Malicious Software Introduction to Computer Security Naercio Magaia and Imran Khan ### Contents - Malware Classification - Advanced Persistent Threats - Propagation - Viruses - Worms - Drive By Downloads - Social Engineering - Payloads - System Corruption - Ransomware - Botnets - Information Theft - Backdoors - Malware Countermeasures - Approaches - Anti-virus - Sandbox - Perimeter Scanning ### Malware NIST 800-83 defines malicious software (malware) as: "a program that is inserted into a system, usually covertly, with the intent of compromising the confidentiality, integrity, or availability of the victim's data, applications, or operating system or otherwise annoying or disrupting the victim." ### Classification of Malware Classified into two broad categories: Based first on how it **spreads**or propagates to reach the desired targets Then, on the **actions or**payloads it performs once a target is reached Also classified by: Those that need **a host program** (parasitic code such as viruses) Those that are independent, self-contained programs (worms, trojans, and bots) Malware that **does not**replicate (trojans and spam e-mail) Malware that **does replicate** (viruses and worms) # Types of Malware #### Propagation mechanisms include: - Infection of existing content by viruses that is subsequently spread to other systems - Exploit of software vulnerabilities by worms or drive-by-downloads to allow the malware to replicate - Social engineering attacks that convince users to bypass security mechanisms to install Trojans or to respond to phishing attacks #### Payload actions performed by malware once it reaches a target system can include: - Corruption of system or data files - Theft of service/make the system a **zombie agent** of attack as part of a botnet - Theft of information from the system/keylogging - Stealthing/hiding its presence on the system ### Attack Kits - Initially, the development and deployment of malware required considerable technical skill by software authors - The development of virus-creation toolkits in the early 1990s and then more general attack kits in the 2000s greatly assisted in the development and deployment of malware - Toolkits are often known as "crimeware" - Include a variety of propagation mechanisms and payload modules that even novices can deploy - Variants that can be generated by attackers using these toolkits creates a significant problem for those defending systems against them - Examples are: - Zeus (e.g., stealthed malware capturing and exploiting banking credentials) - Angler (e.g., exploiting Flash vulnerabilities) ### Attack Sources • Another significant malware development is the change from attackers being **individuals**, often motivated to demonstrate their technical competence to their peers, to **more organized and dangerous attack sources** such as: Politically motivated attackers **Criminals** Organized crime Organizations that sell their services to companies and nations National government agencies • This has significantly changed the resources available and motivation behind the rise of malware and has led to development of a large underground economy involving the sale of attack kits, access to compromised hosts, and to stolen information. # Advanced Persistent Threats (APTs) - Well-resourced, persistent application of a wide variety of intrusion technologies and malware to selected targets (usually business or political) - Typically attributed to state-sponsored organizations and criminal enterprises - Differ from other types of attack by their careful target selection and stealthy intrusion efforts over extended periods - High profile attacks include Aurora, RSA, APT1, and Stuxnet ### APT Characteristics #### Advanced - Used by the attackers of a wide variety of intrusion technologies and malware including the development of custom malware, if required - The individual components may not necessarily be technically advanced but are carefully selected to suit the chosen target #### Persistent - Determined application of the attacks over **an extended period** against the chosen target in order to maximize the chance of success - A variety of attacks may be progressively applied until the target is compromised #### Threats - Threats to the **selected targets** as a result of the organized, capable, and **well-funded attackers** intent to compromise the specifically chosen targets - The **active involvement of people** in the process greatly raises the threat level from that due to automated attacks tools, and also the likelihood of successful attacks ### APT Attacks #### • Aim: Varies from theft of intellectual property or security and infrastructure related data to the physical disruption of infrastructure #### • Techniques used: - Social engineering - Spear-phishing email - Drive-by-downloads from selected compromised websites likely to be visited by personnel in the target organization #### • Intent: - To infect the target with sophisticated malware with multiple propagation mechanisms and payloads - Once they have gained initial access to systems in the target organization a further range of attack tools are used to maintain and extend their access ### Viruses - Piece of software that infects programs - Modifies them to include a copy of the virus - Replicates and goes on to infect other content - Easily spread through network environments - When attached to an executable program a virus can do anything that the program is permitted to do - Executes secretly when the host program is run - Specific to operating system and hardware - Takes advantage of their details and weaknesses # Virus Components #### Infection mechanism - Means by which a virus spreads or propagates - Also referred to as the *infection vector* #### Trigger - Event or condition that determines when the payload is activated or delivered - Sometimes known as a *logic bomb* #### **Payload** - What the virus does (besides spreading) - May involve damage or benign but noticeable activity ### Virus Phases | Dormant phase | | | | | |--|---|---|---|--| | Virus is idle | Will eventually be activated by some event | | Not all viruses have this stage | | | | | | | | | Triggering phase | | | | | | Virus is activated to perform the function for which it was intended | | Can be caused by a variety of system events | | | | | | | | | | Propagation phase | | | | | | Virus places a copy of itself into other programs or into certain system areas on the disk | May not be identical to the propagating version | | Each infected program will now contain a clone of the virus which will itself enter a propagation phase | | | | | | | | | Execution phase | | | | | | Function is performed | | May be harmless or damaging | | | # Macro and Scripting Viruses NISTIR 7298 defines a macro virus as: "a virus that attaches itself to documents and uses the macro programming capabilities of the document's application to execute and propagate" - Macro viruses infect scripting code used to support active content in a variety of user document types - Are threatening for a number of reasons: - Is platform independent - Infect documents, not executable portions of code - Are easily spread - Because they infect user documents rather than system programs, traditional file system access controls **are of limited use in preventing their spread**, since users are expected to modify them - Are much **easier to write or to modify** than traditional executable viruses ### Melissa Macro Virus Pseudocode ``` macro Document Open disable Macro menu and some macro security features if called from a user document. copy macro code into Normal template file else copy macro code into user document being opened end if if registry key "Melissa" not present if Outlook is email client for first 50 addresses in address book send email to that address with currently infected document attached end for end if create registry key "Melissa" end if if minute in hour equals day of month insert text into document being opened end if end macro ``` ### Virus Classifications #### Classification by target - Boot sector infector - Infects a master boot record or boot record and spreads when a system is booted from the disk containing the virus - File infector - Infects files that the operating system or shell considers to be executable - Macro virus - Infects files with macro or scripting code that is interpreted by an application - Multipartite virus - Infects files in multiple ways #### Classification by concealment strategy - Encrypted virus - A portion of the virus creates a random encryption key and encrypts the remainder of the virus - Stealth virus - A form of virus explicitly designed to hide itself from detection by antivirus software - Polymorphic virus - A virus that mutates with every infection - Metamorphic virus - A virus that **mutates and rewrites itself completely** at each iteration and may change behavior as well as appearance ### Worms - Program that actively seeks out more machines to infect and each infected machine serves as an automated launching pad for attacks on other machines - Exploits software vulnerabilities in client or server programs - Can use network connections to spread from system to system - Spreads through shared media (e.g., USB drives, CD, DVD data disks) - E-mail worms spread in macro or script code included in attachments and instant messenger file transfers - Upon activation the worm may replicate and propagate again - Usually carries some form of payload - First known implementation was done in Xerox Palo Alto Labs in the early 1980s # Worm Replication ### Electronic mail or instant messenger facility - Worm e-mails a copy of itself to other systems - Sends itself as an attachment via an instant message service #### File sharing Creates a copy of itself or infects a file as a virus on removable media ### Remote execution capability • Worm executes a copy of itself on another system ### Remote file access or transfer capability • Worm uses a remote file access or transfer service to copy itself from one system to the other #### Remote login capability Worm logs onto a remote system as a user and then uses commands to copy itself from one system to the other # Target Discovery (1/2) - Scanning (or fingerprinting) - First function in the propagation phase for a network worm - Searches for other systems to infect - Random - Each compromised host **probes random addresses** in the IP address space using a different seed - This produces a high volume of Internet traffic which may cause generalized disruption even before the actual attack is launched - Hit-list - The attacker first **compiles a long list** of potential vulnerable machines - Once the list is compiled the attacker **begins infecting** machines on the list - Each infected machine is provided with a portion of the list to scan - This results in a very short scanning period which may make it difficult to detect that infection is taking place # Target Discovery (2/2) - Topological - This method uses **information contained on an infected victim machine** to find more hosts to scan - Local subnet - If a host can be infected **behind a firewall** that host, then looks for targets in its own local network - The host uses the subnet address structure to find other hosts that would otherwise be protected by the firewall # Worm Epidemic Dynamics - The dynamics of worm spread follows the same dynamics as epidemics - The SIR model Susceptible, Infected Recovered ### Morris Worm - Earliest significant worm infection - Released by Robert Morris in 1988 - Designed to spread on UNIX systems - Attempted to crack local password file to use login/password to logon to other systems - Exploited a **bug in the finger protocol** which reports the whereabouts of a remote user - Exploited a trapdoor in the debug option of the remote process that receives and sends mail - Successful attacks achieved communication with the operating system command interpreter - Sent interpreter a bootstrap program to copy worm over ### Worm Attacks Examples | Melissa | 1998 | E-mail worm
First to include virus, worm and Trojan in one package | | |-------------------------|----------------|--|--| | Code Red | July 2001 | Exploited Microsoft IIS bug
Probes random IP addresses
Consumes significant Internet capacity when active | | | Code Red II | August 2001 | Also targeted Microsoft IIS Installs a backdoor for access | | | Nimda | September 2001 | Had worm, virus and mobile code characteristics Spread using e-mail, Windows shares, Web servers, Web clients, backdoors | | | SQL Slammer | Early 2003 | Exploited a buffer overflow vulnerability in SQL server compact and spread rapidly | | | Sobig.F | Late 2003 | Exploited open proxy servers to turn infected machines into spam engines | | | Mydoom | 2004 | Mass-mailing e-mail worm
Installed a backdoor in infected machines | | | Warezov | 2006 | Creates executables in system directories Sends itself as an e-mail attachment Can disable security related products | | | Conficker
(Downadup) | November 2008 | Exploits a Windows buffer overflow vulnerability Most widespread infection since SQL Slammer | | | Stuxnet | 2010 | Restricted rate of spread to reduce chance of detection Targeted industrial control systems | | # WannaCry Ransomware attack in May 2017 that spread extremely fast over a period of hours to days, infecting hundreds of thousands of systems belonging to both public and private organizations in more than 150 countries This rapid spread was only slowed by the accidental activation of a "killswitch" domain by a UK security researcher It spread as a worm by aggressively scanning both local and random remote networks, attempting to exploit a vulnerability in the SMB file sharing service on unpatched Windows systems Once installed on infected systems, it also encrypted files, **demanding a** ransom payment to recover them ### Mobile Code - NIST SP 800-28 defines it as - "programs that can be shipped unchanged to a heterogeneous collection of platforms and executed with identical semantics" - Transmitted from a remote system to a local system and then executed on the local system - Often acts as a mechanism for a virus, worm, or Trojan horse - Takes advantage of vulnerabilities to perform its own exploits - Popular vehicles include Java applets, ActiveX, JavaScript, and VBScript - Most common ways of using mobile code for malicious operations on local system are: - Cross-site scripting - Interactive and dynamic Web sites - E-mail attachments - Downloads from untrusted sites or of untrusted software ### Mobile Phone Worms - First discovery was Cabir worm in 2004 - Then Lasco and CommWarrior in 2005 - Communicate through Bluetooth wireless connections or MMS - Target is the smartphone - Can completely **disable** the phone, **delete data** on the phone, or force the device to **send costly messages** - CommWarrior replicates by means of Bluetooth to other phones, sends itself as an MMS file to contacts and as an auto reply to incoming text messages # Drive-By-Downloads Exploits browser and plugin vulnerabilities so when the user views a webpage controlled by the attacker, it contains code that exploits the bug to download and install malware on the system without the user's knowledge or consent In most cases, the malware does not actively propagate as a worm does Spreads when users visit the malicious Web page # Watering-Hole Attacks - A variant of drive-by-download used in highly targeted attacks - The **attacker researches their intended victims** to identify websites they are likely to visit, then scans these sites to identify those with vulnerabilities that allow their compromise - They then wait for one of their intended victims to visit one of the compromised sites - Attack code may even be written so that it will only infect systems belonging to the target organization and take no action for other visitors to the site - This greatly increases the likelihood of the site compromise remaining undetected # Malvertising Places malware on websites without compromising them The attacker **pays for advertisements** that are highly likely to be placed on their intended target websites and **incorporate malware in them** Using these malicious ads, attackers can infect visitors to sites displaying them The malware code may be dynamically generated to either reduce the chance of detection or to only infect specific systems Has grown rapidly in recent years because they are **easy to place on desired websites** with few questions asked and are hard to track Attackers can place these ads for as little as a few hours, when they expect their intended victims could be browsing the targeted websites, greatly reducing their visibility # Clickjacking - Also known as a user-interface redress attack - A user can be led to believe they are typing in the password to their email or bank account, but are instead typing into an invisible frame controlled by the attacker - Using a similar technique, keystrokes can also be hijacked - Vulnerability used by an attacker to collect an infected user's clicks - The attacker can force the user to do a variety of things from adjusting the user's computer settings to unwittingly sending the user to Web sites that might have malicious code - By taking advantage of Adobe Flash or JavaScript an attacker could even **place a button under or over a legitimate button** making it difficult for users to detect - A typical attack uses multiple transparent or opaque layers to trick a user into clicking on a button or link on another page when they were intending to click on the top-level page - The attacker is **hijacking clicks** meant for one page and routing them to another page # Social Engineering "Tricking" users to assist in the compromise of their own systems Spam Unsolicited bulk e-mail Significant carrier of malware Used for phishing attacks Trojan horse Program or utility containing harmful hidden code Used to accomplish functions that the attacker could not accomplish directly Mobile phone Trojans First appeared in 2004 (Skuller) Target is the smartphone # Payload System Corruption #### Chernobyl virus - First seen in 1998 - Example of a destructive parasitic memoryresident Windows 95 and 98 virus - Infects executable files when they are opened and when a trigger date is reached, the **virus deletes data** on the infected system by overwriting the first megabyte of the hard drive with zeroes, resulting in massive corruption of the entire file system #### Klez - First seen in October 2001 - Mass **mailing worm** infecting Windows 95 to XP systems - Spreads by e-mailing copies of itself to addresses found in the address book and in files on the system - It can **stop and delete some anti-virus programs** running on the system - •On trigger date causes files on the hard drive to become empty #### Ransomware - Encrypts the user's data and demands payment in order to access the key needed to recover the information - PC Cyborg Trojan (1989) - Mid-2006 a number of worms and Trojans appeared that used publickey cryptography with incresasingly larger key sizes to encrypt data - The user needed to pay a ransom, or to make a purchase from certain sites, in order to receive the key to decrypt this data # Payload System Corruption #### Real-world damage - Causes damage to physical equipment - Chernobyl virus rewrites BIOS code - Stuxnet worm - Targets specific industrial control system software - The centrifuges reports of much higher-than-normal failure rates - There are concerns about using **sophisticated targeted malware** for industrial sabotage #### Logic bomb Code embedded in the malware that is set to "explode" when certain conditions are met ### Ransomware #### WannaCry - Infected a large number of systems in many countries in May 2017 - When installed on infected systems, it encrypted a large number of files and then demanded a ransom payment in Bitcoins to recover them - Recovery of this information was generally only possible if the organization had good backups and an appropriate incident response and disaster recovery plan - Targets widened beyond personal computer systems to include mobile devices and Linux servers - Tactics such as threatening to publish sensitive personal information, or to permanently destroy the encryption key after a short period of time, are sometimes used to increase the pressure on the victim to pay up # Payload – Attack Agents (Bots) - Takes over another Internet attached computer and uses that computer to launch or manage attacks - *Botnet* collection of bots capable of acting in a coordinated manner - Uses: - Distributed denial-of-service (DDoS) attacks - Spamming - Sniffing traffic - Keylogging - Spreading new malware - Installing advertisement add-ons and browser helper objects (BHOs) - Attacking IRC chat networks - Manipulating online polls/games ### Remote Control Facility - Distinguishes a bot from a worm - Worm propagates and activates itself - Bot is **initially controlled** from some central facility - Typical means of implementing the remote-control facility is on an IRC server - Bots join a specific channel on this server and treat incoming messages as commands - More recent botnets use covert communication channels via protocols such as HTTP - Distributed control mechanisms use peer-to-peer protocols to avoid a single point of failure - One effective counter measure against a botnet is to take-over or shutdown its command-and-control server network ## Payload – Information Theft (Keyloggers and Spyware) #### Keylogger - Captures keystrokes to allow attacker to monitor sensitive information - Typically uses some form of filtering mechanism that **only returns information close to keywords** ("login", "password") #### Spyware - Subverts the compromised machine to allow **monitoring of a wide range of activity** on the system - Monitoring history and content of browsing activity - Redirecting certain Web page requests to fake sites - Dynamically modifying data exchanged between the browser and certain Web sites of interest ## Payload – Information Theft (Phishing) - Phishing exploits social engineering to leverage the user's trust by masquerading as communication from a trusted source - Include a URL in a spam e-mail that **links to a fake Website** that mimics the login page of a banking, gaming, or similar site - Suggests that **urgent action is required** by the user to authenticate their account - Attacker exploits the account using the captured credentials - Spear-phishing - Recipients are carefully researched by the attacker - E-mail is **crafted to specifically suit its recipient**, often quoting a range of information to convince them of its authenticity ## Payload – Stealthing (Backdoor) - Also known as a *trapdoor* - Secret entry point into a program allowing the attacker to gain access and bypass the security access procedures - *Maintenance hook* is a backdoor used by Programmers to debug and test programs - Difficult to implement operating system controls for backdoors in applications ## Payload – Stealthing (Rootkit) - Set of hidden programs installed on a system to maintain covert access to that system - Hides by subverting the mechanisms that monitor and report on the processes, files, and registries on a computer - Gives administrator (or root) privileges to attacker - Can add or change programs and files, monitor processes, send and receive network traffic, and get backdoor access on demand ### Rootkit Classification Characteristics Persistent Memory based User mode Kernel mode Virtual machine based External mode ## System Call Table Modification by Rootkit ## Malware Countermeasure Approaches • Ideal solution to the threat of malware is **prevention** #### Four main elements of prevention: - Policy - Awareness - Vulnerability mitigation - Threat mitigation If prevention fails, technical mechanisms can be used to support the following threat mitigation options: Detection, Identification, Removal #### Generations of Anti-Virus Software #### First generation: simple scanners - Requires a **malware signature** to identify the malware - Limited to the detection of known malware #### Second generation: heuristic scanners - Uses **heuristic rules** to search for probable malware instances - Another approach is integrity checking #### Third generation: activity traps • Memory-resident programs that **identify malware by its actions** rather than its structure in an infected program #### Fourth generation: full-featured protection - Packages consisting of a variety of anti-virus techniques used in conjunction - Include scanning and activity trap components and access control capability ## Sandbox Analysis - Running potentially malicious code in an emulated sandbox or on a virtual machine - Allows the code to execute in a **controlled environment** where its behavior can be closely monitored without threatening the security of a real system - Running potentially malicious software in such environments enables the detection of complex encrypted, polymorphic, or metamorphic malware - The most difficult design issue with sandbox analysis is to determine how long to run each interpretation #### Host-Based Behavior-Blocking Software - It is a type of host-based intrusion prevention system - Integrates with the operating system of a host computer and monitors program behavior in real time for malicious action - Blocks potentially malicious actions before they have a chance to affect the system - Blocks software in real time so it has an advantage over anti-virus detection techniques such as fingerprinting or heuristics #### Limitations Because malicious code must run on the target machine before all its behaviors can be identified, it can cause harm before it has been detected and blocked ### Perimeter Scanning Approaches - Anti-virus software typically included in e-mail and Web proxy services running on an organization's firewall and IDS - May also be included in the traffic analysis component of an IDS - May include intrusion prevention measures, blocking the flow of any suspicious traffic - Approach is limited to scanning malware ## **Ingress** monitors Located at the border between the enterprise network and the Internet One technique is to look for incoming traffic to unused local IP addresses #### **Egress monitors** Located at the egress point of individual LANs as well as at the border between the enterprise network and the Internet Monitors outgoing traffic for **signs of scanning** or other suspicious behavior | Name | Description | |----------------------------|---| | Advanced persistent threat | Cybercrime directed at business and political targets, using a wide variety of intrusion technologies and malware, applied persistently and effectively to specific targets over an extended period, often attributed to state-sponsored organizations. | | Adware | Advertising that is integrated into software. It can result in pop-up ads or redirection of a browser to a commercial site. | | Attack Kit | Set of tools for generating new malware automatically using a variety of supplied propagation and payload mechanisms. | | Auto-rooter | Malicious hacker tools used to break into new machines remotely. | | Backdoor (trapdoor) | Any mechanisms that bypasses a normal security check; it may allow unauthorized access to functionality in a program, or onto a compromised system. | | Downloaders | Code that installs other items on a machine that is under attack. It is normally included in the malware code first inserted on to a compromised system to then import a larger malware package. | | Drive-by download | An attack using code in a compromised web site that exploits a browser vulnerability to attack a client system when the site is viewed. | | Exploits | Code specific to a single vulnerability or set of vulnerabilities. | | Flooders (DoS client) | Used to generate a large volume of data to attack networked computer systems, by carrying out some form of denial-of-service (DoS) attack. | | Keyloggers | Captures keystrokes on a compromised system. | | Logic bomb | Code inserted into malware by an intruder. A logic bomb lies dormant until a predefined condition is met; the code then triggers an unauthorized act. | | Macro Virus | A type of virus that uses macro or scripting code, typically embedded in a document, and triggered when the document is viewed or edited, to run and replicate itself into other such documents. | | Mobile Code | Software (e.g., script, macro, or other portable instruction) that can be shipped unchanged to a heterogeneous collection of platforms and execute with identical semantics. | | Rootkit | Set of hacker tools used after attacker has broken into a computer system and gained root-level access. | | Spammer Programs | Used to send large volumes of unwanted e-mail. | | Spyware | Software that collects information from a computer and transmits it to another system by monitoring keystrokes, screen data and/or network traffic; or by scanning files on the system for sensitive information. | | Trojan horse | A computer program that appears to have a useful function, but also has a hidden and potentially malicious function that evades security mechanisms, sometimes by exploiting legitimate authorizations of a system entity that invokes the Trojan horse program. | |--------------|--| | Virus | Malware that, when executed, tries to replicate itself into other executable machine or script code; when it succeeds the code is said to be infected. When the infected code is executed, the virus also executes. | | Worm | A computer program that can run independently and can propagate a complete working version of itself onto other hosts on a network, usually by exploiting software vulnerabilities in the target system. | | Zombie, bot | Program activated on an infected machine that is activated to launch attacks on other machines. | # Table 6.1 Malware Terminology (Table can be found on page 185 in the textbook.) ## Summary - Types of malicious software (malware) - Broad classification of malware - Attack kits - Attack sources - Advanced persistent threat - Propagation-vulnerability exploit-worms - Target discovery - Worm propagation model - The Morris Worm - Brief history of worm attacks - State of worm technology - Mobile code - Mobile phone worms - Client-side vulnerabilities - Drive-by-downloads - Clickjacking - Payload-stealthing-backdoors, rootkits - Backdoor - Rootkit - Kernel mode rootkits - Virtual machine and other external rootkits - Propagation-social engineeringspan É-mail, Trojans - Spam E-mail - Trojan horses - Mobile phone Trojans - Payload-system corruption - Data destruction - Real-world damage - Logic bomb - Payload-attack agent-zombie, bots - Uses of bots - Remote control facility - Payload-information theftkeyloggers, phishing, spyware Credential theft, keyloggers, and spyware Phishing and identity theft Reconnaissance, espionage, and data exfiltration - Countermeasures - Malware countermeasure approaches - Host-based scanners - Signature-based anti-virus - Perimeter scanning approaches - Distributed intelligence gathering approaches #### Mid-Module Evaluation Your tutors want to hear how you've found this module. Please take a few minutes to let them know how its going. #### Response Scale: - ➤ **Definitely agree** you have a clear, positive answer - Mostly agree on balance, you agree more than not (even if just a bit!) - Neither agree nor disagree if you can, try not to use this: any other answer is better so you can have an impact - Mostly disagree on balance, you disagree more than not (again, even if just a bit) - Definitely disagree you have a clear, negative answer - Not applicable the question isn't relevant to you https://universityofsussex.eu.qualtrics.com/jfe/form/SV_26kx7LRRzYN3vRI SPIRIT OF SUSSEX AWARD Make sure you log your 5 points for academic feedback