update,
This commit is contained in:
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@@ -0,0 +1,555 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Supervised Learning\n",
|
||||
"## KNN\n",
|
||||
"> - KNN is a non-parametric learning algorithm (No assumption is made on the data) \n",
|
||||
"> - KNN can be used for classification (discrte) and regression (continuous label) \n",
|
||||
"> - All training data has to be present to determine the label of new data \n",
|
||||
"> - Sensitive to irrelavant features \n",
|
||||
"> - Sensitive to scale of data \n",
|
||||
"### Issues:\n",
|
||||
"> - Choose number of neighors *k* \n",
|
||||
"> - Choose distance metric "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Data\n",
|
||||
"### Breast Cancer\n",
|
||||
"> **Label**: Malignant or Benign \n",
|
||||
"> **30 Features**: Radius, Texture, Perimeter, Area, Smoothness, etc"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Data"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>mean radius</th>\n",
|
||||
" <th>mean texture</th>\n",
|
||||
" <th>mean perimeter</th>\n",
|
||||
" <th>mean area</th>\n",
|
||||
" <th>mean smoothness</th>\n",
|
||||
" <th>mean compactness</th>\n",
|
||||
" <th>mean concavity</th>\n",
|
||||
" <th>mean concave points</th>\n",
|
||||
" <th>mean symmetry</th>\n",
|
||||
" <th>mean fractal dimension</th>\n",
|
||||
" <th>...</th>\n",
|
||||
" <th>worst radius</th>\n",
|
||||
" <th>worst texture</th>\n",
|
||||
" <th>worst perimeter</th>\n",
|
||||
" <th>worst area</th>\n",
|
||||
" <th>worst smoothness</th>\n",
|
||||
" <th>worst compactness</th>\n",
|
||||
" <th>worst concavity</th>\n",
|
||||
" <th>worst concave points</th>\n",
|
||||
" <th>worst symmetry</th>\n",
|
||||
" <th>worst fractal dimension</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>0</th>\n",
|
||||
" <td>17.99</td>\n",
|
||||
" <td>10.38</td>\n",
|
||||
" <td>122.80</td>\n",
|
||||
" <td>1001.0</td>\n",
|
||||
" <td>0.11840</td>\n",
|
||||
" <td>0.27760</td>\n",
|
||||
" <td>0.3001</td>\n",
|
||||
" <td>0.14710</td>\n",
|
||||
" <td>0.2419</td>\n",
|
||||
" <td>0.07871</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>25.38</td>\n",
|
||||
" <td>17.33</td>\n",
|
||||
" <td>184.60</td>\n",
|
||||
" <td>2019.0</td>\n",
|
||||
" <td>0.1622</td>\n",
|
||||
" <td>0.6656</td>\n",
|
||||
" <td>0.7119</td>\n",
|
||||
" <td>0.2654</td>\n",
|
||||
" <td>0.4601</td>\n",
|
||||
" <td>0.11890</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>1</th>\n",
|
||||
" <td>20.57</td>\n",
|
||||
" <td>17.77</td>\n",
|
||||
" <td>132.90</td>\n",
|
||||
" <td>1326.0</td>\n",
|
||||
" <td>0.08474</td>\n",
|
||||
" <td>0.07864</td>\n",
|
||||
" <td>0.0869</td>\n",
|
||||
" <td>0.07017</td>\n",
|
||||
" <td>0.1812</td>\n",
|
||||
" <td>0.05667</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>24.99</td>\n",
|
||||
" <td>23.41</td>\n",
|
||||
" <td>158.80</td>\n",
|
||||
" <td>1956.0</td>\n",
|
||||
" <td>0.1238</td>\n",
|
||||
" <td>0.1866</td>\n",
|
||||
" <td>0.2416</td>\n",
|
||||
" <td>0.1860</td>\n",
|
||||
" <td>0.2750</td>\n",
|
||||
" <td>0.08902</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>2</th>\n",
|
||||
" <td>19.69</td>\n",
|
||||
" <td>21.25</td>\n",
|
||||
" <td>130.00</td>\n",
|
||||
" <td>1203.0</td>\n",
|
||||
" <td>0.10960</td>\n",
|
||||
" <td>0.15990</td>\n",
|
||||
" <td>0.1974</td>\n",
|
||||
" <td>0.12790</td>\n",
|
||||
" <td>0.2069</td>\n",
|
||||
" <td>0.05999</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>23.57</td>\n",
|
||||
" <td>25.53</td>\n",
|
||||
" <td>152.50</td>\n",
|
||||
" <td>1709.0</td>\n",
|
||||
" <td>0.1444</td>\n",
|
||||
" <td>0.4245</td>\n",
|
||||
" <td>0.4504</td>\n",
|
||||
" <td>0.2430</td>\n",
|
||||
" <td>0.3613</td>\n",
|
||||
" <td>0.08758</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>3</th>\n",
|
||||
" <td>11.42</td>\n",
|
||||
" <td>20.38</td>\n",
|
||||
" <td>77.58</td>\n",
|
||||
" <td>386.1</td>\n",
|
||||
" <td>0.14250</td>\n",
|
||||
" <td>0.28390</td>\n",
|
||||
" <td>0.2414</td>\n",
|
||||
" <td>0.10520</td>\n",
|
||||
" <td>0.2597</td>\n",
|
||||
" <td>0.09744</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>14.91</td>\n",
|
||||
" <td>26.50</td>\n",
|
||||
" <td>98.87</td>\n",
|
||||
" <td>567.7</td>\n",
|
||||
" <td>0.2098</td>\n",
|
||||
" <td>0.8663</td>\n",
|
||||
" <td>0.6869</td>\n",
|
||||
" <td>0.2575</td>\n",
|
||||
" <td>0.6638</td>\n",
|
||||
" <td>0.17300</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>4</th>\n",
|
||||
" <td>20.29</td>\n",
|
||||
" <td>14.34</td>\n",
|
||||
" <td>135.10</td>\n",
|
||||
" <td>1297.0</td>\n",
|
||||
" <td>0.10030</td>\n",
|
||||
" <td>0.13280</td>\n",
|
||||
" <td>0.1980</td>\n",
|
||||
" <td>0.10430</td>\n",
|
||||
" <td>0.1809</td>\n",
|
||||
" <td>0.05883</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>22.54</td>\n",
|
||||
" <td>16.67</td>\n",
|
||||
" <td>152.20</td>\n",
|
||||
" <td>1575.0</td>\n",
|
||||
" <td>0.1374</td>\n",
|
||||
" <td>0.2050</td>\n",
|
||||
" <td>0.4000</td>\n",
|
||||
" <td>0.1625</td>\n",
|
||||
" <td>0.2364</td>\n",
|
||||
" <td>0.07678</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"<p>5 rows × 30 columns</p>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" mean radius mean texture mean perimeter mean area mean smoothness \\\n",
|
||||
"0 17.99 10.38 122.80 1001.0 0.11840 \n",
|
||||
"1 20.57 17.77 132.90 1326.0 0.08474 \n",
|
||||
"2 19.69 21.25 130.00 1203.0 0.10960 \n",
|
||||
"3 11.42 20.38 77.58 386.1 0.14250 \n",
|
||||
"4 20.29 14.34 135.10 1297.0 0.10030 \n",
|
||||
"\n",
|
||||
" mean compactness mean concavity mean concave points mean symmetry \\\n",
|
||||
"0 0.27760 0.3001 0.14710 0.2419 \n",
|
||||
"1 0.07864 0.0869 0.07017 0.1812 \n",
|
||||
"2 0.15990 0.1974 0.12790 0.2069 \n",
|
||||
"3 0.28390 0.2414 0.10520 0.2597 \n",
|
||||
"4 0.13280 0.1980 0.10430 0.1809 \n",
|
||||
"\n",
|
||||
" mean fractal dimension ... worst radius worst texture worst perimeter \\\n",
|
||||
"0 0.07871 ... 25.38 17.33 184.60 \n",
|
||||
"1 0.05667 ... 24.99 23.41 158.80 \n",
|
||||
"2 0.05999 ... 23.57 25.53 152.50 \n",
|
||||
"3 0.09744 ... 14.91 26.50 98.87 \n",
|
||||
"4 0.05883 ... 22.54 16.67 152.20 \n",
|
||||
"\n",
|
||||
" worst area worst smoothness worst compactness worst concavity \\\n",
|
||||
"0 2019.0 0.1622 0.6656 0.7119 \n",
|
||||
"1 1956.0 0.1238 0.1866 0.2416 \n",
|
||||
"2 1709.0 0.1444 0.4245 0.4504 \n",
|
||||
"3 567.7 0.2098 0.8663 0.6869 \n",
|
||||
"4 1575.0 0.1374 0.2050 0.4000 \n",
|
||||
"\n",
|
||||
" worst concave points worst symmetry worst fractal dimension \n",
|
||||
"0 0.2654 0.4601 0.11890 \n",
|
||||
"1 0.1860 0.2750 0.08902 \n",
|
||||
"2 0.2430 0.3613 0.08758 \n",
|
||||
"3 0.2575 0.6638 0.17300 \n",
|
||||
"4 0.1625 0.2364 0.07678 \n",
|
||||
"\n",
|
||||
"[5 rows x 30 columns]"
|
||||
]
|
||||
},
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"from sklearn.datasets import load_breast_cancer\n",
|
||||
"\n",
|
||||
"breast_cancer = load_breast_cancer()\n",
|
||||
"X = pd.DataFrame(breast_cancer.data, columns=breast_cancer.feature_names)\n",
|
||||
"X.head()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Create an X with 2 features only\n",
|
||||
"\n",
|
||||
"X = X[['mean area', 'mean compactness']]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"array(['malignant', 'benign'], dtype='<U9')"
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"breast_cancer.target_names"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"['malignant', 'malignant', 'malignant', 'malignant', 'malignant', ..., 'malignant', 'malignant', 'malignant', 'malignant', 'benign']\n",
|
||||
"Length: 569\n",
|
||||
"Categories (2, object): ['malignant', 'benign']"
|
||||
]
|
||||
},
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"y = pd.Categorical.from_codes(codes=breast_cancer.target, categories=breast_cancer.target_names)\n",
|
||||
"y"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>benign</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>0</th>\n",
|
||||
" <td>0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>1</th>\n",
|
||||
" <td>0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>2</th>\n",
|
||||
" <td>0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>3</th>\n",
|
||||
" <td>0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>4</th>\n",
|
||||
" <td>0</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" benign\n",
|
||||
"0 0\n",
|
||||
"1 0\n",
|
||||
"2 0\n",
|
||||
"3 0\n",
|
||||
"4 0"
|
||||
]
|
||||
},
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"y = pd.get_dummies(y, drop_first=True) \n",
|
||||
"y.head()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"(426, 1)\n",
|
||||
"(143, 1)\n",
|
||||
"<class 'pandas.core.frame.DataFrame'>\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from sklearn.model_selection import train_test_split\n",
|
||||
"\n",
|
||||
"Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, random_state=1)\n",
|
||||
"print(ytrain.shape)\n",
|
||||
"print(ytest.shape)\n",
|
||||
"print(type(ytest))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from sklearn.neighbors import KNeighborsClassifier\n",
|
||||
"import numpy as np\n",
|
||||
"\n",
|
||||
"knn = KNeighborsClassifier(n_neighbors=5, metric='euclidean')\n",
|
||||
"knn.fit(Xtrain, ytrain.to_numpy().ravel())\n",
|
||||
"ypred = knn.predict(Xtest).reshape([143,1])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>Prediction</th>\n",
|
||||
" <th>Actual</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>0</th>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>1</th>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>2</th>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>3</th>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>4</th>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" Prediction Actual\n",
|
||||
"0 1 1\n",
|
||||
"1 1 0\n",
|
||||
"2 1 1\n",
|
||||
"3 0 0\n",
|
||||
"4 0 0"
|
||||
]
|
||||
},
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"pd.DataFrame(np.hstack([ypred,ytest]),columns=['Prediction','Actual']).head()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Evaluation"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[[42 13]\n",
|
||||
" [ 9 79]]\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from sklearn.metrics import confusion_matrix\n",
|
||||
"print(confusion_matrix(ytest, ypred))"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.0"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
File diff suppressed because one or more lines are too long
@@ -0,0 +1,151 @@
|
||||
Id,SepalLengthCm,SepalWidthCm,PetalLengthCm,PetalWidthCm,Species
|
||||
1,5.1,3.5,1.4,0.2,Iris-setosa
|
||||
2,4.9,3.0,1.4,0.2,Iris-setosa
|
||||
3,4.7,3.2,1.3,0.2,Iris-setosa
|
||||
4,4.6,3.1,1.5,0.2,Iris-setosa
|
||||
5,5.0,3.6,1.4,0.2,Iris-setosa
|
||||
6,5.4,3.9,1.7,0.4,Iris-setosa
|
||||
7,4.6,3.4,1.4,0.3,Iris-setosa
|
||||
8,5.0,3.4,1.5,0.2,Iris-setosa
|
||||
9,4.4,2.9,1.4,0.2,Iris-setosa
|
||||
10,4.9,3.1,1.5,0.1,Iris-setosa
|
||||
11,5.4,3.7,1.5,0.2,Iris-setosa
|
||||
12,4.8,3.4,1.6,0.2,Iris-setosa
|
||||
13,4.8,3.0,1.4,0.1,Iris-setosa
|
||||
14,4.3,3.0,1.1,0.1,Iris-setosa
|
||||
15,5.8,4.0,1.2,0.2,Iris-setosa
|
||||
16,5.7,4.4,1.5,0.4,Iris-setosa
|
||||
17,5.4,3.9,1.3,0.4,Iris-setosa
|
||||
18,5.1,3.5,1.4,0.3,Iris-setosa
|
||||
19,5.7,3.8,1.7,0.3,Iris-setosa
|
||||
20,5.1,3.8,1.5,0.3,Iris-setosa
|
||||
21,5.4,3.4,1.7,0.2,Iris-setosa
|
||||
22,5.1,3.7,1.5,0.4,Iris-setosa
|
||||
23,4.6,3.6,1.0,0.2,Iris-setosa
|
||||
24,5.1,3.3,1.7,0.5,Iris-setosa
|
||||
25,4.8,3.4,1.9,0.2,Iris-setosa
|
||||
26,5.0,3.0,1.6,0.2,Iris-setosa
|
||||
27,5.0,3.4,1.6,0.4,Iris-setosa
|
||||
28,5.2,3.5,1.5,0.2,Iris-setosa
|
||||
29,5.2,3.4,1.4,0.2,Iris-setosa
|
||||
30,4.7,3.2,1.6,0.2,Iris-setosa
|
||||
31,4.8,3.1,1.6,0.2,Iris-setosa
|
||||
32,5.4,3.4,1.5,0.4,Iris-setosa
|
||||
33,5.2,4.1,1.5,0.1,Iris-setosa
|
||||
34,5.5,4.2,1.4,0.2,Iris-setosa
|
||||
35,4.9,3.1,1.5,0.1,Iris-setosa
|
||||
36,5.0,3.2,1.2,0.2,Iris-setosa
|
||||
37,5.5,3.5,1.3,0.2,Iris-setosa
|
||||
38,4.9,3.1,1.5,0.1,Iris-setosa
|
||||
39,4.4,3.0,1.3,0.2,Iris-setosa
|
||||
40,5.1,3.4,1.5,0.2,Iris-setosa
|
||||
41,5.0,3.5,1.3,0.3,Iris-setosa
|
||||
42,4.5,2.3,1.3,0.3,Iris-setosa
|
||||
43,4.4,3.2,1.3,0.2,Iris-setosa
|
||||
44,5.0,3.5,1.6,0.6,Iris-setosa
|
||||
45,5.1,3.8,1.9,0.4,Iris-setosa
|
||||
46,4.8,3.0,1.4,0.3,Iris-setosa
|
||||
47,5.1,3.8,1.6,0.2,Iris-setosa
|
||||
48,4.6,3.2,1.4,0.2,Iris-setosa
|
||||
49,5.3,3.7,1.5,0.2,Iris-setosa
|
||||
50,5.0,3.3,1.4,0.2,Iris-setosa
|
||||
51,7.0,3.2,4.7,1.4,Iris-versicolor
|
||||
52,6.4,3.2,4.5,1.5,Iris-versicolor
|
||||
53,6.9,3.1,4.9,1.5,Iris-versicolor
|
||||
54,5.5,2.3,4.0,1.3,Iris-versicolor
|
||||
55,6.5,2.8,4.6,1.5,Iris-versicolor
|
||||
56,5.7,2.8,4.5,1.3,Iris-versicolor
|
||||
57,6.3,3.3,4.7,1.6,Iris-versicolor
|
||||
58,4.9,2.4,3.3,1.0,Iris-versicolor
|
||||
59,6.6,2.9,4.6,1.3,Iris-versicolor
|
||||
60,5.2,2.7,3.9,1.4,Iris-versicolor
|
||||
61,5.0,2.0,3.5,1.0,Iris-versicolor
|
||||
62,5.9,3.0,4.2,1.5,Iris-versicolor
|
||||
63,6.0,2.2,4.0,1.0,Iris-versicolor
|
||||
64,6.1,2.9,4.7,1.4,Iris-versicolor
|
||||
65,5.6,2.9,3.6,1.3,Iris-versicolor
|
||||
66,6.7,3.1,4.4,1.4,Iris-versicolor
|
||||
67,5.6,3.0,4.5,1.5,Iris-versicolor
|
||||
68,5.8,2.7,4.1,1.0,Iris-versicolor
|
||||
69,6.2,2.2,4.5,1.5,Iris-versicolor
|
||||
70,5.6,2.5,3.9,1.1,Iris-versicolor
|
||||
71,5.9,3.2,4.8,1.8,Iris-versicolor
|
||||
72,6.1,2.8,4.0,1.3,Iris-versicolor
|
||||
73,6.3,2.5,4.9,1.5,Iris-versicolor
|
||||
74,6.1,2.8,4.7,1.2,Iris-versicolor
|
||||
75,6.4,2.9,4.3,1.3,Iris-versicolor
|
||||
76,6.6,3.0,4.4,1.4,Iris-versicolor
|
||||
77,6.8,2.8,4.8,1.4,Iris-versicolor
|
||||
78,6.7,3.0,5.0,1.7,Iris-versicolor
|
||||
79,6.0,2.9,4.5,1.5,Iris-versicolor
|
||||
80,5.7,2.6,3.5,1.0,Iris-versicolor
|
||||
81,5.5,2.4,3.8,1.1,Iris-versicolor
|
||||
82,5.5,2.4,3.7,1.0,Iris-versicolor
|
||||
83,5.8,2.7,3.9,1.2,Iris-versicolor
|
||||
84,6.0,2.7,5.1,1.6,Iris-versicolor
|
||||
85,5.4,3.0,4.5,1.5,Iris-versicolor
|
||||
86,6.0,3.4,4.5,1.6,Iris-versicolor
|
||||
87,6.7,3.1,4.7,1.5,Iris-versicolor
|
||||
88,6.3,2.3,4.4,1.3,Iris-versicolor
|
||||
89,5.6,3.0,4.1,1.3,Iris-versicolor
|
||||
90,5.5,2.5,4.0,1.3,Iris-versicolor
|
||||
91,5.5,2.6,4.4,1.2,Iris-versicolor
|
||||
92,6.1,3.0,4.6,1.4,Iris-versicolor
|
||||
93,5.8,2.6,4.0,1.2,Iris-versicolor
|
||||
94,5.0,2.3,3.3,1.0,Iris-versicolor
|
||||
95,5.6,2.7,4.2,1.3,Iris-versicolor
|
||||
96,5.7,3.0,4.2,1.2,Iris-versicolor
|
||||
97,5.7,2.9,4.2,1.3,Iris-versicolor
|
||||
98,6.2,2.9,4.3,1.3,Iris-versicolor
|
||||
99,5.1,2.5,3.0,1.1,Iris-versicolor
|
||||
100,5.7,2.8,4.1,1.3,Iris-versicolor
|
||||
101,6.3,3.3,6.0,2.5,Iris-virginica
|
||||
102,5.8,2.7,5.1,1.9,Iris-virginica
|
||||
103,7.1,3.0,5.9,2.1,Iris-virginica
|
||||
104,6.3,2.9,5.6,1.8,Iris-virginica
|
||||
105,6.5,3.0,5.8,2.2,Iris-virginica
|
||||
106,7.6,3.0,6.6,2.1,Iris-virginica
|
||||
107,4.9,2.5,4.5,1.7,Iris-virginica
|
||||
108,7.3,2.9,6.3,1.8,Iris-virginica
|
||||
109,6.7,2.5,5.8,1.8,Iris-virginica
|
||||
110,7.2,3.6,6.1,2.5,Iris-virginica
|
||||
111,6.5,3.2,5.1,2.0,Iris-virginica
|
||||
112,6.4,2.7,5.3,1.9,Iris-virginica
|
||||
113,6.8,3.0,5.5,2.1,Iris-virginica
|
||||
114,5.7,2.5,5.0,2.0,Iris-virginica
|
||||
115,5.8,2.8,5.1,2.4,Iris-virginica
|
||||
116,6.4,3.2,5.3,2.3,Iris-virginica
|
||||
117,6.5,3.0,5.5,1.8,Iris-virginica
|
||||
118,7.7,3.8,6.7,2.2,Iris-virginica
|
||||
119,7.7,2.6,6.9,2.3,Iris-virginica
|
||||
120,6.0,2.2,5.0,1.5,Iris-virginica
|
||||
121,6.9,3.2,5.7,2.3,Iris-virginica
|
||||
122,5.6,2.8,4.9,2.0,Iris-virginica
|
||||
123,7.7,2.8,6.7,2.0,Iris-virginica
|
||||
124,6.3,2.7,4.9,1.8,Iris-virginica
|
||||
125,6.7,3.3,5.7,2.1,Iris-virginica
|
||||
126,7.2,3.2,6.0,1.8,Iris-virginica
|
||||
127,6.2,2.8,4.8,1.8,Iris-virginica
|
||||
128,6.1,3.0,4.9,1.8,Iris-virginica
|
||||
129,6.4,2.8,5.6,2.1,Iris-virginica
|
||||
130,7.2,3.0,5.8,1.6,Iris-virginica
|
||||
131,7.4,2.8,6.1,1.9,Iris-virginica
|
||||
132,7.9,3.8,6.4,2.0,Iris-virginica
|
||||
133,6.4,2.8,5.6,2.2,Iris-virginica
|
||||
134,6.3,2.8,5.1,1.5,Iris-virginica
|
||||
135,6.1,2.6,5.6,1.4,Iris-virginica
|
||||
136,7.7,3.0,6.1,2.3,Iris-virginica
|
||||
137,6.3,3.4,5.6,2.4,Iris-virginica
|
||||
138,6.4,3.1,5.5,1.8,Iris-virginica
|
||||
139,6.0,3.0,4.8,1.8,Iris-virginica
|
||||
140,6.9,3.1,5.4,2.1,Iris-virginica
|
||||
141,6.7,3.1,5.6,2.4,Iris-virginica
|
||||
142,6.9,3.1,5.1,2.3,Iris-virginica
|
||||
143,5.8,2.7,5.1,1.9,Iris-virginica
|
||||
144,6.8,3.2,5.9,2.3,Iris-virginica
|
||||
145,6.7,3.3,5.7,2.5,Iris-virginica
|
||||
146,6.7,3.0,5.2,2.3,Iris-virginica
|
||||
147,6.3,2.5,5.0,1.9,Iris-virginica
|
||||
148,6.5,3.0,5.2,2.0,Iris-virginica
|
||||
149,6.2,3.4,5.4,2.3,Iris-virginica
|
||||
150,5.9,3.0,5.1,1.8,Iris-virginica
|
|
@@ -0,0 +1,19 @@
|
||||
[[source]]
|
||||
url = "https://pypi.org/simple"
|
||||
verify_ssl = true
|
||||
name = "pypi"
|
||||
|
||||
[packages]
|
||||
jupyter = "*"
|
||||
notebook = "*"
|
||||
pandas = "*"
|
||||
quandl = "*"
|
||||
seaborn = "*"
|
||||
sklearn = "*"
|
||||
scikit-learn = "*"
|
||||
pydot = "*"
|
||||
|
||||
[dev-packages]
|
||||
|
||||
[requires]
|
||||
python_version = "3.11"
|
1334
Man1130/jupyter/Man1130-python-comission/course_materials/Note/Pipfile.lock
generated
Normal file
1334
Man1130/jupyter/Man1130-python-comission/course_materials/Note/Pipfile.lock
generated
Normal file
File diff suppressed because it is too large
Load Diff
@@ -0,0 +1,8 @@
|
||||
10 + 10
|
||||
'10 + 10'
|
||||
'10 + 10'
|
||||
10 + 10
|
||||
10 + '10'
|
||||
'Hello world'
|
||||
type(10)
|
||||
type('abc')
|
@@ -0,0 +1,6 @@
|
||||
# x = 5
|
||||
# x
|
||||
# x = 10
|
||||
# y = 20
|
||||
# x + y
|
||||
# x = y
|
@@ -0,0 +1,29 @@
|
||||
# print()
|
||||
# print('hello world!')
|
||||
# year = 2017
|
||||
# print('This year is '+year)
|
||||
# print('This year is '+str(year))
|
||||
# yearStr = '2017'
|
||||
# print('This year is '+yearStr)
|
||||
# print('This year is '+(yearStr+1))
|
||||
# print('This year is '+str(int(yearStr)+1))
|
||||
#
|
||||
# format()
|
||||
# year = 2017
|
||||
# print('This year is '+year)
|
||||
# print('This year is '+str(year))
|
||||
# print('This year is {}'.format(year)
|
||||
# print('This year is {}, and next year is {}'.format(year,year+1))
|
||||
# print('This year is {}, and I will go abroad at the end of {}'.format(2017,2017))
|
||||
# print('This year is {y}, and I will go abroad at the end of {y}'.format(y=2017))
|
||||
#
|
||||
# input()
|
||||
# input('How tall are you? ')
|
||||
# height = input('How tall are you?')
|
||||
# print('You are {} meter tall'.format(int(height)/100))
|
||||
#
|
||||
#
|
||||
#
|
||||
height = input('What\'s your height? ')
|
||||
height = int(input('What\'s your height? '))
|
||||
|
@@ -0,0 +1,30 @@
|
||||
def say_hello():
|
||||
print('Hello World!')
|
||||
|
||||
|
||||
def area_of_square(length):
|
||||
return length**2
|
||||
|
||||
|
||||
def area_of_circle(radius):
|
||||
pi = 3.1415926
|
||||
return pi*radius**2
|
||||
|
||||
# pi can also be defined outside of the function
|
||||
# good and bad?
|
||||
# what if someone change the value outside?
|
||||
|
||||
|
||||
def area_of_rectangle(length,width):
|
||||
return length*width
|
||||
|
||||
|
||||
|
||||
def app():
|
||||
age = int(input('What\'s your age?'))
|
||||
print('Your age is {}'.format(age))
|
||||
print('-------')
|
||||
app()
|
||||
|
||||
app()
|
||||
|
@@ -0,0 +1,16 @@
|
||||
|
||||
|
||||
def bmi_test(bmi):
|
||||
if bmi < 18.5:
|
||||
print('You\'d better eat more!')
|
||||
elif bmi < 24:
|
||||
print('Good job!')
|
||||
else:
|
||||
print('You\'d better to some exercises')
|
||||
|
||||
|
||||
|
||||
bmi_test(20)
|
||||
|
||||
# multiple statement
|
||||
# multiple
|
@@ -0,0 +1,52 @@
|
||||
# BMI = Weight / Height^2 kg and m
|
||||
|
||||
def convert_to_m(height):
|
||||
return height/100
|
||||
|
||||
|
||||
def calculate_bmi(height, weight):
|
||||
#print(weight)
|
||||
#print(height)
|
||||
return weight/height**2
|
||||
|
||||
|
||||
def bmi_test(bmi):
|
||||
print('Your bmi is {}'.format(round(bmi, 2)))
|
||||
if bmi < 18.5:
|
||||
print('You\'d better eat more!')
|
||||
elif bmi < 25:
|
||||
print('Good job!')
|
||||
elif bmi < 30:
|
||||
print('You\'d better do some exercises')
|
||||
else:
|
||||
print('You\'d better consult doctor')
|
||||
|
||||
|
||||
def bmi_app():
|
||||
try:
|
||||
age = int(input('What\'s your age?'))
|
||||
except ValueError:
|
||||
print("You need to enter 0 - 100 as your age")
|
||||
try:
|
||||
age = int(input('What\'s your age?'))
|
||||
except:
|
||||
print("Your input is still wrong. Quitting the app")
|
||||
return
|
||||
|
||||
if age < 18:
|
||||
print("Sorry I can't help you.")
|
||||
else:
|
||||
height = float(input('What\'s your height (in cm)? '))
|
||||
height = convert_to_m(height)
|
||||
weight = float(input('what\'s your weight (in kg) '))
|
||||
bmi = calculate_bmi(height, weight)
|
||||
bmi_test(bmi)
|
||||
|
||||
print('-------------------------------------------')
|
||||
bmi_app()
|
||||
|
||||
|
||||
bmi_app()
|
||||
|
||||
# how to improve?
|
||||
# Q1 what if the weight is not integer? e.g. 62.5
|
@@ -0,0 +1,29 @@
|
||||
# you can download at
|
||||
# https://goo.gl/WKdcqo
|
||||
|
||||
|
||||
colors = ['red', 'blue', 'green']
|
||||
|
||||
colors
|
||||
|
||||
colors[0] # zero base indexing
|
||||
colors[1]
|
||||
colors[2]
|
||||
|
||||
colors.append('purple')
|
||||
colors
|
||||
|
||||
|
||||
colors.remove('green')
|
||||
colors
|
||||
|
||||
|
||||
colors.extend(['green', 'yellow'])
|
||||
|
||||
'green' in colors
|
||||
|
||||
colors[3]
|
||||
|
||||
type(colors)
|
||||
|
||||
help(colors)
|
@@ -0,0 +1,13 @@
|
||||
# you can download at
|
||||
# https://goo.gl/WKdcqo
|
||||
|
||||
import random
|
||||
|
||||
random.randint(0,3)
|
||||
|
||||
|
||||
colors = [random.randint(0,2)]
|
||||
colors = [random.randint(0,len(colors))]
|
||||
|
||||
|
||||
random.choice(colors)
|
@@ -0,0 +1,28 @@
|
||||
# you can download at
|
||||
# https://goo.gl/WKdcqo
|
||||
|
||||
colors = ['red','blue','green']
|
||||
|
||||
for color in colors:
|
||||
print('I love {}'.format(color))
|
||||
|
||||
range(3)
|
||||
|
||||
for i in range(3):
|
||||
print(i)
|
||||
|
||||
for i in range(5):
|
||||
print(i)
|
||||
|
||||
# break, pass, continue
|
||||
for i in range(3):
|
||||
cmd = input('Enter command: ')
|
||||
if cmd == 'break':
|
||||
break
|
||||
elif cmd == 'pass':
|
||||
pass
|
||||
print('command is pass')
|
||||
elif cmd == 'continue':
|
||||
continue
|
||||
print('command is continue')
|
||||
|
@@ -0,0 +1,26 @@
|
||||
# you can download at
|
||||
# https://goo.gl/WKdcqo
|
||||
|
||||
import random
|
||||
|
||||
|
||||
def guess_lucky_number():
|
||||
colors = ['red', 'blue', 'green', 'purple', 'yellow']
|
||||
lucky_color = random.choice(colors)
|
||||
|
||||
for i in range(3):
|
||||
print('There are {} colors'.format(colors))
|
||||
guess = input('Guess your lucky color: ')
|
||||
if guess != lucky_color:
|
||||
colors.remove(guess)
|
||||
print('Seems like {} is not your lucky color :( \n'.format(guess))
|
||||
else:
|
||||
break
|
||||
|
||||
if guess == lucky_color:
|
||||
print('Great! {} is your lucky color!! '.format(lucky_color))
|
||||
else:
|
||||
print('Actually, {} is your lucky color '.format(lucky_color))
|
||||
|
||||
|
||||
guess_lucky_number()
|
@@ -0,0 +1,19 @@
|
||||
vocabs = {}
|
||||
|
||||
|
||||
type(vocabs)
|
||||
|
||||
vocabs['programming'] = 'the activity of job of writing computer programs'
|
||||
vocabs
|
||||
|
||||
|
||||
vocabs['python'] = 'a very large snake that kills animals for food'
|
||||
|
||||
del(vocabs['programming'])
|
||||
|
||||
vocabs.clear()
|
||||
|
||||
vocabs['programming'] = ['the activity of job of writing computer programs','_______ming']
|
||||
|
||||
vocabs = {'programming': 'the activity of job of writing computer programs',
|
||||
'python': 'a very large snake'}
|
@@ -0,0 +1,19 @@
|
||||
vocabs = {'programming': ['the activity or job of writing computer programs','_______ming'],
|
||||
'python': ['a very large snake that kills animals for food by wrapping itself around them and crushing them', '___hon'],
|
||||
'fun': ['pleasure, enjoyment, or entertainment', '__n']}
|
||||
|
||||
|
||||
vocabs.keys()
|
||||
|
||||
vocabs.values()
|
||||
|
||||
vocabs.items()
|
||||
|
||||
for key in vocabs.keys():
|
||||
print(key)
|
||||
|
||||
for value in vocabs.values():
|
||||
print(value)
|
||||
|
||||
for key,value in vocabs.items():
|
||||
print('{} ({})\n {}'.format(key,value[1],value[0]))
|
@@ -0,0 +1,36 @@
|
||||
vocabs = {'programming': ['the activity or job of writing computer programs','_______ming'],
|
||||
'python': ['a very large snake that kills animals for food by wrapping itself around them and crushing them', '___hon'],
|
||||
'fun': ['pleasure, enjoyment, or entertainment', '__n']}
|
||||
|
||||
|
||||
def new_word():
|
||||
try:
|
||||
word, definition, hint = input('Enter a new word (word|definition|hint): ').split('|')
|
||||
print('{} ({})\n {}'.format(word,hint,definition))
|
||||
except ValueError:
|
||||
print('Please make sure your format is correct!')
|
||||
except:
|
||||
print('Something is wrong')
|
||||
|
||||
new_word()
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def new_word():
|
||||
try:
|
||||
word, definition, hint = input("Enter a new words (word|definition|hint)").split("|")
|
||||
print("{}".format(word))
|
||||
print(" - {} ({})".format(definition, hint))
|
||||
print('----------------------')
|
||||
except ValueError:
|
||||
print("Value Error")
|
||||
new_word()
|
||||
except:
|
||||
print("Something is wrong")
|
||||
new_word()
|
||||
|
||||
|
File diff suppressed because it is too large
Load Diff
@@ -0,0 +1,13 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -ex
|
||||
|
||||
python -m pip install pipenv
|
||||
|
||||
pipenv sync
|
||||
|
||||
pipenv run \
|
||||
jupyter-notebook \
|
||||
--allow-root \
|
||||
--ip=0.0.0.0
|
||||
|
@@ -0,0 +1,15 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -ex
|
||||
|
||||
pipenv install jupyter
|
||||
pipenv install jupyter notebook
|
||||
|
||||
pipenv install pandas
|
||||
pipenv install quandl
|
||||
|
||||
pipenv install seaborn
|
||||
pipenv install scikit-learn
|
||||
|
||||
# jupyter-notebook
|
||||
|
|
@@ -0,0 +1,15 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -ex
|
||||
|
||||
docker run -it \
|
||||
-v $PWD:/app \
|
||||
-w /app \
|
||||
-v /var/run/docker.sock:/var/run/docker.sock \
|
||||
-v ~/.ssh/id_rsa:/home/node/.ssh/id_rsa:ro \
|
||||
-v ~/.ssh/known_host:/home/node/.ssh/known_hosts:ro \
|
||||
-p 8889:8888 \
|
||||
--rm \
|
||||
python:latest \
|
||||
bash
|
||||
|
@@ -0,0 +1,52 @@
|
||||
"state","abbreviation"
|
||||
"Alabama","AL"
|
||||
"Alaska","AK"
|
||||
"Arizona","AZ"
|
||||
"Arkansas","AR"
|
||||
"California","CA"
|
||||
"Colorado","CO"
|
||||
"Connecticut","CT"
|
||||
"Delaware","DE"
|
||||
"District of Columbia","DC"
|
||||
"Florida","FL"
|
||||
"Georgia","GA"
|
||||
"Hawaii","HI"
|
||||
"Idaho","ID"
|
||||
"Illinois","IL"
|
||||
"Indiana","IN"
|
||||
"Iowa","IA"
|
||||
"Kansas","KS"
|
||||
"Kentucky","KY"
|
||||
"Louisiana","LA"
|
||||
"Maine","ME"
|
||||
"Montana","MT"
|
||||
"Nebraska","NE"
|
||||
"Nevada","NV"
|
||||
"New Hampshire","NH"
|
||||
"New Jersey","NJ"
|
||||
"New Mexico","NM"
|
||||
"New York","NY"
|
||||
"North Carolina","NC"
|
||||
"North Dakota","ND"
|
||||
"Ohio","OH"
|
||||
"Oklahoma","OK"
|
||||
"Oregon","OR"
|
||||
"Maryland","MD"
|
||||
"Massachusetts","MA"
|
||||
"Michigan","MI"
|
||||
"Minnesota","MN"
|
||||
"Mississippi","MS"
|
||||
"Missouri","MO"
|
||||
"Pennsylvania","PA"
|
||||
"Rhode Island","RI"
|
||||
"South Carolina","SC"
|
||||
"South Dakota","SD"
|
||||
"Tennessee","TN"
|
||||
"Texas","TX"
|
||||
"Utah","UT"
|
||||
"Vermont","VT"
|
||||
"Virginia","VA"
|
||||
"Washington","WA"
|
||||
"West Virginia","WV"
|
||||
"Wisconsin","WI"
|
||||
"Wyoming","WY"
|
|
@@ -0,0 +1,53 @@
|
||||
state,area (sq. mi)
|
||||
Alabama,52423
|
||||
Alaska,656425
|
||||
Arizona,114006
|
||||
Arkansas,53182
|
||||
California,163707
|
||||
Colorado,104100
|
||||
Connecticut,5544
|
||||
Delaware,1954
|
||||
Florida,65758
|
||||
Georgia,59441
|
||||
Hawaii,10932
|
||||
Idaho,83574
|
||||
Illinois,57918
|
||||
Indiana,36420
|
||||
Iowa,56276
|
||||
Kansas,82282
|
||||
Kentucky,40411
|
||||
Louisiana,51843
|
||||
Maine,35387
|
||||
Maryland,12407
|
||||
Massachusetts,10555
|
||||
Michigan,96810
|
||||
Minnesota,86943
|
||||
Mississippi,48434
|
||||
Missouri,69709
|
||||
Montana,147046
|
||||
Nebraska,77358
|
||||
Nevada,110567
|
||||
New Hampshire,9351
|
||||
New Jersey,8722
|
||||
New Mexico,121593
|
||||
New York,54475
|
||||
North Carolina,53821
|
||||
North Dakota,70704
|
||||
Ohio,44828
|
||||
Oklahoma,69903
|
||||
Oregon,98386
|
||||
Pennsylvania,46058
|
||||
Rhode Island,1545
|
||||
South Carolina,32007
|
||||
South Dakota,77121
|
||||
Tennessee,42146
|
||||
Texas,268601
|
||||
Utah,84904
|
||||
Vermont,9615
|
||||
Virginia,42769
|
||||
Washington,71303
|
||||
West Virginia,24231
|
||||
Wisconsin,65503
|
||||
Wyoming,97818
|
||||
District of Columbia,68
|
||||
Puerto Rico,3515
|
|
File diff suppressed because it is too large
Load Diff
Binary file not shown.
File diff suppressed because it is too large
Load Diff
Reference in New Issue
Block a user