Files
louiscklaw 3b0b154910 update,
2025-02-01 01:19:51 +08:00

1244 lines
34 KiB
XML

<?xml version="1.0"?>
<opencv_storage>
<cascade>
<stageType>BOOST</stageType>
<featureType>HAAR</featureType>
<height>50</height>
<width>25</width>
<stageParams>
<boostType>GAB</boostType>
<minHitRate>9.9500000476837158e-01</minHitRate>
<maxFalseAlarm>5.0000000000000000e-01</maxFalseAlarm>
<weightTrimRate>9.4999998807907104e-01</weightTrimRate>
<maxDepth>1</maxDepth>
<maxWeakCount>100</maxWeakCount></stageParams>
<featureParams>
<maxCatCount>0</maxCatCount>
<featSize>1</featSize>
<mode>BASIC</mode></featureParams>
<stageNum>17</stageNum>
<stages>
<!-- stage 0 -->
<_>
<maxWeakCount>3</maxWeakCount>
<stageThreshold>-1.0966325998306274e+00</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 87 -3.9749737828969955e-02</internalNodes>
<leafValues>
6.8807339668273926e-01 -8.9768338203430176e-01</leafValues></_>
<_>
<internalNodes>
0 -1 44 1.2821868062019348e-02</internalNodes>
<leafValues>
-8.5245048999786377e-01 4.4464725255966187e-01</leafValues></_>
<_>
<internalNodes>
0 -1 89 -6.3414508476853371e-03</internalNodes>
<leafValues>
6.5350127220153809e-01 -6.3395249843597412e-01</leafValues></_></weakClassifiers></_>
<!-- stage 1 -->
<_>
<maxWeakCount>5</maxWeakCount>
<stageThreshold>-1.5029184818267822e+00</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 2 3.9960250258445740e-02</internalNodes>
<leafValues>
-8.7047618627548218e-01 6.2105262279510498e-01</leafValues></_>
<_>
<internalNodes>
0 -1 72 2.0047405268996954e-03</internalNodes>
<leafValues>
-7.2048282623291016e-01 4.3595314025878906e-01</leafValues></_>
<_>
<internalNodes>
0 -1 33 4.0125761181116104e-02</internalNodes>
<leafValues>
-4.3102884292602539e-01 7.6628440618515015e-01</leafValues></_>
<_>
<internalNodes>
0 -1 83 3.7999479100108147e-03</internalNodes>
<leafValues>
-8.6173236370086670e-01 4.2882820963859558e-01</leafValues></_>
<_>
<internalNodes>
0 -1 34 1.2522953562438488e-02</internalNodes>
<leafValues>
2.2436580061912537e-01 -1.</leafValues></_></weakClassifiers></_>
<!-- stage 2 -->
<_>
<maxWeakCount>6</maxWeakCount>
<stageThreshold>-1.6854932308197021e+00</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 8 1.9355986267328262e-02</internalNodes>
<leafValues>
-8.3844012022018433e-01 7.0588237047195435e-01</leafValues></_>
<_>
<internalNodes>
0 -1 59 -2.2049592807888985e-03</internalNodes>
<leafValues>
1.3346725702285767e-01 -8.8566565513610840e-01</leafValues></_>
<_>
<internalNodes>
0 -1 15 1.2463126331567764e-03</internalNodes>
<leafValues>
-6.3673245906829834e-01 4.0090787410736084e-01</leafValues></_>
<_>
<internalNodes>
0 -1 84 2.4355733767151833e-03</internalNodes>
<leafValues>
-5.4117542505264282e-01 6.2493342161178589e-01</leafValues></_>
<_>
<internalNodes>
0 -1 7 -7.6439931988716125e-02</internalNodes>
<leafValues>
7.8357619047164917e-01 -3.3849146962165833e-01</leafValues></_>
<_>
<internalNodes>
0 -1 78 3.1261290423572063e-03</internalNodes>
<leafValues>
-5.8618867397308350e-01 5.9239071607589722e-01</leafValues></_></weakClassifiers></_>
<!-- stage 3 -->
<_>
<maxWeakCount>5</maxWeakCount>
<stageThreshold>-1.4844430685043335e+00</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 23 1.4577260613441467e-01</internalNodes>
<leafValues>
-8.6434108018875122e-01 3.2743361592292786e-01</leafValues></_>
<_>
<internalNodes>
0 -1 71 5.8654639869928360e-03</internalNodes>
<leafValues>
-6.6735094785690308e-01 4.5431783795356750e-01</leafValues></_>
<_>
<internalNodes>
0 -1 6 1.6768187284469604e-02</internalNodes>
<leafValues>
-5.3876274824142456e-01 5.9387809038162231e-01</leafValues></_>
<_>
<internalNodes>
0 -1 27 -9.4364408869296312e-04</internalNodes>
<leafValues>
3.4268611669540405e-01 -8.4656387567520142e-01</leafValues></_>
<_>
<internalNodes>
0 -1 52 -5.2881296724081039e-03</internalNodes>
<leafValues>
-9.1456443071365356e-01 2.9993468523025513e-01</leafValues></_></weakClassifiers></_>
<!-- stage 4 -->
<_>
<maxWeakCount>6</maxWeakCount>
<stageThreshold>-2.1736955642700195e+00</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 62 -5.7709746062755585e-02</internalNodes>
<leafValues>
5.8441555500030518e-01 -8.4269660711288452e-01</leafValues></_>
<_>
<internalNodes>
0 -1 17 1.6041502356529236e-01</internalNodes>
<leafValues>
-6.3674753904342651e-01 5.7367593050003052e-01</leafValues></_>
<_>
<internalNodes>
0 -1 14 1.7721794545650482e-02</internalNodes>
<leafValues>
-7.2467792034149170e-01 3.4953227639198303e-01</leafValues></_>
<_>
<internalNodes>
0 -1 69 -8.0670677125453949e-03</internalNodes>
<leafValues>
4.3848830461502075e-01 -5.3609114885330200e-01</leafValues></_>
<_>
<internalNodes>
0 -1 63 -4.6465173363685608e-03</internalNodes>
<leafValues>
-7.8452843427658081e-01 3.0923697352409363e-01</leafValues></_>
<_>
<internalNodes>
0 -1 4 -2.4705371470190585e-04</internalNodes>
<leafValues>
-8.9777553081512451e-01 2.5728079676628113e-01</leafValues></_></weakClassifiers></_>
<!-- stage 5 -->
<_>
<maxWeakCount>6</maxWeakCount>
<stageThreshold>-1.7616949081420898e+00</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 82 -3.5800426267087460e-03</internalNodes>
<leafValues>
1.7741934955120087e-01 -8.5896182060241699e-01</leafValues></_>
<_>
<internalNodes>
0 -1 75 -2.1949615329504013e-03</internalNodes>
<leafValues>
4.7929751873016357e-01 -6.0481292009353638e-01</leafValues></_>
<_>
<internalNodes>
0 -1 24 1.6179716587066650e-01</internalNodes>
<leafValues>
-5.4649358987808228e-01 4.8331230878829956e-01</leafValues></_>
<_>
<internalNodes>
0 -1 35 2.0644929463742301e-05</internalNodes>
<leafValues>
-6.2326908111572266e-01 4.8561570048332214e-01</leafValues></_>
<_>
<internalNodes>
0 -1 32 1.6705360263586044e-02</internalNodes>
<leafValues>
2.4185511469841003e-01 -9.6120738983154297e-01</leafValues></_>
<_>
<internalNodes>
0 -1 16 4.7883274964988232e-03</internalNodes>
<leafValues>
-3.9981850981712341e-01 6.7900961637496948e-01</leafValues></_></weakClassifiers></_>
<!-- stage 6 -->
<_>
<maxWeakCount>6</maxWeakCount>
<stageThreshold>-1.9566416740417480e+00</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 80 2.8280885890126228e-03</internalNodes>
<leafValues>
-8.6561262607574463e-01 1.5789473056793213e-01</leafValues></_>
<_>
<internalNodes>
0 -1 22 -7.0867784321308136e-02</internalNodes>
<leafValues>
4.8901531100273132e-01 -6.4817398786544800e-01</leafValues></_>
<_>
<internalNodes>
0 -1 51 7.5744107365608215e-02</internalNodes>
<leafValues>
-4.0872627496719360e-01 6.7726826667785645e-01</leafValues></_>
<_>
<internalNodes>
0 -1 38 8.1533321645110846e-04</internalNodes>
<leafValues>
-6.7215812206268311e-01 3.9267623424530029e-01</leafValues></_>
<_>
<internalNodes>
0 -1 58 -1.1350648492225446e-05</internalNodes>
<leafValues>
3.6970004439353943e-01 -6.6077268123626709e-01</leafValues></_>
<_>
<internalNodes>
0 -1 65 1.4212306123226881e-03</internalNodes>
<leafValues>
2.7529472112655640e-01 -9.4534611701965332e-01</leafValues></_></weakClassifiers></_>
<!-- stage 7 -->
<_>
<maxWeakCount>6</maxWeakCount>
<stageThreshold>-1.9015505313873291e+00</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 90 1.4223960228264332e-02</internalNodes>
<leafValues>
-8.3069765567779541e-01 5.4285717010498047e-01</leafValues></_>
<_>
<internalNodes>
0 -1 55 1.9594354089349508e-03</internalNodes>
<leafValues>
-7.1303832530975342e-01 2.2185890376567841e-01</leafValues></_>
<_>
<internalNodes>
0 -1 3 -9.8623307421803474e-03</internalNodes>
<leafValues>
6.3467842340469360e-01 -3.7527593970298767e-01</leafValues></_>
<_>
<internalNodes>
0 -1 0 9.9490463733673096e-02</internalNodes>
<leafValues>
-4.0517267584800720e-01 5.8078593015670776e-01</leafValues></_>
<_>
<internalNodes>
0 -1 9 -2.2388268262147903e-02</internalNodes>
<leafValues>
-8.5365885496139526e-01 2.6728740334510803e-01</leafValues></_>
<_>
<internalNodes>
0 -1 30 8.0608110874891281e-03</internalNodes>
<leafValues>
2.9033437371253967e-01 -8.9404624700546265e-01</leafValues></_></weakClassifiers></_>
<!-- stage 8 -->
<_>
<maxWeakCount>5</maxWeakCount>
<stageThreshold>-1.5984882116317749e+00</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 46 3.5805101506412029e-03</internalNodes>
<leafValues>
-8.6626744270324707e-01 9.0909093618392944e-02</leafValues></_>
<_>
<internalNodes>
0 -1 88 -3.3395808190107346e-02</internalNodes>
<leafValues>
4.6439889073371887e-01 -6.1703538894653320e-01</leafValues></_>
<_>
<internalNodes>
0 -1 81 1.2277236673980951e-03</internalNodes>
<leafValues>
-5.6909579038619995e-01 4.6455380320549011e-01</leafValues></_>
<_>
<internalNodes>
0 -1 53 -4.0630606235936284e-04</internalNodes>
<leafValues>
3.1221529841423035e-01 -7.6171529293060303e-01</leafValues></_>
<_>
<internalNodes>
0 -1 25 -3.8253419101238251e-02</internalNodes>
<leafValues>
-9.1575592756271362e-01 2.5844919681549072e-01</leafValues></_></weakClassifiers></_>
<!-- stage 9 -->
<_>
<maxWeakCount>5</maxWeakCount>
<stageThreshold>-1.5223656892776489e+00</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 68 7.5386777520179749e-02</internalNodes>
<leafValues>
-8.2600563764572144e-01 3.6842104792594910e-01</leafValues></_>
<_>
<internalNodes>
0 -1 60 -1.4035550411790609e-03</internalNodes>
<leafValues>
2.8613474965095520e-01 -6.6350573301315308e-01</leafValues></_>
<_>
<internalNodes>
0 -1 21 -8.3467468619346619e-02</internalNodes>
<leafValues>
6.4003056287765503e-01 -4.0368875861167908e-01</leafValues></_>
<_>
<internalNodes>
0 -1 26 1.2345975264906883e-02</internalNodes>
<leafValues>
2.7766183018684387e-01 -8.3779126405715942e-01</leafValues></_>
<_>
<internalNodes>
0 -1 48 -1.2951031327247620e-02</internalNodes>
<leafValues>
-8.8237118721008301e-01 2.5898516178131104e-01</leafValues></_></weakClassifiers></_>
<!-- stage 10 -->
<_>
<maxWeakCount>6</maxWeakCount>
<stageThreshold>-1.3829478025436401e+00</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 77 4.9472823739051819e-03</internalNodes>
<leafValues>
-8.4509801864624023e-01 5.6000001728534698e-02</leafValues></_>
<_>
<internalNodes>
0 -1 5 2.6191487908363342e-02</internalNodes>
<leafValues>
-7.2848486900329590e-01 2.2989679872989655e-01</leafValues></_>
<_>
<internalNodes>
0 -1 66 -8.1291946116834879e-04</internalNodes>
<leafValues>
2.4560286104679108e-01 -7.1808677911758423e-01</leafValues></_>
<_>
<internalNodes>
0 -1 91 -2.0112203492317349e-04</internalNodes>
<leafValues>
-9.1955208778381348e-01 1.6637702286243439e-01</leafValues></_>
<_>
<internalNodes>
0 -1 91 1.8377974629402161e-04</internalNodes>
<leafValues>
2.7530404925346375e-01 -7.8586459159851074e-01</leafValues></_>
<_>
<internalNodes>
0 -1 61 2.0172987133264542e-02</internalNodes>
<leafValues>
-3.6910140514373779e-01 6.8153959512710571e-01</leafValues></_></weakClassifiers></_>
<!-- stage 11 -->
<_>
<maxWeakCount>7</maxWeakCount>
<stageThreshold>-1.5460036993026733e+00</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 72 4.9619427882134914e-03</internalNodes>
<leafValues>
-8.5185188055038452e-01 1.5966387093067169e-01</leafValues></_>
<_>
<internalNodes>
0 -1 31 2.6279259473085403e-03</internalNodes>
<leafValues>
-5.7623642683029175e-01 3.4025138616561890e-01</leafValues></_>
<_>
<internalNodes>
0 -1 42 2.4106035009026527e-02</internalNodes>
<leafValues>
-3.6600351333618164e-01 6.1510139703750610e-01</leafValues></_>
<_>
<internalNodes>
0 -1 49 -1.1844304390251637e-03</internalNodes>
<leafValues>
3.3255854249000549e-01 -6.1867356300354004e-01</leafValues></_>
<_>
<internalNodes>
0 -1 76 1.4443226391449571e-03</internalNodes>
<leafValues>
2.5072532892227173e-01 -7.4842447042465210e-01</leafValues></_>
<_>
<internalNodes>
0 -1 86 -4.1309196501970291e-02</internalNodes>
<leafValues>
5.0472384691238403e-01 -4.8317489027976990e-01</leafValues></_>
<_>
<internalNodes>
0 -1 50 5.8042677119374275e-03</internalNodes>
<leafValues>
2.6850572228431702e-01 -8.3991962671279907e-01</leafValues></_></weakClassifiers></_>
<!-- stage 12 -->
<_>
<maxWeakCount>5</maxWeakCount>
<stageThreshold>-1.6611324548721313e+00</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 79 5.5460985749959946e-03</internalNodes>
<leafValues>
-8.3732056617736816e-01 2.0000000298023224e-01</leafValues></_>
<_>
<internalNodes>
0 -1 39 2.6433994062244892e-03</internalNodes>
<leafValues>
-6.2440139055252075e-01 2.3982906341552734e-01</leafValues></_>
<_>
<internalNodes>
0 -1 54 -1.7271749675273895e-02</internalNodes>
<leafValues>
-8.2175588607788086e-01 2.0770217478275299e-01</leafValues></_>
<_>
<internalNodes>
0 -1 28 -1.2083895504474640e-02</internalNodes>
<leafValues>
-7.9682880640029907e-01 1.9464211165904999e-01</leafValues></_>
<_>
<internalNodes>
0 -1 18 1.3917684555053711e-04</internalNodes>
<leafValues>
-4.6140599250793457e-01 3.8971620798110962e-01</leafValues></_></weakClassifiers></_>
<!-- stage 13 -->
<_>
<maxWeakCount>6</maxWeakCount>
<stageThreshold>-1.8320335149765015e+00</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 19 -8.0165248364210129e-03</internalNodes>
<leafValues>
5.0000000000000000e-01 -8.0603843927383423e-01</leafValues></_>
<_>
<internalNodes>
0 -1 74 -1.6494451556354761e-03</internalNodes>
<leafValues>
3.1906652450561523e-01 -6.1667209863662720e-01</leafValues></_>
<_>
<internalNodes>
0 -1 41 3.0399286188185215e-03</internalNodes>
<leafValues>
-5.9147560596466064e-01 3.2801711559295654e-01</leafValues></_>
<_>
<internalNodes>
0 -1 20 3.2712200190871954e-03</internalNodes>
<leafValues>
-3.0393525958061218e-01 6.9160705804824829e-01</leafValues></_>
<_>
<internalNodes>
0 -1 10 -1.1049235472455621e-03</internalNodes>
<leafValues>
-8.6199033260345459e-01 2.6440584659576416e-01</leafValues></_>
<_>
<internalNodes>
0 -1 13 -1.2002522125840187e-03</internalNodes>
<leafValues>
-8.8181942701339722e-01 2.2168199717998505e-01</leafValues></_></weakClassifiers></_>
<!-- stage 14 -->
<_>
<maxWeakCount>5</maxWeakCount>
<stageThreshold>-1.6773999929428101e+00</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 85 -7.2794230654835701e-03</internalNodes>
<leafValues>
3.0555555224418640e-01 -8.1733459234237671e-01</leafValues></_>
<_>
<internalNodes>
0 -1 70 4.6439552679657936e-03</internalNodes>
<leafValues>
-7.1284145116806030e-01 2.3532390594482422e-01</leafValues></_>
<_>
<internalNodes>
0 -1 56 6.6569529008120298e-04</internalNodes>
<leafValues>
-5.7421612739562988e-01 3.3966076374053955e-01</leafValues></_>
<_>
<internalNodes>
0 -1 11 1.4486243017017841e-03</internalNodes>
<leafValues>
2.3287221789360046e-01 -8.8413918018341064e-01</leafValues></_>
<_>
<internalNodes>
0 -1 64 -2.4195206351578236e-03</internalNodes>
<leafValues>
3.0535843968391418e-01 -7.1975702047348022e-01</leafValues></_></weakClassifiers></_>
<!-- stage 15 -->
<_>
<maxWeakCount>7</maxWeakCount>
<stageThreshold>-1.6409090757369995e+00</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 12 1.0963346809148788e-02</internalNodes>
<leafValues>
-8.0639266967773438e-01 5.6000000238418579e-01</leafValues></_>
<_>
<internalNodes>
0 -1 36 7.2481604292988777e-03</internalNodes>
<leafValues>
-6.5900856256484985e-01 2.1546614170074463e-01</leafValues></_>
<_>
<internalNodes>
0 -1 29 5.4893048945814371e-04</internalNodes>
<leafValues>
-5.6819671392440796e-01 3.3465427160263062e-01</leafValues></_>
<_>
<internalNodes>
0 -1 67 2.8681857656920329e-05</internalNodes>
<leafValues>
-4.1733759641647339e-01 4.7142651677131653e-01</leafValues></_>
<_>
<internalNodes>
0 -1 57 9.9543388932943344e-03</internalNodes>
<leafValues>
2.2019574046134949e-01 -8.9772731065750122e-01</leafValues></_>
<_>
<internalNodes>
0 -1 40 -3.2626630854792893e-06</internalNodes>
<leafValues>
3.3560329675674438e-01 -6.7672216892242432e-01</leafValues></_>
<_>
<internalNodes>
0 -1 73 -5.2941078320145607e-04</internalNodes>
<leafValues>
3.9747846126556396e-01 -5.1077276468276978e-01</leafValues></_></weakClassifiers></_>
<!-- stage 16 -->
<_>
<maxWeakCount>5</maxWeakCount>
<stageThreshold>-1.4277964830398560e+00</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 37 -3.3281110227108002e-03</internalNodes>
<leafValues>
-4.3478261679410934e-02 -8.4309828281402588e-01</leafValues></_>
<_>
<internalNodes>
0 -1 45 2.3648287169635296e-03</internalNodes>
<leafValues>
-5.6869655847549438e-01 2.7869617938995361e-01</leafValues></_>
<_>
<internalNodes>
0 -1 47 2.1602464839816093e-03</internalNodes>
<leafValues>
1.9262732565402985e-01 -8.3401066064834595e-01</leafValues></_>
<_>
<internalNodes>
0 -1 1 5.7834945619106293e-03</internalNodes>
<leafValues>
-4.6243351697921753e-01 4.2083737254142761e-01</leafValues></_>
<_>
<internalNodes>
0 -1 43 -2.7888708282262087e-03</internalNodes>
<leafValues>
-9.3347197771072388e-01 2.5380459427833557e-01</leafValues></_></weakClassifiers></_></stages>
<features>
<_>
<rects>
<_>
0 1 22 14 -1.</_>
<_>
0 8 22 7 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
0 4 6 12 -1.</_>
<_>
0 4 3 6 2.</_>
<_>
3 10 3 6 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
0 12 4 30 -1.</_>
<_>
2 12 2 30 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
0 17 3 24 -1.</_>
<_>
1 17 1 24 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
0 22 3 3 -1.</_>
<_>
0 23 3 1 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
0 23 6 21 -1.</_>
<_>
3 23 3 21 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
0 27 6 12 -1.</_>
<_>
3 27 3 12 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
0 38 17 12 -1.</_>
<_>
0 44 17 6 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
1 10 2 27 -1.</_>
<_>
2 10 1 27 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
1 12 16 28 -1.</_>
<_>
1 12 8 14 2.</_>
<_>
9 26 8 14 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
1 13 1 12 -1.</_>
<_>
1 17 1 4 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
1 14 2 9 -1.</_>
<_>
1 17 2 3 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
1 17 3 8 -1.</_>
<_>
2 17 1 8 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
1 21 2 9 -1.</_>
<_>
1 24 2 3 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
1 23 15 19 -1.</_>
<_>
6 23 5 19 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
1 26 4 4 -1.</_>
<_>
3 26 2 4 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
1 30 3 13 -1.</_>
<_>
2 30 1 13 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
2 0 17 20 -1.</_>
<_>
2 10 17 10 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
2 12 3 2 -1.</_>
<_>
3 12 1 2 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
2 15 2 23 -1.</_>
<_>
3 15 1 23 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
2 19 3 4 -1.</_>
<_>
3 19 1 4 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
2 37 16 12 -1.</_>
<_>
2 43 16 6 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
2 38 17 12 -1.</_>
<_>
2 44 17 6 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
3 1 17 16 -1.</_>
<_>
3 9 17 8 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
3 2 12 48 -1.</_>
<_>
3 18 12 16 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
3 10 14 27 -1.</_>
<_>
10 10 7 27 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
3 13 18 14 -1.</_>
<_>
12 13 9 14 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
3 21 1 22 -1.</_>
<_>
3 32 1 11 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
4 14 10 36 -1.</_>
<_>
9 14 5 36 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
4 16 4 12 -1.</_>
<_>
4 16 2 6 2.</_>
<_>
6 22 2 6 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
4 16 12 18 -1.</_>
<_>
4 16 6 9 2.</_>
<_>
10 25 6 9 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
4 30 3 6 -1.</_>
<_>
5 30 1 6 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
5 0 20 42 -1.</_>
<_>
5 0 10 21 2.</_>
<_>
15 21 10 21 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
5 4 14 10 -1.</_>
<_>
5 9 14 5 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
5 14 20 18 -1.</_>
<_>
5 14 10 9 2.</_>
<_>
15 23 10 9 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
5 23 3 2 -1.</_>
<_>
5 24 3 1 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
5 24 11 9 -1.</_>
<_>
5 27 11 3 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
5 30 3 5 -1.</_>
<_>
6 30 1 5 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
6 7 6 16 -1.</_>
<_>
6 7 3 8 2.</_>
<_>
9 15 3 8 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
6 9 2 9 -1.</_>
<_>
6 12 2 3 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
6 19 15 16 -1.</_>
<_>
11 19 5 16 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
6 20 18 6 -1.</_>
<_>
6 23 18 3 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
7 4 13 6 -1.</_>
<_>
7 7 13 3 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
7 10 9 5 -1.</_>
<_>
10 10 3 5 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
7 12 6 34 -1.</_>
<_>
9 12 2 34 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
7 30 3 9 -1.</_>
<_>
8 30 1 9 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
7 32 3 7 -1.</_>
<_>
8 32 1 7 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
8 2 4 11 -1.</_>
<_>
10 2 2 11 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
8 14 12 10 -1.</_>
<_>
14 14 6 10 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
8 16 6 9 -1.</_>
<_>
11 16 3 9 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
8 37 12 11 -1.</_>
<_>
12 37 4 11 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
9 3 16 12 -1.</_>
<_>
9 9 16 6 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
9 9 12 18 -1.</_>
<_>
9 9 6 9 2.</_>
<_>
15 18 6 9 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
9 17 6 4 -1.</_>
<_>
12 17 3 4 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
9 27 12 22 -1.</_>
<_>
13 27 4 22 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
9 30 3 12 -1.</_>
<_>
10 30 1 12 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
9 31 3 7 -1.</_>
<_>
10 31 1 7 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
9 32 8 18 -1.</_>
<_>
13 32 4 18 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
10 12 2 8 -1.</_>
<_>
11 12 1 8 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
10 16 6 14 -1.</_>
<_>
13 16 3 14 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
10 31 2 5 -1.</_>
<_>
11 31 1 5 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
10 40 7 9 -1.</_>
<_>
10 43 7 3 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
10 42 13 8 -1.</_>
<_>
10 46 13 4 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
11 6 6 40 -1.</_>
<_>
13 6 2 40 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
11 9 9 25 -1.</_>
<_>
14 9 3 25 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
11 19 2 24 -1.</_>
<_>
11 31 2 12 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
11 19 6 10 -1.</_>
<_>
14 19 3 10 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
11 24 2 3 -1.</_>
<_>
12 24 1 3 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
11 38 12 12 -1.</_>
<_>
11 42 12 4 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
12 11 6 15 -1.</_>
<_>
12 16 6 5 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
12 19 7 10 -1.</_>
<_>
12 24 7 5 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
12 29 3 15 -1.</_>
<_>
13 29 1 15 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
12 31 3 5 -1.</_>
<_>
13 31 1 5 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
13 20 2 14 -1.</_>
<_>
13 20 1 7 2.</_>
<_>
14 27 1 7 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
13 28 3 7 -1.</_>
<_>
14 28 1 7 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
13 29 3 5 -1.</_>
<_>
14 29 1 5 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
14 45 9 4 -1.</_>
<_>
17 45 3 4 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
15 18 2 22 -1.</_>
<_>
15 18 1 11 2.</_>
<_>
16 29 1 11 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
15 24 4 12 -1.</_>
<_>
15 28 4 4 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
15 31 3 6 -1.</_>
<_>
16 31 1 6 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
15 32 3 4 -1.</_>
<_>
16 32 1 4 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
16 14 2 15 -1.</_>
<_>
17 14 1 15 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
16 23 2 12 -1.</_>
<_>
16 23 1 6 2.</_>
<_>
17 29 1 6 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
17 9 3 36 -1.</_>
<_>
17 21 3 12 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
18 28 3 9 -1.</_>
<_>
19 28 1 9 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
19 11 3 11 -1.</_>
<_>
20 11 1 11 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
19 17 6 30 -1.</_>
<_>
22 17 3 30 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
19 22 6 21 -1.</_>
<_>
22 22 3 21 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
19 28 6 15 -1.</_>
<_>
22 28 3 15 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
20 10 3 40 -1.</_>
<_>
21 10 1 40 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
21 28 3 17 -1.</_>
<_>
22 28 1 17 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
23 18 2 3 -1.</_>
<_>
23 19 2 1 3.</_></rects>
<tilted>0</tilted></_></features></cascade>
</opencv_storage>