update,
This commit is contained in:
@@ -0,0 +1,107 @@
|
||||
import os, sys
|
||||
import numpy as np
|
||||
from pprint import pprint
|
||||
|
||||
np_raw_results_csv = np.genfromtxt(
|
||||
"np_raw_results.csv",
|
||||
delimiter=",",
|
||||
dtype=[
|
||||
("img_test_path", "U50"),
|
||||
("diff_gray", "f8"),
|
||||
("diff_rgb", "f8"),
|
||||
("sift_match", "f8"),
|
||||
("diff_contour", "f8"),
|
||||
("d_cld_full", "f8"),
|
||||
("d_cld_up", "f8"),
|
||||
("d_cld_down", "f8"),
|
||||
("d_cld_left", "f8"),
|
||||
("d_cld_right", "f8"),
|
||||
],
|
||||
)
|
||||
|
||||
|
||||
np_raw_results = np.array([list(row) for row in np_raw_results_csv])
|
||||
pprint(np_raw_results)
|
||||
|
||||
|
||||
weight_diff_gray = 0.5
|
||||
weight_diff_rgb = 0.5
|
||||
weight_diff_sift = 0
|
||||
weight_diff_contour = 0
|
||||
weight_diff_cld = 0
|
||||
|
||||
weight_diff_u = 0
|
||||
weight_diff_d = 0
|
||||
weight_diff_l = 0
|
||||
weight_diff_r = 0
|
||||
|
||||
|
||||
min_values = np.min(np_raw_results[:, 1:].astype(np.float64), axis=0)
|
||||
max_values = np.max(np_raw_results[:, 1:].astype(np.float64), axis=0)
|
||||
normalized_array = (np_raw_results[:, 1:].astype(np.float64) - min_values) / (max_values - min_values)
|
||||
np_raw_results = np.concatenate((np_raw_results, normalized_array), axis=1)
|
||||
|
||||
start_col = 9
|
||||
np_raw_results[:, start_col + 1] = np_raw_results[:, start_col + 1].astype(np.float64) * weight_diff_gray
|
||||
|
||||
np_raw_results[:, start_col + 2] = np_raw_results[:, start_col + 2].astype(np.float64) * weight_diff_rgb
|
||||
np_raw_results[:, start_col + 3] = (1 - np_raw_results[:, start_col + 3].astype(np.float64)) * weight_diff_sift
|
||||
np_raw_results[:, start_col + 4] = np_raw_results[:, start_col + 4].astype(np.float64) * weight_diff_contour
|
||||
#
|
||||
np_raw_results[:, start_col + 5] = np_raw_results[:, start_col + 5].astype(np.float64) * weight_diff_cld
|
||||
np_raw_results[:, start_col + 6] = np_raw_results[:, start_col + 6].astype(np.float64) * weight_diff_u
|
||||
np_raw_results[:, start_col + 7] = np_raw_results[:, start_col + 7].astype(np.float64) * weight_diff_d
|
||||
np_raw_results[:, start_col + 8] = np_raw_results[:, start_col + 8].astype(np.float64) * weight_diff_l
|
||||
np_raw_results[:, start_col + 9] = np_raw_results[:, start_col + 9].astype(np.float64) * weight_diff_r
|
||||
|
||||
|
||||
diff_sums = np.sum(np_raw_results[:, 10:-1].astype(np.float64), axis=1)
|
||||
|
||||
np_raw_results = np.concatenate((np_raw_results, diff_sums[:, np.newaxis]), axis=1)
|
||||
np_raw_results = np.concatenate(
|
||||
(np_raw_results, np.array([row[0].replace("image.orig/", "")[0] for row in np_raw_results])[:, np.newaxis]), axis=1
|
||||
)
|
||||
np_raw_results = np.concatenate((np_raw_results, np_raw_results[:, 0][:, np.newaxis]), axis=1)
|
||||
|
||||
np_raw_results_sorted = np_raw_results[np.argsort(np_raw_results[:, -3].astype(np.float64))]
|
||||
|
||||
raw_results = np_raw_results_sorted.tolist()
|
||||
|
||||
column_names = [
|
||||
"img_test_path",
|
||||
"diff_gray",
|
||||
"diff_rgb",
|
||||
"sift_match",
|
||||
"diff_contour",
|
||||
"d_cld_full",
|
||||
"d_cld_up",
|
||||
"d_cld_down",
|
||||
"d_cld_left",
|
||||
"d_cld_right",
|
||||
#
|
||||
"w_gray",
|
||||
"w_rgb",
|
||||
"w_sift_match",
|
||||
"w_contour",
|
||||
"w_cld_full",
|
||||
"w_cld_up",
|
||||
"w_cld_down",
|
||||
"w_cld_left",
|
||||
"w_cld_right",
|
||||
"w_sum",
|
||||
"category",
|
||||
"image",
|
||||
]
|
||||
|
||||
np.savetxt(
|
||||
"np_raw_results_sorted.csv",
|
||||
np_raw_results_sorted,
|
||||
delimiter=",",
|
||||
fmt="%s",
|
||||
header=",".join(column_names),
|
||||
comments="",
|
||||
)
|
||||
|
||||
# np.savetxt("np_raw_results_sorted.csv", np_raw_results_sorted, delimiter=",", fmt="%f")
|
||||
|
||||
print(np_raw_results)
|
Reference in New Issue
Block a user