The Secure Web: TLS and HTTPS

Introduction to Computer Security Naercio Magaia and Imran Khan

Contents

- Diffie-Hellman Exchange
- Secure Sockets Layer and Transport Layer Security
 - Protocol Structure
 - Record Layer
 - Handshake Protocol
- HTTPS

Diffie-Hellman Key Exchange

- First published public-key algorithm
- By Diffie and Hellman in 1976 along with the exposition of public key concepts
- Used in a number of commercial products (SSL/TLS, WhatsApp Signal protocol, etc.)
- Practical method to exchange a secret key securely that can then be used for subsequent encryption of messages
- Security relies on difficulty of computing discrete logarithms

Modular maths (non-examinable)

- Recall the modulus operator, where $a \mod q$ gives the remainder when a is divided by q
- Modular arithmetic is where the answers wrap around in a circle
 - \circ 12 + 18 mod 9 = 30 mod 9 = 3
- Modular exponentiation $a^x \pmod{q}$ is quickly calculated even if a and x are large
 - $\circ \quad a^x \pmod{q} = (ay \pmod{q} * a^z \pmod{q}) \pmod{q} \pmod{q} \pmod{q}$
- Modular logarithms are difficult to calculate $\log_a(y) \pmod{q}$ the discrete logarithm problem

Diffie-Hellman Key Exchange

- Pick (large) prime number q and α such that $\alpha < q$ and α is primitive root to q (there exists a power of α such that all the relatively prime numbers y to q have α z (mod q) = y). α and q are public
- User A pick X_A such that X_A < q and makes public $Y_A = \alpha^{X_A} \pmod{q}$
- User B pick X_B such that X_B < q and makes public $Y_B = \alpha^{X_B}$ (mod q)
- The secret key for A is calculated by $Y_B^{X_A}$ (mod q) = $(\alpha^{X_B})^{X_A}$ (mod q) = $\alpha^{(X_A*X_B)}$ (mod q)
- The secret key for B is Y_AXB (mod q) the same number
- And remember that calculating logarithms is hard
- Takeaway is that Diffie Hellman allows two parties to compute a secret key whilst publicly passing the necessary information

Diffie-Hellman Example

Have

- Prime number q = 353
- Primitive root $\alpha = 3$

- A computes $Y_A = 3^{97} \mod 353 = 40$
- •B computes $Y_B = 3^{233} \mod 353 = 248$

Then exchange and compute secret key:

- For A: $K = (Y_B)^{XA} \mod 353 = 248^{97} \mod 353 = 160$
- For B: $K = (Y_A)^{XB} \mod 353 = 40^{233} \mod 353 = 160$

Attacker must solve:

- 3^{α} mod 353 = 40 which is hard
- Desired answer is 97, then compute key as B does

Secure Sockets Layer (SSL) and Transport Layer Security (TLS)

- One of the most widely used security services
- General-purpose service implemented as a set of protocols that rely on TCP
- Subsequently became Internet standard RFC4346: Transport Layer Security (TLS)

Two implementation choices:

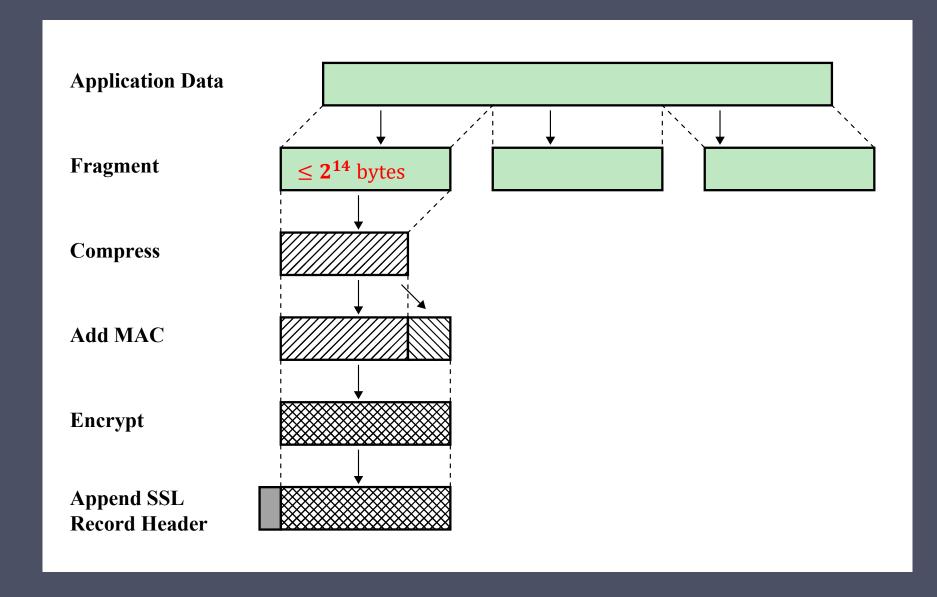
Provided as part of the underlying protocol suite

Embedded in specific packages

SSL/TLS Protocol Stack

Change Handshake Heartbeat Alert **Cipher Spec HTTP Protocol Protocol Protocol Protocol Record Protocol TCP** IP

TLS Concepts


TLS Session

- An association between a client and a server
- Created by the Handshake Protocol
- Define a set of cryptographic security parameters
- Used to avoid the expensive negotiation of new security parameters for each connection

TLS Connection

- A transport (in the OSI layering model definition) that provides a suitable type of service
- Peer-to-peer relationships
- Transient
- Every connection is associated with one session

TLS Record Protocol Operation

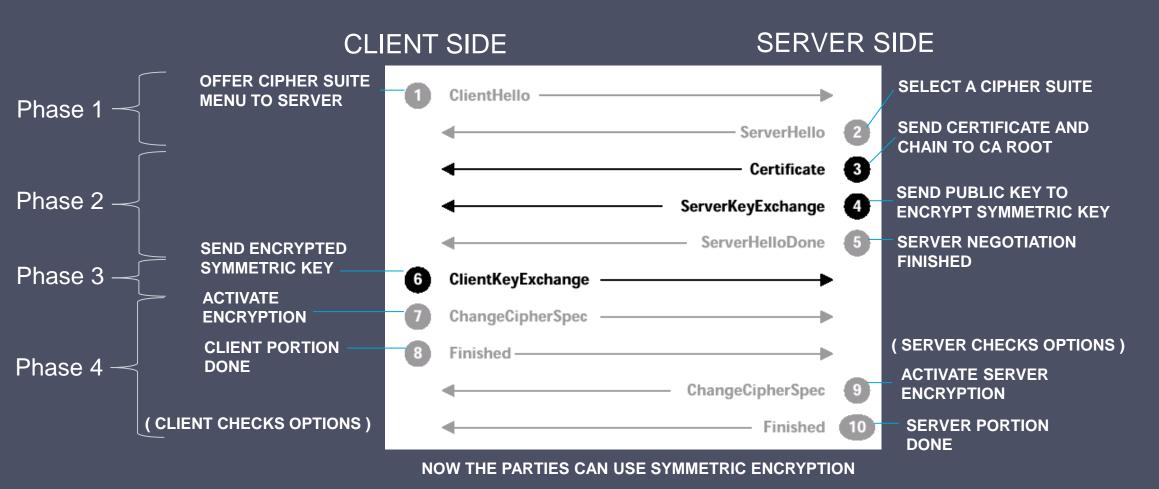
Change Cipher Spec Protocol

- One of four TLS specific protocols that use the TLS Record Protocol
- Is the simplest
- Consists of a single message which consists of a single byte with the value 1
- Sole purpose of this message is to cause pending state to be copied into the current state
 - Hence updating the cipher suite to be used in the connection

Handshake Protocol

- Most complex part of TLS
- Is used before any application data are transmitted
- Allows server and client to:

Negotiate encryption and MAC algorithms



Negotiate cryptographic keys to be used

- Comprises a series of messages exchanged by client and server
- Exchange has four phases

TLS Messages

SOURCE: THOMAS, SSL AND TLS ESSENTIALS

Alert Protocol

Conveys **TLS-related alerts** to peer entity

Alert messages are compressed and encrypted

Each message consists of two bytes:

First byte takes the value warning (1) or fatal (2) to convey the severity of the message

Second byte contains a code that **indicates the specific alert**

If the level is fatal, TLS immediately terminates the connection

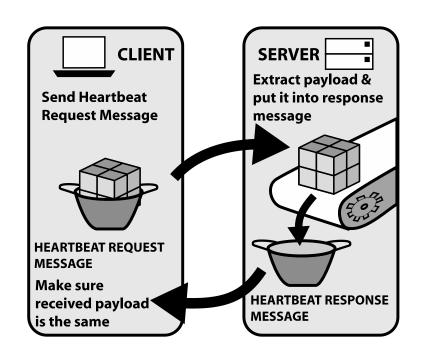
Other connections on the same session may continue, but **no new connections** on this session may be established

Heartbeat Protocol

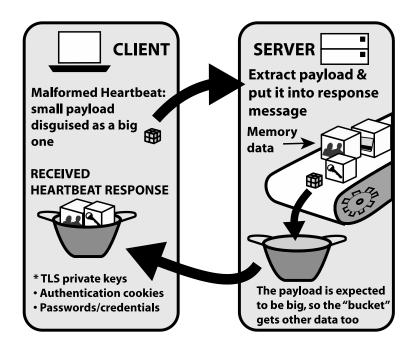
- A periodic signal generated by hardware or software to indicate normal operation or to synchronize other parts of a system
- Typically used to monitor the availability of a protocol entity
- Defined in 2012 in RFC 6250
- Runs on top of the TLS Record Protocol
- Use **is established during Phase 1** of the Handshake Protocol
- Each peer indicates whether it supports heartbeats
- Serves two purposes:
 - Assures the sender that the recipient **is still alive**
 - Generates activity across the connection during idle periods

SSL/TLS Attacks

Attacks on the Handshake Protocol


Attacks on the record and application data protocols

Four general categories:


Attacks on the PKI

Other attacks

The Heartbleed Exploit

(a) How TLS Heartbeat Protocol works

(b) How TLS Heartbleed exploit works

HTTP over TLS (HTTPS)

- Combination of HTTP and SSL to implement secure
 communication between a Web browser and a Web server
- Built into all modern Web browsers
 - URL addresses begin with https://
- Documented in RFC 2818, HTTP Over TLS
- Agent acting as the HTTP client also acts as the TLS client
- Closure of an HTTPS connection requires that TLS close the connection with the peer TLS entity on the remote side, which will involve closing the underlying TCP connection

Summary

- SSL and TLS
 - TLS architecture
 - TLS protocols
 - TLS attacks
 - SSL/TLS attacks
- HTTPS
 - Connection institution
 - Connection closure