Practical sheet 7: Floating-Point Computations

The first part of this sheet looks at errors in floating point calculations and the unfortunate
possibility that they can effectively destroy a calculation if they accumulate in the wrong way.

By contrast, the rest of the sheet looks at some useful numerical methods where the errors
do not generally cause problems.

Section 7a: Errors in floating point calculations

Task 7.1. The fact that a Python float uses a binary representation of numbers and has
limited magnitude and precision has consequences which can be surprising.

Please watch the section 7 video about “Floating point numbers” if you have not already
watched it.

Review truncation. py on Ultra used and discussed in detail in the video. It is probably
best to use the “stepping through a program” feature of Thonny.

Here is another example for you to try. Note that the first line is a short-hand which assigns
0.1tox,0.2toyand 0.3 to z.

X, ¥y, z = 0.1, 0.2, 0.3
print(x)

print(y)

print(z)

print(x + vy - z)

print((x +y) -z, x + (y - z))
print((x + y) % Z == X%z + y%xz)

What do we learn from these examples?
« that floats only approximate real numbers.
+ that the error of approximation can depend on the order in which we do calculations.
« that it is not reliable to check if two floats are equal.

For the last of these reasons, a float should never be compared directly against 0. 0. Instead,
one chooses a small € > () and checks if a given expression is less than ¢ in absolute value:

eps = le-15
closeto® = abs(x + y - z) < eps
print(closeto0)

Equivalently, if x and y are floats, one should check if abs(x-y) < eps instead of checking
if x == y. Now what € should one take? Well, it depends on the problem! Even worse,
sometimes it only becomes clear after the fact ... This does not mean that we should despair,
rather that we should be alert to the possibility that errors may arise if we are not careful. Too
large a value of € may mean an unnecessarily inaccurate answer to a calculation; too small a
value may lead to an infinite loop or other undesirable behaviour.

Exercise 7.2. Here’s a more complex and interesting example, relating to the iteration

_ 14 3
Tpy1 = 5 Ty + 5 Tn-

Mathematical theory: on paper, show that, if we start with xy = 1 and 1 = —% and then

apply the iteration, the result is that x,, = (—%)” for all natural numbers n.. Hint: use the
method of induction, i.e. verify that the values given for g and x; agree with this general
formula and then show that, if we plug in @, = (—%)" ' and z,, = (—#)" to the
iteration, we obtain 2,41 = (—£)"".

Python: Write a program (no functions needed) to:
+ Use the iteration to compute a list containing values xq, x1, . . ., 50.

» Compute a second list containing the numbers you would get by directly using the

theoretical solution @, = (—%)".

« Compute a third list containing the difference between the corresponding values of x,,
obtained using the two methods: this is the “error” of the iteration.

» Compute a fourth list containing the relative difference between the corresponding
values of x,, obtained using the two methods, i.e. the difference divided by the “true
value” in the second list. This is the “relative error” of the iteration.

« Print out, one row for each value of n, the four numbers obtained for each value of n.

You should see that your first Python list follows the theoretical pattern approximately and
that the error gets larger while the true answer gets smaller with severe consequences for
large n; the result is that the relative error explodes.

What causes the problem here is that each iteration computes the difference between two
numbers which have the same sign and are quite close to each other. This is essentially the
same issue as we saw in truncation.py.

Although these examples show that floating point calculations can go wrong, it is often the
case that they do not and the rest of this sheet is about methods that do generally work.
Designing numerical calculations to avoid accumulation of errors is an important topic in its
own right but we do not have time to look at it further in this module.

Section 7b: Finding roots numerically using the bisection method

Task 7.3. For a continuous function f(x), a reliable way to find a root, a solution of

f(z) = 0, is the bisection method.

We need to start by finding (or guessing) two numbers a and b such that f(a) and f(b)
have opposite sign, i.e. either f(a) > 0and f(b) < Oor f(a) < Oand f(b) > 0. This
means that there must be some x between a and b for which f(x) = 0, i.e. there is a root
between a and b.

Suppose for now that f(a) > 0 and f(b) < 0. You can think about how to change what
follows if it's the other way round (and you will need to do so for some examples which follow).

We can now repeat the following process until a is very close to b:

- setm = (a + b)/2,i.e. mis half-way between @ and b.

- if f(m) > 0, change a to be equal to m; otherwise change b to be equal to m.
Why does this work? After each iteration it is still true that f(a) > 0 and f(b) < 0 and so
the root lies between a and b. Moreover each iteration halves the distance between a and b.
Why not repeat until @ = b? In fact there is no guarantee that this will definitely happen.
Because floats have finite precision, we may end up with @ and b different from each other
but with no available float values between a and b. Then when we compute m it will either
equal a or equal b. This may lead to an infinite loop. To avoid this problem, we stop when
|a — bl is less than some specified threshold which may need to depend on the context.

For example, suppose that we want to find the solution of ™% = % Letting

f(x) =e™® — 1, wenote that f(0) > Oand f(1) < 0, so we take these as our starting
points: @ = 0 and b = 1. Write a Python program to find a root of f(:l:) using the method
described above and which stops when |a — b| < 10715, Remember that the way to write
10~ in Python is 1e-15.

In your program, print out @, b, m and f(m) To print them nicely, you might want to look
back at the later parts of section B&.

Exercise 7.4. Pretend that Python cannot compute arbitrary powers of numbers but can
only do the basic arithmetic operations: +, —, % and /.

Compute /2 with error less than 10~ by solving 22 = 2 using the bisection method and
note the number of iterations needed (starting with @ = 1 and b = 2).

Apply the same approach to compute 21/3 with error less than 10~1°. You need to choose a
function f(x) which can be calculated without using % and which has 21/3 as a root.

Exercise 7.5. Our examples so far all have solutions which are in fact easily computable
directly using standard Python operators and functions: 21/2 21/3 ang log 2. Now

f(z) = e — 2 = 0 has no solution in closed form, yet it is easy to find it using bisection.
Do so, and again note the number of iterations needed.

Exercise 7.6. Write a function bisect(f,a,b,eps) taking as arguments the name of a
Python function that calculates a mathematical function whose root is sought, two suitable
starting points @ and b, and an €. You may assume that the starting points are OK, i.e. that
f(a)f(b) < 0. Agood test for your function would be f(z) = cos(z) witha = 1 and

b = 2, i.e. in Python you would do:

from math import cos, pi
x = bisect(cos, 1, 2, 1le-15)
print(x-pi/2)

Then try changing the range in which the root is sought: take @« = 4 and b = 5. Does your
bisect function still work? If not, why not and how can you fix it?

Section 7c: Finding roots numerically using the Newton-Raphson method

Exercise 7.7. The Babylonians computed \/E as follows. Starting with some xy > 0, let

Tn, a
Tntl = o + B (7.1)

and stop when |z, 11 — x,| is small enough.

Using this method, the Babylonians found that \/§ ~ 30547/21600, which is correct to six
decimal places.

Code this in Python (using floats not fractions) to approximate \/§ You can start with

xo = 1 or ¥y = 2 and stop when |z, 1 — x,,| < 10712

How many iterations does your code need? Compare this to the number of iterations needed
in exercise [Z4. You should find that the bisection method needed many more iterations.

Task 7.8. The iteration in the previous exercise is a particular form of the Newton—Raphson
method: to find a solution of differentiable f(x) = 0, we start at some suitable z and
iterate

f(@n)

n

(7.2)

until a desired accuracy is reached. For this to work, one must have f’(z) # 0 in some
interval near the solution.
Verify on paper that, for function f(:z:) =z2—a, equation (IZ2) gives equation (IZ1]).
Now apply the Newton-Raphson method to the function you used with the bisection method
to approximate 2'/3:

« obtain f’(x) and deduce the iteration implied by equation (Z2)

« implement the iteration in Python starting from z = 1.

Compare the number of iterations required” to the number required using the bisection
method in exercise [Z4.

Remark 7.9. Newton—Raphson can be very efficient. However, unlike bisection, it can be
temperamental: sometimes it can “jump away” even when starting quite close to the desired
solution, e.g., try to find the smallest positive solution of cos ¢ — 0.99 = 0 starting with

xo = 0.001. Always do a sanity check when using Newton—-Raphson.

Exercise 7.10. Revisit exercise 73 and find the solution of e™* = x using
Newton-Raphson. Again compare the number of iterations needed for the bisection and
Newton-Raphson methods.

1 Impressed? Dr Wirosoetisno says that with the clnum library, it takes 7.5s to compute 21/3 to a million digits
on his desktop. A billion digits take a couple of days.

Section 7d: Series expansions
Task 7.11. Recall that the Taylor series for sin x is

A

smmzx—g—l—g—--- (7.3)
which converges absolutely (cf. later in Analysis) for all . The formula for the coefficient of
2% lis (—=1)"1/(2i — 1)! for positive integer 7.

Write a function sintn(x,n) which calculates the sum of the first n terms in the expansion
for specified x.

Plot sintn(x,n) for x € (—m,) and several values of n (on the same plot with different
colour lines). You should be able to see the convergence of the Taylor series to Sin z as n
increases.

Section 7e: Numerical approximation of integrals

Task 7.12. Please watch the section 7 video about “The trapezoidal rule” if you have not
already watched it.

In the video, the “trapezoidal rule” for approximating an integral was presented and the
Python code used is presented in trapezoidal . py on Ultra.

Another method for approximating an integral is the “mid-point rule”.

If you know what the mid-point and trapezoidal rules are, then skip to the next paragraph.
Otherwise, Google “midpoint rule” and read the page on www.dummies.com. Then Google
“trapezoidal rule” and read the Wikipedia page.

Now review trapezoidal.py.

Modify a copy of trapezoidal . py so that it implements the mid-point rule instead of the
trapezoidal rule.
Exercise 7.13. Compare the performance of the mid-point and trapezoidal rules for

1
approximating f_l €?* dx. In other words, how does the accuracy depend on the number of
“slices” for both rules. Which is better?

What next?

You have now reached the end of the core material for the module, i.e. what is needed in
order to be able to complete all the quizzes and to be able to get most, perhaps all, of the
marks for the second assignment.

If you wish to take the Mathematical Modelling Il module next year, you should also make
sure to complete section 8. Otherwise, it might be time to work through the “Beyond the
basics” sections of practical sheets 2 to 6 if you have not already done so.

https://www.dummies.com/education/math/calculus/how-to-approximate-area-with-midpoint-rectangles
https://en.wikipedia.org/wiki/Trapezoidal_rule

	Floating-Point Computations
	Errors in floating point calculations
	Finding roots numerically using the bisection method
	Finding roots numerically using the Newton-Raphson method
	Series expansions
	Numerical approximation of integrals

