
 S10

1

Sudoku game

Index

Objectives...P.2

Analysis………………………………………………..P.3-P.8

Design & Implementation……………………………..P.9-P.27

Testing & Evaluation…………………………………..P.28-P.38

Conclusion……………………………………………..P.39-P.40

Documentation………………………………………....P.41

 S10

2

Objectives
 Situation:

In this module, I am required to write a program which aim at providing an interface for

users to play sudoku game. The program should meet the following requirements:

 The program can play by PC users of different ages and different occupations.
 Rules should be defined and stated clearly in the program.
 The program can generate a game board with some of the numbers provided.
 The program can accept inputs from user and modify the content accordingly.
 The program can verify user’s solution at the end.

The program should be user-friendly. Users wish to be guided throughout the whole playing

process so that they wouldn’t meet any insolvable problems. Users may also require input check instantly to
avoid mistakes that may lead them to a cul-de-sac. They highly require a smooth procedure when
executing the program.

I should provide myself the data source including game board and the related solutions. I

Hope my skills in writing program can be enhanced through tackling the task. It is a golden opportunity for
me to improve my self-learning skills as well. At the end of this course work, I anticipate a program which
can suit the requirements mentioned above can be produced. I also expect to write some extra functions to
make the program more perfect. I will put the finished program to web so that Internet user can download it.
I hope my program can benefit sudoku players on the Internet.

 Sub-problems:

There is no distinct group of users for my program. Every Internet users that is familiar with
the rules can use my program already. So there must be users off different abilities. Thus not everyone can
solve the same sudoku and choice should be provided. To meet the requirement and solve the problem, I will
prepare a number of sudoku games with different difficulties. Every time a game is randomly chosen base on
level request by user. If user found that he/she does not want to play that distinct game, he/she can regenerate
another one.

 Besides, I should consider some common problems usually met by players of sudoku:

Sometimes users may get stuck during a game. But it is time-consuming if they really want to go on. Then
the smoothness of the program is greatly being affected. To deal with this thorny and unavoidable issue, I
will write a function which aims at providing tips to user so that they can keep going. When players have
entered wrong numbers into the game board, they may want to delete it. I will write a function which can
help users to make this operation become possible.

 General requirements:

In order to write the program, I need the following tools:

Tools Uses

1 A computer -

2 A program developing software For writing the program

3 Notepad For storing contents of suduku game

 S10

3

Analysis
 Evaluation:

 Solving methods :

There is more than one method to solve this problem. Below are some of the examples with
their advantages and drawbacks:

 Write a program using programming languages which run on windows.

Advantage:
 It does not require the connection to the Internet. Thus it can be run on any

computer without Internet connection.
 It is easy to write and can be run on machine with different platform. Thus it

meets demand of efficiency and effectiveness.
Disadvantage:

 The diversification is relatively small compared with other method such as
web-based. For instance, the font style, background color or picture. It is more
difficult to decorate the interface as lots of studies are required if you want to
produce an attractive one.

 Write a web- based program which allow user to play on the Internet.
Advantage:

 User does not need to have the executing program and text files containing
sudoku games on the computer. It helps to save space and prevent problems like
fail to open those text files.

Disadvantage:
 Web hosting is needed. The one that we can commonly found like Netfirm are not

reliable and durable. Your account may be deleted easily. However the reliable
one always cost a lot. It is not economical.

 Write the program using Macromedia Flash

Advantage:
 Animations and music can be added to improve the liveliness of the game.

Disadvantage:
 It requires good designing and drawing skills.

I have chosen the first method because:

 This module is about programming but not web authoring.
 I know little about web authoring and hosting and it takes time to acquire knowledge about it. I want to

put more time to concentrate on learning one programming language.
 My drawing skill is quite poor. I am not confident in it

 S10

4

 Programming language:

After choosing the above method, there is still a great deal of programming languages for

me to choose from:

I have chosen C to code the program as:

 In my module course, my teacher teaches me to use C. So I am quite familiar with it.
 It is time consuming to learn other type of languages.
 It is portable and can be used in different computers with little modification.

I have also chosen Notepad to produce text files as:

 Notepad is present in every windows, the text file can be modified easily.

 Program developing tool:

However, there are also a number of compliers to choose from:

 Dev-C++
 Borland C++
 Visual C++

The first one is my choice because:

 It is free of charge.
 Its debugging feature helps me a lot. Whenever I come across errors, this software will warn me

and indicate where the errors are found. So I can easily carry out debugging work and thus
enhance my efficiency.

Programming language Characteristic

1 C/C++
The source code and object code allocate a little
space only. It can operate computer at low-level
using high level language.

2 Pascal

It is popular in school and designed for teaching
structured programming.

3 Microsoft Visual Basic

It can produce a graphical user interface, its
function facilitate input and output.

4 Perl It’s execute time is longer as it use interpreter as
translator.

 S10

5

 All of my classmates use it. We can have discussions and help each other in learning it.

 Choices of interface:
Type Characteristics

Advantages: It is very efficient foe skilled
users.

Command Line
Interface(CLI)

All things are displayed as
statements on black windows.
Instructions are issued by key in
particular commands.

Disadvantages: Users need to memorize a
set of commands.
Advantages: It is intuitive so it is easy to
use.

Graphical User
Interface(GUI)

Information is displayed in multiple
ways such as picture and text.
Instructions are issued by clicking
menu or icons.

Disadvantages: It requires more resources
such as memory.

My choice: I have chosen Command Line Interface (CLI) as my program’s interface. It is because I think
learning is a gradual process, I treat GUI as a higher level skill, if I can not make simple skills through, it will
be difficult to have a good performance in adapting higher level interface. So I decide to have a try in using
CLI first.

 Methods to write out the solution:

With tools and language chosen, I started to design my solution. As my teacher advice us to

solve the problem by dividing it into several parts and write functions to implement them, I followed the
advice and break the problem into the following 5 parts, the following are them with the possible methods in
writing it:

 Generating Sudoku game:
Possible methods Advantage & Disadvantage

Advantage: It is relatively easy to write. Store games in text file, open it and read in
the contents when running the program. Disadvantage: Game’s variation is weak. It takes time to

produce text file.
Advantage: Game’s variation is much larger. No text file
is needed. Write codes to generate sudoku game Disadvantage: It takes more time to construct as the codes
involve complex logic.

My choice: I have chosen to read game from a file because I can have better control about the solution.
otherwise I may need to write a function to find solution.

 Input method:
Possible methods Advantage & Disadvantage

Advantage: Uses can own more freedom.
Ask users to key in directly using a keyboard.

Disadvantage: Wrong input is usually received.

Advantage: Uses can be guided. It is more user- friendly. Make a table with all keys required present
and ask users to choose from. Disadvantage: Displaying of table occupy large space in

program.

 S10

6

My choice: I have chosen the former one because need not always refer to the keys in table.

 Instant check for user’s input:
Possible methods Advantage & Disadvantage

Advantage: Better control of solution. Easy to write. Check against solution I prepared Disadvantage: Alternate solutions may be judged wrongly.
Advantage: It avoid wrong appraisal on alternate
solutions. Check against rules Disadvantage: It takes long time to code and code is much
longer.

My choice: I have chosen the later one because I don’t know whether there is another solution to the game I
prepared. It is a failure if I regard alternate solution as wrong one.

 Check whether the game end or not:
Possible methods Advantage & Disadvantage

Advantage: Direct and simple to write and code is short. Check if there is blanket present. If ‘yes’, the
game has not end. End for ‘no’. Disadvantage: It is clumsy if a two or three dimensional

array is used to store the content of game.

Advantage: Need not check game board. First count the number presented in the board,
then record how many inputs the user has
keyed in. If their sum is 81, end the game,
continue for sum less than 81. Disadvantage: Require longer codes.

My choice: I have chosen the first method as I think it is much easier to write.

 Check solution:
Possible methods Advantage & Disadvantage

Advantage: Better control of solution. Easy to write. Check against solution I prepared Disadvantage: Alternate solutions may be judged wrongly
Advantage: It avoid wrong appraisal on alternate solutions

Check against rules Disadvantage: It takes long time to code and code is much
longer.

My choice: I have chosen the later one because it can help to avoid wrong appraise on second solution.

 Rules:

Despite I can define the game rules on my own, I decided to adopt the one provided by
www.wikipedia.org so as to suit different users. It is because the rules are the common one which most
player of sudoku familiarize with.

The rule is to fill in all the blankets in the game board according to numbers given so that

every column, row and 3 x 3 box contains each of the digits 1 to 9 without repetition.

 S10

7

 Input method:

My program mainly accepts two groups of inputs. They are user’s keyboard input and

contents of sudoku game read fro text file.

 Data storage in text file:

There are a variety of formats used to store game contents in text file:

First type:

All contents are keyed in as one line without breaking. The non-filled spaces are represented

by either dots, 0 or just leave it as space.

Second type:

Contents are stored in 9x9 format with breaking. The non-filled spaces are also represented

by either dots, 0 or just leave it as space.

I have chosen the second format to gain better management of data. It is easy and clear to

read since match with real situation. Store data in such format can help me to eliminate missing of any
number because each line is off the same length. If one line is found to be longer or shorter, that line must
contain error.

I used dots to represent those non-filled spaces. If I use space, transcription error occurs
easily, some place may be missed. Dot is much easier to recognize. If I use 0, 0 will be read in also when
running the program. I think it is undesirable.

 S10

8

 Naming of text files:

I have prepared 30 sudoku games. 1-10 are for level easy, 11-20 are for level medium and
the rest is for level hard. Their filename are just 1-30. I have also prepared solutions of them. They are named
the same as game except –s is added at the end.

 Every time, one file is being opened base on level chosen by user. Users will then input
using a keyboard.

 Output method:

The major output of my program will all be displayed on the screen instantly when
executing the program. No other output like text file will be produced. When solution of player is not correct,
the correct answer will be read in and display on the screen.

 S10

9

Design & Implementation

 This is the overall layout of my program, my program keep going back to the main menu
after option 1 to 4 is chosen and completes:.

 S10

10

 Flowchart of the program:

From the above flowchart, my program will first greet users [greetintmessage()] and state

the rules [rules()] of playing the game. Users then can choose the level [levelchoosing()] of difficulties they
want. Afterward, a game board will be printed [printboard()] on the screen with part of the numbers given
[generatecontent()].

5 options are then available for chosen. If user’s selection is 1, the program will accept

input [acceptinput()] from he/she and check both correctness and the validness. Correct one will be filled in
and user should choose whether they want to reject invalid one. This process repeat until all grids is being
occupied [checkgameend()]. Then my program will check the solution given by user against rules
[checkrow()& checkcolumn()]. After checking, he/she will be told where the mistakes are found if solution is
not correct. Users can then select to play another game [playothergame()] or just end the program.

Option 2 is written for requesting clues [givehint()] to current board, option 3 can helps to

delete input [deletenumber()] by users before. Options 4 and 5 are used to generate another game
[changeboard()] off the same level and provide solution [printsolution()] to current board respectively.

 S10

11

 Code of main():
1
2
3
4
5

6
7
8
9
10
11

12
13
14
15

16
17
18
19
20

21
22
23
24
25
26
27
28
29
30

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

main()
{

 int level,option;
 int randnum;
 int crow,ccol;

 greetintmessage();
 rules();
 do{
 level = levelchoosing();
 initboard();

printf("==
===========\n\n");

 randnum = generatecontent(level);
 do{
 printboard();

 printf("1.Enter number\n2.Give hints to current
board\n3.Delete input before\n4.Generate new board\n5.Solution
to current board\n");

 printf("Your choice: ");
 option = verifyoption();
 if(option == '1')
 {
 printf("\nPlease choose the grid you want and input

number.");
 acceptinput();
 system("CLS");
 }
 else if(option == '2')
 {
 givehint(randnum);
 }
 else if(option == '3')
 {
 printf("\nPlease choose the grid you want to delete:");
 deletenumber(randnum);
 }
 else if(option == '4')
 {
 randnum = generatecontent(level);
 system("CLS");
 }
 else
 {
 printf("\nCorrect solution is:\n");
 printsolution(randnum);
 }
 }while(checkgameend() != 1);

 if(option != '5'){
 printf("Great!You have completed the sudoku!\n");
 printf("Let's check the answers now........\n\n");
 printboard();
 crow = checkrow();
 ccol = checkcolumn();s
 if(crow == 1 && ccol == 1)
 {
 congratulation();

 S10

12

53
54
55
56
57

58
59
60
61
62
63

 }
 else
 {
 printf("\nSorry,your solution is not correct.\n");
 printf("The correct solution should be: \n");
 printsolution(randnum);
 }
 }
 }while(playothergame() == 1);
}

 Data Structure:

There are a number of variables used in my program:

Variable name Type Function

int gameboard[9][9] array

This is the only global variables used in my program.
It is used to store the content of the game board
throughout the whole process. I choose it instead of
gameboard[81] or others because it is more close to
the real game board. It facilitate the writing of
checking part for determine allowance, especially
check 3X3 boxes. I can think of the method easily.

char input[10] character Store input by users
int i,j integer Used as counter of for-loop

int randnum integer
Store the name of files randomly generated according
to level request from users. Later it is combined with
‘.txt’ to form a filename for opening of file.

char string[10]=".txt" Character(string) Used to store ‘.txt’
char filename[20] character Used to store filename of file to be opened
char option[10]; character Store option entered by user
char readchar character Store the character read from a file every time
int startingrow
,startingcol integer Store the coordinate of the first grid of a box that the

input of users is located in
Int counter,count1,
count2 integer Counters used in functions

 S10

13

 Algorithm:

Following are the detail description and implementation of all functions that has existed in

my program:

 greetintmessage();

Description: This function welcomes the user to use my program.
Input Nil

Output Nil
Code:
64
65
66

67
68

69
70

void greetintmessage()
{
printf("\n+-
+-+-+\n");

 printf("%18cWelcome to play S-U-D-O-K-U game!\n",' ');
printf("+-
+-+\n");

 printf("\n");
}

 rules();
Description: This function state rules of sudoku game.

Input Nil
Output Nil

Code:
71
72
73
74

75

76

void rules()
{
 printf("%32cRules :\n",' ');
 printf("\n%5cFill in all the cells so that every column, row and 3 x 3\n",'

');
 printf("%5cboxes contains each of the digits 1 to 9 without repetition.\n",'

');
}

 levelchoosing();
Description: Ask users to select difficulties by key in 1, 2 or 3 which corresponds to easy, medium or hard
respectively. Users are required to input again if it is out of range. Program goes on only when correct input
is received. At the end, the request level will be returned.

Input level
Output Level[0]

Code:
77
78
79

int levelchoosing()
{
 char input[10];

 S10

14

80

81
82
83
84
85
86
87
88

89
90

91
92

printf("\n===
====\n");

 printf("Please choose the level you want(1-easy 2-medium 3-hard) : ");
 do{
 scanf("%s",input);
 if ((strlen(input) != 1) || !((input[0]<'4') && (input[0]>'0')))
 {
 printf("Input out of range!Input again please: ");
 }
 } while ((strlen(input) != 1) || !((input[0]<'4') && (input[0]>'0')));

 printf("You have choose level %d\n",input[0]-48);
 printf("Game start!\nChoose the following options please.\n");

 return input[0];
}

Line 84 & 88 is a good method to ensure user’s input is correct. It checks the length and value at a time.

 verifyinput();
Description: This function is used to check validness of user’s input in playothergame() and to confirm input
in option 1. The user input must be containing one character and ranged from 48 to 50 in terms of ASCLL
code value only. Invalid (>2 or <0) one will be rejected and re-input is requested. This verifying method is
good that the program won’t go panic when sign or English letters are type in. It returns value of input.

Input Input
Output Input

Code:
91
92
93
94
95
96
97
98
99
100

101
102

int verifyinput()
{
 char input[10];
 do{
 scanf("%s",input);
 if ((strlen(input) != 1) || !((input[0]<'2') && (input[0]>='0')))
 {
 printf("Input out of range!Input again please: ");
 }
 } while ((strlen(input) != 1) || !((input[0]<'2') && (input[0]>='0')));

return input[0];
}

 initboard();
Description: This function is used to initialize the content of the array gameboard[9][9] to be spaces at the
very beginning by means of two for-loops.

Input Nil
Output Nil

Code:
103
104
105
106

void initboard()
{
 int i,j;
 for(i = 0;i < 9;i++){

 S10

15

107
108
109
110
111

 for(j = 0;j < 9;j++){
 gameboard[i][j] = ' ';
 }
 }
}

 printboard();
Description: This is a function used to print out the game board on the screen. Columns and rows are called
1 to 9 and a to i respectively. The content is hold by a two-dimensional array. Each grid means one place in
array gameboard[9][9]. E.g. 1a= gameboard[0][0]

Input Nil
Output gameboard

The layout of my game board The relative position of each grid

Code:
112
113
114
115
116
117

118
119
120
121
122
123
124
125

126
127
128

void printboard()
{
 char space = ' ';
 char separator[] = "+- - - -+- - - -+- - - -+";
 char row = 'a';
 int i, j;

 printf("%20c 1 2 3 4 5 6 7 8 9\n",space);
 for (i=0;i<9;i++)
 {
 if(i%3 ==0)
 {
 printf("%20c%s\n",space,separator);
 }
 printf("%18c%c | %c %c %c | %c %c %c | %c %c %c

|\n",space,row+i,gameboard[i][0],gameboard[i]
[1],gameboard[i][2],gameboard[i][3],gameboard[i]
[4],gameboard[i][5],gameboard[i][6],gameboard[i]
[7],gameboard[i][8]);

 }
 printf("%20c%s\n",space,separator);
}

I define a variable for separator and space in line 114 & 115 to prevent writing it for many
times in the code. It really helps to save lines.

 S10

16

 generatecontent();
Description: It receives the value of level from level choosing. The function then randomly generates a
number called randnum. I use number to be the files name. The randnum then combine with a string
containing .txt. The outcome is then used to open the distinct file. Contents inside will be read one by one
into the array gameboard[9][9]. It returns value of randnum.

Input level
Output Content of a certain file will be displayed on game board

 + =
Concepts of how content is generated

Code:
129
130
131
132
133
134

135
136
137
138
139
140
141
142
143
144
145
146
147
148

int generatecontent(level)
{
 int i,j,randnum;
 char readchar,filename[20],string[10] = ".txt";
 FILE *fp;
 srand(time(NULL));

 if(level == '1')
 {
 randnum = (rand() %10) + 1;
 sprintf(filename,"%d%s",randnum,string);
 }
 else if(level == '2')
 {
 randnum = (rand() %10) + 11;
 sprintf(filename,"%d%s",randnum,string);
 }
 else if(level == '3')
 {
 randnum = (rand() %10) + 21;
 sprintf(filename,"%d%s",randnum,string);

 S10

17

149

150
151
152
153
154
155

156
157
158
159
160
161
162
163
164
165
166
167

168
169

 }

 fp=fopen(filename,"r");
 if(fp==NULL)
 {
 printf("cannot open the file!\n");
 exit(1);
 }

 readchar = fgetc(fp);
 while(readchar != EOF) {
 for(i=0;i<9;i++)
 {
 for(j=0;j<=9;j++)
 {
 gameboard[i][j] = readchar;
 readchar = fgetc(fp);
 }
 }
 }
 fclose(fp);

 return randnum;
}

I use sprintf() to combine the randnum(filename) with .txt for opening in line 138, 143 & 148 as there are
three levels.

 verifyoption();
Description: Verify the correctness of option inputted. It works the same as verifyinput() except the range is
1 to 5.

Input Option
Output Option

Code:
170
171
172
173
174
175
176
177
178
179
180
181

int verifyoption(void)

 char option[10];
 do{
 scanf("%s",option);
 if ((strlen(option) != 1) || !((option[0]<'6') && (option[0]>'0')))
 {
 printf("Input out of range!Input again please: ");
 }
 }while((strlen(option) != 1) || !((option[0]<'6') && (option[0]>'0')));
 return option[0];

 acceptinput();

Description: It accepts input from user. User enter column first followed by row and last is number to be
filled in. The function first check correctness of input and number. Then if the input is valid and grid being
selected is not yet filled. The array will be modified and new number is added. Otherwise it will be rejected.

The most important part of this function is it helps to check if the number is allowed to be
put in instantly. It compares the number with others in the same row, column and 3X3 box. Warning message
will be stated if repetitions are found. User can choose not to enter.

Input Row, column, number
Output Valid number is stored in array gameboard[9][9]

Code:

 S10

18

182
183
184
185
186
187

188
189
190
191
192
193
194
195
196
197

198
199
200
201
202
203
204
205
206

207
208
209
210
211
212
213
214
215
216
217

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

void acceptinput()
{
 int i , j,row, col, number;
 char input[20];
 int count1 = 0,count2 = 0;
 int startingrow,startingcol;

 do{
 col = entercolumn() - 49;
 row = enterrow() - 97;

 if (gameboard[row][col] !='.')
 {
 printf("The cell is already occupied!\n");
 printf("Input again please.");
 }
 }while(gameboard[row][col] !='.');

 printf("Which number(1-9)do you want to type in? ");
 do {
 scanf("%s",input);
 if ((strlen(input) != 1) || !((input[0]<='9') && (input[0]>'0')))
 {
 printf("Input out of range! Input again please: ");
 }
 } while ((strlen(input) != 1) || !((input[0]<='9') && (input[0]>'0')));
 number = input[0];

 for(i = 0;i < 9;i++)
 {
 if(gameboard[row][i] == number)
 {
 count1++;
 }
 if(gameboard[i][col] == number)
 {
 count1++;
 }
 }

 if(row < 3)
 {
 startingrow = 0;
 }
 else if((row > 2) && (row < 6))
 {
 startingrow = 3;
 }
 else if((row > 5) && (row < 9))
 {
 startingrow = 6;
 }
 if(col < 3)
 {
 startingcol = 0;
 }
 else if((col > 2) && (col < 6))
 {
 startingcol = 3;
 }
 else if((col > 5) && (col < 9))
 {

 S10

19

240
241
242
243
244
245
246
247
248
249
250
251

252
253
254
255
256
257
258

259

260
261
262
263
264
265
266

267
268

269

 startingcol = 6;
 }
 for(i = 0;i < 3;i++)
 {
 for(j = 0;j < 3;j++)
 {
 if(gameboard[startingrow+i][startingcol+j] == number)
 {
 count2++;
 }
 }
 }

 if((count1 == 0) && (count2 == 0))
 {
 gameboard[row][col] = number;
 }
 else
 {

printf("===
========\n");

 printf("Sorry,input number is repeated either in row,column or 3x3
box\n");

 printf("Do you really want to input(1-yes 0-no)? ");
 input[0] = verifyinput();
 if(input[0] == '1')
 {
 gameboard[row][col] = number;
 }
 }

 count1 = 0;
 count2 = 0;

}

Line 207-217 are used to check if same number as user input is appeared on either same row, column. It
works in this way:

For example, 1 is user’s input. My program compare element in grid near to 1 with user input followed by
the sequence. Counter increase by 1 if they are the same. Row works the same. A valid number should result
in counter equal to 0.
Line 217-251 are used to check if same number as user input is appeared on same 3x3 boxes. My program
first locates which 3x3 box the grid chosen by user is lying on.

 S10

20

The respective 9 3x3 boxes and position of their first place
Using concept of range and data received from user, it can be easily located. Afterward, my program
compares the rest elements on the same box with user input. The same, a valid number should result in
counter equal to 0. If both counters equal to 0, I can conclude that it is a possible solution.

 enterrow();
Description: This function ask user’s input of row and helps to check correct length and correct range (a to i)
of it.

Input Row
Output Nil

Code:
270
271
272
273
274
275
276

277
278
279
280

281
282

int enterrow(void)
{
 char input[10];
 printf("Which row do you want to choose(e.g.a)? ");
 do {
 scanf("%s",input);
 if ((strlen(input) != 1) || !((input[0]<'j') &&

(input[0]>='a')))
 {
 printf("Input out of range! Input again please: ");
 }
 } while ((strlen(input) != 1) || !((input[0]<'j') &&

(input[0]>='a')));
 return input[0];
}

 entercolumn();

Description: This function ask user’s input of column and helps to check correct length and correct range (1
to 9) of it

Input column
Output Nil

Code:
283
284
285

int entercolumn(void)
{
 char input[10];

 S10

21

286
287
288
289

290
291
292
293

294
295

 printf("\nWhich column do you want to choose(e.g.1)? ");
 do {
 scanf("%s",input);
 if ((strlen(input) != 1) || !((input[0]<='9') &&

(input[0]>'0')))
 {
 printf("Input out of range! Input again please: ");
 }
 } while ((strlen(input) != 1) || !((input[0]<='9') &&

(input[0]>'0')));
 return input[0];
}

 givehint();

Description: This function reveals the answer of a particular grid according to user’s demand. It works by
open the solution file of to the current game. Characters are read in but only the asked grid will be given to
player. It has to receive value of randnum. Tips wouldn’t be given if number is presented already.

Input Row, column
Output Requested number given

Code:
296
297
298
299
300
301

302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325

void givehint(randnum)

 int i,j,row,col;
 char space = ' ';
 char readchar,filename[20],string[10] = "s.txt";
 FILE *fp;

 col = entercolumn() - 49;
 row = enterrow() - 97;
 sprintf(filename,"%d%s",randnum,string);
 fp=fopen(filename,"r");
 if(fp==NULL)
 {
 printf("cannot open the file!\n");
 exit(1);
 }
 readchar = fgetc(fp);
 while(readchar != EOF) {
 for(i=0;i<9;i++)
 {
 for(j=0;j<=9;j++)
 {
 if(i ==row && j == col)
 {
 if(gameboard[row][col] == '.')
 {
 gameboard[i][j] = readchar;
 }
 else
 {

printf("==============================

 S10

22

326

327

328
329

330
331
332
333
334
335
336

===================================\n"
);
printf("%23c####################\n",sp
ace);
printf("%23cNumber is
presented!\n",space);
printf("%23c####################\n",sp
ace);

 }
 }
 readchar = fgetc(fp);
 }
 }
 }
 fclose(fp);
}

 deletenumber();
Description: This function helps to delete former input in the game board. If the number is provided to user.
It can not be removed. It works in the following way:
1: Open the text file containing the current game.
2: Check whether the grid entered by user is embedded with number or not.
3: If number is presented, the number will not be deleted and vice versa

Input Row, column
Output Request number deleted

Code:
337
338
339
340
341
342

343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361

void deletenumber(randnum)
{
 int i,j,row,col;
 char space = ' ';
 char readchar,filename[20],string[10] = ".txt";
 FILE *fp;

 col = entercolumn() - 49;
 row = enterrow() - 97;
 sprintf(filename,"%d%s",randnum,string);
 fp=fopen(filename,"r");
 if(fp==NULL)
 {
 printf("cannot open the file!\n");
 exit(1);
 }
 readchar = fgetc(fp);
 while(readchar != EOF) {
 for(i=0;i<9;i++)
 {
 for(j=0;j<=9;j++)
 {
 if(i ==row && j == col)
 {
 if(readchar == '.' && gameboard[row][col] != '.')
 {

 S10

23

362
363
364

365
366

367
368

369

370

371

372
373
374
375

376

377

378

379
380
381
382
383
384
385
386

 gameboard[row][col] = '.';
printf("============================
====================================
=\n");

 }
 else if(readchar == '.' && gameboard[row][col] ==

'.')
{

printf("============================
====================================
=\n");
printf("%21c#######################\
n",space);

 printf("%21cNothing can be
deleted!\n",space);
printf("%21c#######################\
n",space);

 }
 else
 {

printf("============================
====================================
=\n");
printf("%8c#########################
###############################\n",s
pace);
printf("%8cThe number can't be
cancelled.It is provided
originally!\n");
printf("%8c#########################
###############################\n",s
pace);

 }
 }
 readchar = fgetc(fp);
 }
 }
 }
 fclose(fp);
}

 checkgameend();
Description: It checks if the user has finished play the current game or not by counting grid filled with
number. The game end if the array is fully filled and 1 will be returned. Otherwise return 0 and game
continue.

Input Nil
Output Nil

Code:
387
388
389
390
391
392
393
394

int checkgameend()

 int i,j;
 int counter = 0;
 for(i = 0;i < 9;i++){
 for(j = 0;j < 9;j++){
 if(gameboard[i][j] != '.'){
 counter ++;

 S10

24

395
396
397

398
399
400
401
402
403
404
405
406

 }
 }
 }

 if(counter == 81)
 {
 return 1;
 }
 else
 {
 return 0;
 }
}

 checkrow();

Description: It compares the value of each number in each row with the rest elements when game ended.
Element in the first place needed to be compared with rest 8 elements. While that of in second place need to
be compared with rest 7 elements only and so on and so forth. Totally 324 comparison will be done.
Comparisons are done by function comparerow(). Rows with repetitions will be indicated wordily. Return 1
when no repetition is appeared. Otherwise 0 is returned.

Input Nil
Output Nil

Code:
407
408
409
410
411
412
413

414
415
416
417
418

419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434

int checkrow(void)
{
 int i,j;
 int sum,counter1 = 0,counter2 = 0,counter3 = 0;
 for(i = 0;i < 9;i++)
 {
 Sum =(gameboard[i][0]+gameboard[i][1]+gameboard[i][2]+

gameboard[i][3]+gameboard[i][4]+gameboard[i][5]+gam
eboard[i][6]+gameboard[i][7]+gameboard[i][8])-48*9;

 if(sum == 45)
 {
 counter1 ++;
 }
 }

 for(i = 0;i < 9;i++){
 for(j = 1;j < 9;j++){
 counter3 = comparerow(i,j);
 counter2 += counter3;
 counter3 = 0;
 }
 }
 if((counter1 == 9) && (counter2 == 324))

{
 return 1;
 }
 else
 {
 return 0;
 }
}

 S10

25

 comparerow();
Description: This function is being called in checkrow(). It compares the value of each number in each row
with the rest elements. Its return value will be less than 8 when there is repetition found in same row. Besides,
it also informs user where repetitions are found.

Input Nil
Output Nil

Code:
435
436
437
438
439
440
441
442
443
444
445
446

447
448
449
450

int comparerow(i,a)
{
 int j,counter = 0;
 for(j = a;j < 9;j++)
 {
 if(gameboard[i][a-1] != gameboard[i][j])
 {
 counter ++;
 }
 else
 {
 printf("More than one %c are found in row

%d!\n",gameboard[i][a-1],i+1);
 }
 }
 return counter;
}

 checkcolumn();

Description: It works the same as checkrow() but it is used to compare numbers in each column instead.
Comparison are done by function comparecolumn().

Input Nil
Output Nil

Code:
451
452
453
454
455
456
457

458
459
460
461
462

463
464
465
466

int checkcolumn(void)
{
 int i,j;
 int sum,counter1 = 0,counter2 = 0,counter3 = 0;
 for(i = 0;i < 9;i++)
 {
 sum =(gameboard[0][i]+gameboard[1][i]+gameboard[2][i]+

gameboard[3][i]+gameboard[4][i]+gameboard[5][i]+ga
meboard[6][i]+gameboard[7][i]+gameboard[8][i])-48*9;

 if(sum == 45)
 {
 counter1 ++;
 }
 }

 for(i = 0;i < 9;i++){
 for(j = 1;j < 9;j++){
 counter3 = comparecolumn(i,j);
 counter2 += counter3;

 S10

26

467
468
469
470
471
472
473
474
475
476
477
478

 counter3 = 0;
 }
 }

 if((counter1 == 9) && (counter2 == 324))
 {
 return 1;
 }
 else
 {
 return 0;
 }
}

 comparecolumn();

Description: It works the same as comparerow(), it compares the value of each number in each column with
the rest elements. Its return value will be less than 8 when there is repetition found in same row. Besides, it
also informs user where repetitions are found.

Input Nil
Output Nil

Code:
479
480
481
482
483
484
485
486
487
489
490
491

492
493
494
495

int comparecolumn(i,a)

 int j,counter = 0;
 for(j = a;j < 9;j++)
 {
 if(gameboard[a-1][i] != gameboard[j][i])
 {
 counter ++;
 }
 else
 {
 printf("More than one %c are found in column

%d!\n",gameboard[a-1][i],i+1);
 }
 }
 return counter;
}

 printsolution();

Description: It prints out solution of current game if answer given by user is not correct. It will also be
called is user choose option 5.
Principal: Open the solution and read in. Store it in array gameboard[9][9] and print out on screen.

Input randnum
Output Solution on board

Code:
496
497
498
499
500
501

void printsolution(randnum)
{

 int i,j;
 char readchar,filename[20],string[10] = "s.txt";
 FILE *fp;

 S10

27

502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522

 sprintf(filename,"%d%s",randnum,string);
 fp=fopen("tests.txt","r");
 if(fp==NULL)
 {
 printf("cannot open the file!\n");
 exit(1);
 }
 readchar = fgetc(fp);
 while(readchar != EOF) {
 for(i=0;i<9;i++)
 {
 for(j=0;j<=9;j++)
 {
 gameboard[i][j] = readchar;
 readchar = fgetc(fp);
 }
 }
 fclose(fp);
 printboard();
}

 congratulation();

Description: It felicitate user when his/her answer is correct.

Input Nil
Output Nil

Code:
523
524
525
526

527
528

529

void congratulation()

 char space = ' ';

printf("%8c+++\n",space)
;

 printf("%8cCONGRATULATION!!You have done the sudoku correctly!\n",space);
printf("%8c+++\n",space)
;

 playothergame();

Description: It ask user if he/she want another game or not. 1 for continue, 0 for quit.

Input Nil
Output Nil

Code:

 S10

28

530
531
532
533

534
535
536
537
538
539
540
541
542
543
544

int playothergame()
{
 char input[10];
 printf("==
=\n");

 printf("Do you want to play another game(1-yes 0-no)? ");
input[0] = verifyinput();

 if(input[0] == '1')
 {
 return 1;
 }
 else if(input[0] == '0')
 {
 return 0;
 }
}

Testing & Evaluation

 Testing plan:

Having the program written, to ensure the program can run correctly is much more

important. I tested the correctness of my program with the following procedure:

STEP 1 Test if the program response in a correct manner when receive input from user
 STEP 1.1 Try to type in different type of wrong inputs
 STEP 1.1.1 Try inputs that are out of range
 STEP 1.1.2 Try inputs that are not in the required type (e.g. ask for number

but enter sign)
 STEP 1.2 Key in correct type of input
Expectation: When incorrect input is keyed in, the program should ask user to input again until right on is

received. Wrong inputs (e.g. signs) wouldn’t make the program go panic,

STEP 2 Test response of program when user wants to fill in a number to a particular grid
 STEP 2.1 Enter invalid number
 STEP 2.1.1 The number is presented in the same row
 STEP 2.1.2 The number is presented in the same column
 STEP 2.1.3 The number is presented in the same 3x3 box.
 STEP2.2 Enter valid number
 STEP2.3 Enter number to grids occupied already
Expectation: When invalid number is inputted, the program should not accept it immediately. Instead it

warns users. The one that do not violate the rules is accepted. Grids that contain number
already do not accept input any more.

STEP 3 Test correctness of function give hints
 STEP 3.1 Choose grid with number presented already
 STEP 3.2 Choose grid without number
Expectation: No clue is give to grid with number.

STEP 4 Test correctness of function delete number
 STEP 4.1 Choose grid with number given at the beginning
 STEP 4.2 Choose grid without any numbers

 S10

29

 STEP 4.3 Choose grid with number inputted by users
Expectation: Numbers provided by program cannot be cancelled. Warning message is shown when blanket

is being chosen.

STEP 5 Test whether judgment on user’s solution at the end of game is correct
 STEP 5.1 Give the program a set of wrong answer
 STEP 5.1.1 The solution got some mistakes on some rows
 STEP 5.1.2 The solution got some mistakes on some columns
 STEP 5.1.3 The solution got some mistakes on some 3x3 boxes

 STEP 5.2 Give the program a set of correct answer

Expectation: When wrong set of solution is provided by user. The program shows where the mistakes are
found and tell users. Right set receives congratulation message.

 Testing procedure(by myself):
 STEP 1:

I must identify sites that require user’s input first:

 1: Choose level
2: choose option.

 3: Fill in number to the game board (row, column, number)
 4: Withdraw wrong input.

5: User wants to have hints from program (row, column, number)
6: User wants to have delete number entered before (row, column, number)
7: Choose whether he/she is going to play another game.

Choose level

Required input Required range
Level 1 - 3

Result:

Out ranged values are successfully blocked.

Signs are successfully blocked.

Characters are successfully blocked.

 S10

30

Choose option

Required input Required range
Option 1 - 5

Result:

Out ranged values, signs and characters are successfully blocked.

Fill in number
Required input Required range

Row a - i
Column 1 - 9
number 1 - 9

Result:

Out ranged values, signs and characters are successfully blocked.

Withdraw wrong input
Required input Required range

- 0 - 1
Result:

 S10

31

Out ranged values, signs and characters are successfully blocked.

Request hints
Required input Required range

Row a - i
Column 1 - 9
number 1 - 9

Result:

Out ranged values, signs and characters are successfully blocked.

Delete number

Required input Required range
Row a - i

Column 1 - 9
number 1 - 9

Result:

Out ranged values, signs and characters are successfully blocked.

Choose to play another game

Required input Required range

 S10

32

- 0 - 1
Result:

Out ranged values, signs and characters are successfully blocked.

After testing, it proved that my program can ensure the correctness of inputs from users

which may affect the procedure of game deeply. Right input is extremely important as wrong on may cause
infinite looping of program.

 STEP 2:

When a number which is repeated in same row is entered by user:

Result:

Grid 1a is being chosen, 8 is to be filled in. However, it is appeared in 3a already. My program detected
the problem and worn the user immediately.

And that is true for repetition found in column:

Result:

 S10

33

It is also true for repetition found in 3x3 boxes:
Result:

There is no 9 found in same row or column, but just same 3x3 boxes.

This function for checking allowance of input can function normally whenever repetitions

are found either in same row, column or 3x3 boxes.

 If user choose grid with content already:
Result:

 S10

34

Input is forbidden unless it is both correct and valid input.

 STEP 3:

For function give hint, if user choose grid with number presented already:

Result:

Warning message came out, the step had no effect.

 If the grid did not contain anything:

 S10

35

Result:

After refreshment, the correct answer read from solution I prepared was appeared on board.

This function can produce anticipate result as my expectation. Thus it is successfully
implanted.

 STEP 4:

For function delete number, if user choose grid with number given at the beginning:

Result:

The number is unable to be deleted.

 S10

36

 If the grid did not contain anything:

:
Warning message came out, the step had no effect.

But if the number is inputted by users:
Result:

Number is successfully being deleted.

 S10

37

This function can produce anticipate result as my expectation. Thus it is successfully
implanted.

 STEP 5:

When the final solution given by users got no mistakes:

Result:

My program realizes correct solution and congratulation message is printed out.

When the final solution given by users contain mistakes on some rows and columns:

Result:

The solution is not correct. My program correctly detected all the mistakes.

 When the final solution given by users contain mistake on same box:

Result:

 S10

38

Although I have not written codes for checking 3x3 boxes at the end, my program still can nose out mistakes
in same box by help of same number in same row and column.

This function can produce anticipate result as my expectation. Despite the user’s solution is

not the same as my solution. I believe mistake can also be detected out. But the problem is I can’t find
alternate set of solution that can fit those games I prepared.

 Testing (by friends):

Besides testing the program by myself, I have also invited my sister and friends I met on the

Internet to play my game in order to examine the user-friendliness of my program,, their feedbacks are
collected and listed below. Some changes are made instantly:

 Some important statements are pushed upward when the board refresh and not eye catching. So they

feel difficult to follow them.
Solution: I try my best to shorten those important messages and embedded them into lines constructed

using symbols so that they can be discovered easily.

E.g.

 The program is flooded with messages as the program keep on refreshing, it is really an undesirable

 S10

39

thing.

Solution: I added in a function called system(“CLS”) at certain place. Now the messages generated before
will be cleared after user has inputted number to the board.

 Evaluation:

After testing every important part of my program, the results are found to be suiting my
expectation. There isn’t any serious mistake. So I can guarantee that my program can run normally.

My testing plan may not be perfect. But I have already emended some minor mistakes
during the process. For example, numbers given by program can be deleted at first, I discovered this
accidentally. I regard it as a quite serious problem because all numbers can be removed, leaving behind
is a 9 x 9 grid without anything! Later I solved the problem to ensure given tips wouldn’t be removed which
may make players get stuck.

 I think testing is yet another important part in constructing a program because a program
with lots of mistakes is useless. I hope my program is error-free after this process.

 Comments from my friends and sister are quite positive. They help me a lot. If time is
allowed, I would have asked more people to try my program.

Conclusion

 Summary:

To sum up, the program is successfully implemented. It can meet the basic requirements. All

functions can run normally. As I have just get involved in C programming language for about one years, I
feel satisfy with my work.

Throughout the whole working process, I acquired lots of knowledge. It is fantastic that
different functions grouping together can produce a ‘magic’. I admire more about the beauty of function. I
have also learnt important debugging skills to increase my working speed like using // or /**/. But of course I
know the best way is to avoid errors. My logical thinking ability has also been ameliorated since I have
encountered lots of problems requiring good logical thinking skill. So I will not afraid of facing logic
challenge any more.
 To me, it is really a big challenge as I have never met such large scaled projects before. At
the very beginning, I felt quite helpless. But after receiving ideas from teacher and classmates, I can
eventually solve the problem. So I feel pride of myself as I can put it through. It has built up my confidence
not only in doing CIT project, but also jobs of other subjects. Although it took me a few days which cause
reduction in my time doing revision, it is worth devoting.
 If you ask me whether I had made any wrong choices in doing this project, I would answer
‘no’ undoubtedly. I don’t think I had chosen the wrong language, wrong tools or wrong methods. I will only
think that whenever there is a way, there is a will. You will finally achieve what you want if you keep going
with the method. As I have to plan the time spending on doing this work, I learnt better self- learning and
time management skills. So now the only thing makes me feel regret is I start too late in doing this work.
Therefore I will be aware of this starting from now on and it will be the same in my future.

 S10

40

 Lastly, I must say thank you to my CIT subject’s teacher. Without his guidance and
reminders, I wouldn’t have finished the project so smoothly.

 Problems unsolved:

 As I am a novice of programming language, it is tough task for me to strike for a perfect

program. So there are some problems left behind.
 First of all, when the solution of user do not match with either rules or my solution, my

program will list out where repetitions are found as the following:

But if there is more than two of a same number found in column or row, the warning message will appear
more than one times. I have tried to edit the code, but I failed and the result is even worse. So it is left
unsolved.

 Also, I intended to check the user’s solution against rules. So I tried to write the check part
check row, check column and check 3X3box at first respectively. Later it is found that check against solution
is another choice. I did not adopt this checking method so as to avoid wrong judgment of alternate solutions.
You may feel odd that check 3X3box is missed in my program. But I discovered that if there is any
repetitions found in boxes, check row and check column will certainly point out the mistakes. Therefore
check 3X3box can be omitted.

Besides, function for checking boxes after finishing the game is much more difficult to write
compared with that in instant check part. As a result, I give up in composing it.

 Possible Improvements

Although my program is successfully created, further improvements are possible to take

place.
The following are possible further improvements in connection with my program:

 The user interface can be amended into more playable one such as graphical user interface. GUI is
 both more user-friendly and attractive. Users always prefer buttons clicking rather than typing
 because of its convenience. My teacher has advised me implanting my program into another

 S10

41

 interface using a library called ‘Curses’. The interface is definitely better. However, due to my
 poor time- management, I suffered from a failure.

 More text files comprising of games can be added to further increase the interesting level of my
program. User thus possesses more choices.

 Some extra functions like time counting can be added in. Users can compare the time they use to
finishing a game. It is even more thinkable if comments can be given according to the time they
take.

 The method of generating a game can also be changed. Instead of read in a file, the program can
generate by it selves. Thus time in creating text files is saved and variation of game is greatly
increased.

 The input method can be further improved. Keys that required can set to concentrate on a corner

to reduce the movement of user’s hand. For e.g. column keys can be changed into q,w,e,r,t,y,u,i and o.
This make input become more convenient

Documentation

Helps from reference books and websites are key elements leading me to finish the task. I
Had read and surf the following books and websites respectively:

 Books:
Name Author Uses

新 C學習繪本

ANK Co., Ltd

Learn the basic concepts of writing
program like structure of functions.

C programming

Raymond W.N. CHAN

Gone through some useful program
which gives me inspirations.

Programming in C

Stephen Kochan

Learn methods of debugging.

 Websites:
URL Uses

http://www.is.cityu.edu.hk/staff/
ismikeho/is4234/is4234.htm

View some basic concepts

http://cplusplus.com/

Download some programs and try to get inspirations
from it.

