting. Thus, the percentage of 

false positives (FP) caused by daily living activities is believed to be higher than in the 

backstairs setting. The algorithm will perform better by omitting the daily activity chair and 

bed. In certain marginal cases, like someone merely bending down to pick something up or a 

patient trying to leave the bed, the soft alarm will be triggered as a potential alert sign for the 

system. 

For the backstairs setting, which is a more straightforward scenario, there are not many 

activities of daily living, so only the falling action is concerned. Splitting two modules aims 

to simplify the falling detection algorithm for a simpler environment; this can eliminate 

 



 
 

redundancy, leading to faster execution speed. This can be beneficial for applications that 

require real-time processing. 

3.4.1 YOLO Object Detection 

Figure 15: Two concepts of architectural object detection [37] 

Object detection is critical for excluding daily activity in certain regions in our system. 

Rather than using other typical object detection algorithms, YOLO-V11 is used in this 

project. The above figure illustrates two concepts of essential mechanics of object detection 

models. At the core of both types of detectors, the architecture consists of three fundamental 

components: a backbone, neck, and head. The backbone, typically a pre-trained 

Convolutional Neural Network (CNN), extracts feature maps from an input image at 

multi-scale.  

The neck then consolidates these feature maps using path aggregation blocks like the 

Feature Pyramid Network (FPN) to enhance feature representations across different scales 

before being passed to the head. The head is responsible for object classification and 

bounding box prediction. The head can comprise one-stage models, such as YOLO. 

Alternatively, it may incorporate two-stage algorithms like the R-CNN series [37,38]. The 

reason for choosing YOLO is because it is a one-stage model, which processes the entire 

image directly over a dense sampling of locations to predict the presence of objects within 

the environment. They are ideal for real-time object detection with limited computational 

resources, offering high-speed processing [39]. 

 



 
 

 
Figure 16: YOLOv11 model architecture [40] 

The architecture of YOLOv11 is designed to optimize both speed and accuracy, building on 

the advancements introduced in earlier YOLO versions. The main architectural innovations 

in YOLOv11 is the presence of the C3K2 block, the SPFF module, and the C2PSA block, 

which enhance its ability to process spatial information while maintaining high-speed 

inference [41]. 

 
Figure 17: Structure of C3K2 and C3K blocks [40] 

 



 
 

YOLOv11 utilizes C3K2 blocks for feature extraction, significantly enhancing efficiency. 

These blocks split and process feature maps using smaller 3x3 convolutions, which 

improves speed and reduces computational load [41]. By processing and merging these 

smaller feature maps, C3K2 blocks enhance feature representation. 

Unlike the C2F blocks in YOLOv8, which use a single large convolution, C3K2 blocks 

incorporate two smaller convolutions. The "k2" in C3K2 denotes the smaller kernel size, 

contributing to faster processing without sacrificing performance [41,42]. By employing two 

smaller convolutions instead of one large convolution, computational overhead is reduced, 

leading to faster feature extraction. 

The C3K2 uses C3K block to process the information. The C3K structure is similar to C2F 

but avoids splitting the feature maps, thereby enhancing data flow through a series of ‘n’ 

Bottleneck layers with concatenation. This design maintains a balance between speed and 

accuracy, leveraging the Cross Stage Partial (CSP) Bottleneck to improve overall 

performance [41,42]. As a more compact variant of the CSP bottleneck, C3K2 makes the 

architecture more efficient in terms of trainable parameters. 

YOLOv11 keeps the SPFF module (Spatial Pyramid Pooling Fast) to better recognize 

objects of different sizes by pooling features across various image regions. By using 

different max-pooling operations, SPFF combines information from different resolutions, 

aiding in the detection of even small objects. This maintains real-time processing speeds 

while enhancing multi-scale object detection capabilities. The addition of C2PSA block in 

YOLOv11 enhances spatial attention through two PSA modules, improving focus on crucial 

image regions [41]. By balancing computational efficiency with detection accuracy, this 

block helps the model excel in scenarios requiring detailed object detection, surpassing older 

versions like YOLOv8. 

 



 
 

3.4.2 OpenPose and LSTM 

 
Figure 18: Overall workflow of Openpose and LSTM [43] 

The input to this process consists of videos, which are analyzed as a sequence of images, 

processed frame by frame. Human pose key points are extracted from each frame using 

OpenPose, an open source for bottom-up human pose detection known for its efficiency in 

processing low-resolution images and lower hardware requirements compared to other 

state-of-the-art algorithms [43,44]. 

For every frame captured by each camera, a list of sets of key points is generated, with each 

set representing the joint positions of a person. Features are then extracted from this pose 

information and fed into an LSTM neural network to make initial judgments about the 

subject's state (falling or not falling) [43,45,46]. 

Subsequently, a tracking process is initiated to detect fall situations, determining whether the 

subject has fallen or is in the process of falling. This tracking system provides early 

warnings for potentially dangerous behaviors like falls. 

 



 
 

 
Figure 19: Openpose architecture [43] 

Real-time multi-person 2D pose estimation is crucial for enabling machines to understand 

humans in images and videos. OpenPose effectively performs pose estimation in crowded 

scenes and can detect multiple people simultaneously. It identifies key points of the human 

body, including facial expressions, hand positions, and foot key points, allowing for accurate 

detection of body orientation and position [36]. 

In our system, the OpenPose model is trained with the COCO dataset to extract 21 body key 

point coordinates. OpenPose utilizes a neural network to process images, generating 

heatmaps and part affinity fields to pinpoint key locations and connections. Heatmaps 

indicate the likelihood of body parts in pixels, while part affinity fields show relationships 

between key points. A Non-Max Suppression layer refines these predictions by identifying 

local maxima. By creating a bipartite graph, OpenPose connects body parts to form 

skeletons, enabling detailed pose estimation for complex scenarios like crowded scenes 

[43,44,46].  

 



 
 

 

Figure 20: The typical structure of LSTM [49]  Figure 21: The network of Openpose and LSTM [47] 

LSTM is a type of RNN suitable for capturing and analyzing temporal dependencies within 

sequential data. The gates in LSTM maintain and update a context of past movements while 

focusing on relevant new data [47]. It helps to learn and recognize complex movement 

patterns over time. As falls are dynamic events that change over time, detecting falls 

requires recognizing a sequence of movements and postures that indicate instability and loss 

of balance.  

In LSTM architectures, a memory cell is regulated by three gates: the input gate, the forget 

gate, and the output gate. These gates determine the information to include, remove, and 

output from the memory cell, respectively [48,49]. This allows LSTM networks to 

selectively store or remove information as it progresses through the network, which allows 

them to learn long-term dependencies. 

The forget gate in an LSTM network discards unnecessary information from the cell state. It 

processes the previous hidden state, ht-1, and the current input, xt, to determine what to 

remember and what to forget from the past cell state. While the input gate receives the 

previous hidden state, ht-1, and the current input, xt, produces a vector of values between 0 

and 1, indicating how much of the current input should be included in the cell state. The 

output gate receives the previous hidden state, ht-1, the current input, xt, and the current cell 

state, ct, generating a vector of values between 0 and 1 to determine the proportion of the 

current cell state to output as the current hidden state, ht [48,49]. 

Therefore, due to the high complexity of falling movement, as it involves multiple joints and 

body parts, LSTM effectively handles such spatiotemporal data by processing multiple time 
 



 
 

steps and recognizing the coordinated movement of different body parts, making them ideal 

for predicting falls based on the body postures changing over time [43,47,48,49].

 



 
 

CHAPTER 4: TASKS COMPLETED 
4.1 HARDWARE FUNCTIONAL TEST 

After acquiring the sensor, we conducted various tests to explore its functionality. For 

instance, we captured images of the environment using different modes. The following 

images demonstrate the results obtained in amplitude mode and depth mode. 

 
 

  

Raw Image XT-S240 Depth & Amplitude Image 

Figure 22: Comparison of raw image captured by mobile phone camera (Left) and XT-S240 (Right) 

One of our objectives is to simulate a hospital ward setting. However, since accessing an 

actual ward for photo capturing was not feasible, we used a hall resident room setup as an 

analogous environment for our simulations. 

Besides, we encountered several issues with using the SDK provided by the sensor 

manufacturer. Subsequently, we need to reach out to the technical support team for further 

assistance in utilizing the SDK to access additional functions. 
 



 
 

4.2 LSTM MODEL 
4.2.1 LSTM Model Parameter 

 

Figure 23: Summary of LSTM model 

The number for the first layer is given by: 

 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = 4 * ((𝑖𝑛𝑝𝑢𝑡 𝑠𝑖𝑧𝑒 + 𝑏𝑖𝑎𝑠 𝑡𝑒𝑟𝑚) * 𝑜𝑢𝑡𝑝𝑢𝑡 𝑠𝑖𝑧𝑒 + 𝑜𝑢𝑡𝑝𝑢𝑡 𝑠𝑖𝑧𝑒2)

 ⇒  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑜𝑓 𝑓𝑖𝑟𝑠𝑡 𝑙𝑎𝑦𝑒𝑟 = 4 * ((63 + 1) * 16 + 162) = 5120

 ⇒ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑜𝑓 𝑠𝑒𝑐𝑜𝑛𝑑 𝑙𝑎𝑦𝑒𝑟 = 4 * (16 + 1) * 16 + 162) = 2112

 ⇒ 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = 2 * (5120 + 2112 + 17) + 2 = 14500 

 



 
 

4.2.2 Comparison of Different Dataset Splitting Ratio 

For the LSTM model, we experimented with different training-to-validation dataset ratios, 

including 8:2 and 6:4. The comparison of these configurations is shown in the following 

table: 

 8:2 6:4 

Separation 

  

Accuracy 

  

Loss 

  

Training 
Accuracy 0.9283 0.9306 

Table 2: Comparison of 8:2 & 6:4 splitting  

 



 
 

In our comparison, we tried two different training-to-validation dataset splits: 80% for 

training and 20% for validation (8:2), and 60% for training and 40% for validation (6:4). 

This comparison was done to evaluate the impact of different dataset proportions on the 

model's performance, particularly in terms of overfitting and generalization. 

Upon analyzing the accuracy and loss curves, we found that the 8:2 split showed a slight 

overfitting issue. Overfitting occurs when a model learns to perform well on the training 

data but struggles to generalize to new data. In our case, the accuracy on the training set was 

higher compared to the validation set, and this discrepancy became more evident as the 

training progressed. The loss curve for the 8:2 split indicated that the model’s performance 

improved on the training set, while the validation loss plateaued or even worsened at times, 

confirming that the model was memorizing the training data instead of learning to generalize 

effectively. 

When comparing the maximum accuracy achieved by each split, we observed that the 8:2 

split reached a maximum accuracy of 0.9283, while the 6:4 split achieved a slightly better 

maximum accuracy of 0.9306. Although the difference in accuracy between the two splits is 

small, it is notable that the 6:4 split provided a slightly higher performance with no 

observable overfitting to the training data. This configuration appears to better balance 

training the model and evaluating its performance on unseen data. 

The analysis indicates that while the 8:2 split allows the model to be trained on a larger 

portion of the data, it can lead to overfitting, as the model has fewer validation examples to 

test its generalization. On the other hand, the 6:4 split, despite having fewer training 

examples, helps the model better validate its performance during training, potentially 

leading to a better generalization capability. This suggests that the 6:4 split may be a more 

suitable choice when aiming for a model that can perform well on the training and new data. 

In conclusion, while the 8:2 split provides a larger training dataset, which might be 

beneficial in some cases, the 6:4 split resulted in slightly better performance and reduced 

overfitting. The model trained with the 6:4 split showed higher accuracy.  

 



 
 

4.3 YOLO MODEL 

   

   

Figure 24: Example dataset of chair & bed 

One of the significant challenges we are currently facing in our project is preparing a 

suitable dataset for YOLO model training. We found that existing datasets did not meet our 

specific requirements, particularly in terms of including hospital-specific objects such as 

beds and chairs. These objects are critical for our application, and the lack of a ready-made 

dataset necessitated the creation of a custom dataset tailored to our needs. 

To address this, we began by capturing images of hospital beds and chairs during our 

internship in hospitals and recruiting from the Internet. These photos were then processed 

using Roboflow, where we manually annotated and labelled the objects in each image. The 

labelled images were subsequently converted into JSON/YAML format, which is compatible 

with YOLO for training purposes. To enhance the diversity of our dataset, we decided to 

integrate this custom dataset with an existing dataset containing generic objects like daily 

 



 
 

life chairs and beds. By combining both datasets, we aim to create a more comprehensive 

dataset that can improve the accuracy of our YOLO model. 

However, this approach has led to a second challenge: inconsistencies in the labelling 

schemes between our custom dataset and the existing dataset. Specifically, the labels we 

assigned to objects during our manual annotation process did not align with the naming 

conventions and structure used in the pre-existing dataset. For example, a "hospital bed" in 

our dataset might conflict with a "bed" label in the pre-existing dataset, causing issues when 

merging the two JSON/YAML files. 

To resolve this, we are in the process of standardizing the labels across both datasets. This 

involves carefully examining the labelling conventions of both datasets, identifying 

mismatches, and updating labels to ensure consistency. It is a time-intensive process that 

requires attention to detail, as inconsistencies could lead to errors during model training or 

reduced performance of the YOLO model. 

Both challenges—creating the custom dataset and resolving label inconsistencies—are still 

ongoing. Capturing images, annotating them, and converting them into the correct format 

requires significant effort. Similarly, merging and reconciling the datasets requires us to 

carefully ensure that the final, unified dataset is accurate and coherent. These steps are 

critical to building a high-quality dataset that will allow the YOLO model to perform 

effectively in recognizing hospital-specific objects. 

 

 

 



 
 

CHAPTER 5: FUTURE DIRECTION 
In the upcoming semester B, the focus will be on advancing the development of the AI 

LiDAR sensor for fall detection. The key objectives will include merging the YOLO object 

detection algorithm with LSTM networks to enhance the system's ability to analyze data for 

fall detection. This integration will allow for improved accuracy and sensitivity, and the 

model will undergo rigorous testing to calculate performance metrics such as accuracy and 

sensitivity. Through iterative modifications aimed at optimizing these parameters, a trained 

model with fixed weights can be developed. 

 

To facilitate comprehensive testing, we will gather LiDAR sensor data to prepare for 

real-time applications to enhance processing speeds and responsiveness. Additionally, we 

will implement two operational modes to cater to different environments, such as a ward 

environment module and a backstair module, allowing for switching based on the setting. 

 

A user-friendly graphical user interface (GUI) will be developed, featuring options to switch 

between modes, display the location of triggered alarms, and present soft alarm 

notifications. In terms of innovation, we will incorporate various soft alarms and implement 

a potential fall detection mechanism using LSTM to recognize specific scenarios, such as a 

partial leave from the bed. The interface will provide visual warnings, ensuring that 

caregivers or nurses are promptly alerted. 

 

Furthermore, we aim to enhance the system's functionality by adding voice detection 

capabilities like a voice-activated safety bell. The soft alarm is triggered if a user calls out 

"Help", ensuring that caregivers can quickly respond. This feature will help prevent faults in 

the system, such as missed alarms, thereby improving the overall reliability and 

effectiveness of the fall detection system. 

 

Through these advancements, we will create an effective and responsive AI LiDAR sensor 

system that significantly enhances the safety and well-being of the elderly. 
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