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Aim of Speaker Embedding Networks
e A speaker embedding network aims to find a speaker
representation space in which vectors (embedding) of the same
speaker are close and those of different speakers are far apart.
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Structure of Speaker Embedding Networks
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Statistics Pooling

* The statistics pooling layer concatenates the mean and the standard
deviation of the activations from the last convolutional layer.

h 2 \
Output hl ht I [0- ( Utterance-level ...
channels of : | e oo nodes
the last conv |
layer ooling ! H " ﬁm :
\ |
/ \
¢\ e ﬂ ,,,,,,,,,
/ \\
/ /
/ r / \ Speaker
A e / V. - -  embedding
T vector
( 1 Z |
I t=1 :
{t-3,t,t+3} I I
| 1 T '
e , T |
' y 9= —Diag E bhihy —ppt |,
— \ T l
=1
\\ ,

NN I . S S S S S D S S S S D S e e e

P ——



&

1 HO?
POLYTECHNIC UNIVERSITY
1k FE T A

Attentive Statistics Pooling

* |n attentive statistics pooling (ASP), we pay more attention to
discriminative frames at the last conv layer.
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Short-Time Spectral Pooling
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Motivation of STSP

e Limitation of statistics pooling

* The temporal feature maps at the last frame-level layer is non-stationary,
meaning that we should not look at the global statistics only.

* From a Fourier perspective, the mean only exploits the information in
the zero frequency component (DC component) in the spectral domain.
The variance is sum of the spectrum over all frequencies
e Solution: Short-time spectral pooling (STSP)

* Exploit the local structure of the last frame-level feature maps through
short-time Fourier transform (STFT).

e Extract multiple components (but not all) of the spectral representation
as the aggregated embeddings.

Y. Z. Tu and M. W. Mak, Short-time spectral aggregation for speaker embedding", in Proc. ICASSP’21 8
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Attentive Short-Time Spectral Pooling
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Motivation of Attentive STSP
e Limitation of STSP

* The brute average of the spectrograms along the temporal axis
ignores the importance of individual windowed segments.

e Because phonetic information is rarely distributed uniformly
across an utterance, different segments of an utterance have
different speaker discriminative power.

 Solution: Attentive STSP

* Apply a self-attention mechanism on the windowed segments
in each spectrogram to emphasize the discriminative ones

Y.Z. Tu and M.W. Mak, "Aggregating Frame-Level Information in the Spectral Domain With
Self-Attention for Speaker Embedding," IEEE/ACM Transactions on Audio, Speech and
Language Processing, vol. 30, Feb. 2022 11
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Computing Attention Weights
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Property of M.(k) and P.(k)

* Attentive STSP facilitates the aggregation by retaining the low

spectral components only, because most of the feature energy
locates at the low-frequency region.
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N. Rahaman, A. Baratin, D. Arpit, F. Draxler, M. Lin, F. Hamprecht, Y. Bengio, and A. Courville, “On the spectral bias
of neural networks,” in Proc. International Conference on Machine Learning, 2019, pp. 5301-5310.

3.5 4.0

14



QL ey
Experimental Setup

Acoustic . . . . . Score norm

VoxCeleb1 :I(,Ze? VoxCeleb2-dev (2.09
million utterances VoxCeleb1-dev N/A
-test bank
from 5984 speakers)
features

Concatenated speech  Longest two

40-D voxCelebl&2-dev( i ihe came video  utterances of

VOICES19c filter- 2.1 million ,
session augmented  each speaker
-eval bank utterances from . : .
with reverberation in the PLDA
features 7185 speakers) _ .
and noise training data
SREO4-10, SWBD, clean utterances
SRE16-eval : . Unlabeled
23-D Mixer6 (238,618 from embedding
& SRE18- . development
CMN2-eval MFCCs utterances from training data data
5402 speakers) excluding SWBD

https://github.com/kaldi-asr/kaldi/tree/master/egs/voxceleb/v2
https://github.com/kaldi-asr/kaldi/tree/master/egs/sre16/v2
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Experimental Setup

k No. of fth
Sl e Attention networ o. of paras of the STFT config.
conflg involved emb. sys.

Statistics pooling 3.48 M
Multi-head
attentive pooling  FC (500) + tanh + FC (2) 5.00 M N/A
(H = 2)
STSP (R = 3) N/A 425 M Rectangular
_ window function,

Attentive STSP £t (500) + tanh + FC (1) 4.61M STFT length: 8,
(H=1,R=2) step size: 8

Optimizer: stochastic gradient descent (SGD) optimizer with a
momentum of 0.9

Learning rate: 0.02@0, 0.05@20, 0.025@50, 0.0125@380
H = 128, 100 epochs

16
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EER Performance

 Both STSP and attentive STSP
BN Stats pooling 8.07 outperform statistics
. Wiz pooling, which verifies that
74 : iﬁ:g:?;_l,g_z, including multiple spectral
components for aggregation
is beneficial.

On VoxCelebl and VOICES19,
multi-head attentive pooling

5.78

(MHAP) and STSP perform
similarly, but STSP
substantially outperforms
MHAP on SRE16 and SRE18-
CMN?2.

e Attentive STSP achieves the
Voxcelebl VOICES19c-eval SRE1l6-eval SRE18-CMN2-eval
-test best performance

consistently on all tasks.
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0.50 -

0.45 1

minDCF

0.25 1

0.20 -

0.15-

Min DCF

Stats pooling 0.498 0.499
STSP (R=3)

Att_STSP
(H=1, R=2)

Voxcelebl VOICES19c-eval SRE1l16-eval SRE18-CMN2-eval
-test

Both STSP and attentive STSP
outperform statistics
pooling, which verifies that
including multiple spectral
components for aggregation
is beneficial.

On VoxCelebl and VOICES19,
multi-head attentive pooling

(MHAP) and STSP perform
similarly, but STSP
substantially outperforms
MHAP on SRE16 and SRE18-
CMN?2.

Attentive STSP achieves the
best performance
consistently on all tasks.




Observations

e Attentive short-time spectral pooling (STSP) are able to
aggregate the information beyond the DC component,
making it preserves more speaker information than
statistics pooling.

e Attentive STSP exploits the local stationarity in the frame-
level features and have better robustness against the non-
stationarity in the temporal domain.

* Applying a self-attention mechanism on the windowed
segments is effective to produce discriminative
embeddings.



Mixture Representation Pooling
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Mixture Representation Pooling

* In mixture representation pooling (MRP), the attention weights
are normalized across the K attention heads.
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W.W. Lin and M.W. Mak, "Mixture Representation Learning for Deep Speaker Embedding", IEEE/ACM Transactions
on Audio, Speech and Language Processing, vol. 30, Feb 2022
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ASP vs. MRP

ASP MRP
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W.W. Lin and M.W. Mak, "Mixture Representation Learning for Deep Speaker Embedding", IEEE/ACM Transactions

22
on Audio, Speech and Language Processing, vol. 30, Feb 2022
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Attention with Contextual Info

* The mixture assignment should not change frequently across
frames because adjacent frames are similar to each other.

 We introduce contextual information into the attention by using a
block of frames adjacent to frame t to compute the score.

gty p,) = om + 1 > hy

X-vector

.
512 x K-
weights

channels{

\/
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Attention with Contextual Info

Heads

() — ] — ) (A) MRP with three heads

Frames

h— e R e e e ——

More fluctuation in frame assignments

Heads
S 0 U 1 — 2 (B) CMRP with three heads
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Results
VoxCelebl VOIiICES19-dev VOiICES19-eval
Model Pooling Method EER(%) minDCF EER(%) minDCF EER(%) minDCF
X-vector network Mean & STD 2.14 0.197 2.66 0.300 6.98 0.520
Wide x-vector network Mean & STD 2.03 0.219 2.65 0.294 6.62 0.503
Densenet121 Mean & STD 1.37 0.156 1.53 0.222 5.53 0.415
Densenet121 ASP 1.22 0.150 1.84 0.197 5.20 0.402
Densenet121 MRP 1.10 0.131 1.65 0.184 4.77 0.390

* The proposed mixture representation pooling (MRP) performs

better than vanilla statistics pooling and attentive statistics

pooling (ASP).

MRP shows the most significant improvement in VOICES19

evaluation set.

25



Concluding Remarks

* Mixture representation pooling is inspired by Gaussian
mixture models and attention mechanisms.

* [nstead of normalizing frame-level features across all frames
in an utterance, MRP considers each attention head as a
Gaussian component of a GMM.

exp (Score(ht, Vk)) MRP: Qtp = exp (score(h¢, vi))
Zle exp (score(hy, vi)) S Z,{;l exp (score(h¢, vi))

ASP: Otk =

* The contextual information also help improves speaker
embedding by reducing the fluctuation in the mixture
assignments across frames.

26
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Attentive STSP vs. MHAP

Feature sequence before attention, h, Feature sequence before attention, G.(n)
21 0.4 1
0.2 1
01 - - - - 0.01 . - . '
0 200 400 600 800 0 200 400 600 B0D
Attention weights Attention weights
0.010 1 s
0.005 0.02 7
0 Doo p L oS . .'- (A & .' TS N ' b v - ' 000 p ’ = . -' .
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Feature sequence after attention

0.004 - 0.010 4 . i == Head0
) : i [resin Headl
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0.000 1 - - - v 0.000 1 4 = - v
0 200 400 600 800 0 200 400 600 800
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MHAP with H = 2
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* |n attentive STSP, the attended features by segment-level attention
have less variation along the temporal axis than those in frame-
level attentive pooling.
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Experiments

e Training data for DNN and PLDA: 7302 speakers from
VoxCeleb1 and VoxCeleb2.

* Test data: VOICES19 evaluation set. VOICES19 focuses on
speaker verification under distracting noise and room
reverberation.

* Acoustic vectors: 40-dim filter-bank features with mean norm

* VAD: Kaldi’s energy-based VAD

* DNN: We used three models in the experiments, namely, x-

vector network, wide x-vector network (channels size are
doubled), and Densenet121.
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