
DET102 Data Structures 

and Algorithms
Lecture 07: Binary Search Tree



Binary Search Tree

 It is a binary tree.

For each node v in this tree

all the nodes in its left subtree have smaller data than v

all the nodes in its right subtree have larger data than v

 If we traverse the tree in inorder, then all the data 

are visited in increasing order.
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What is the inorder traversal of the above binary search tree?
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Is 80 in the above binary search tree?
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Is 81 in the above binary search tree?



ADT of Binary Search Tree

Attributes of BST node

Data

Left child

Right child

Count (optional)

 Operations

 Create (initialize)

 Search (find)

 Insert 

 Delete 

 Traverse 

 Copy

 Find the height

 Find the number of nodes

 Find the number of leaves.
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We can inherit all of these operations from the binary tree.



Search

Algorithm TreeSearch(T, p, k):

if k == p.key() then

return p        //successful search

else if k < p.key() and T.left(p) is not None then

return TreeSearch(T, T.left(p), k)   //recur on left subtree

else if k > p.key() and T.right(p) is not None then

return TreeSearch(T, T.right(p), k) //recur on right subtree

return p    //unsuccessful search
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Search complexity8



Insertion

 Algorithm TreeInsert(T, k, v):

Input: A search key k to be associated with value v

p = TreeSearch(T,T.root(),k)

if k == p.key() then

Set p’s value to v

else if k < p.key() then

add node with item (k,v) as left child of p

else

add node with item (k,v) as right child of p
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How to insert 81 in the above binary search tree?



11
Binary Search Tree - Deletion

Delete a node in a BST:

Case 1:

To delete a leaf 

node

Case 2:

To delete a node that 

has 1 subtree (left or 

right)

Case 3:

To delete a node 

that has 2 subtrees

8
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•Set the parent 
node’s child pointer 
to NULL

8
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6 101215

7 13

•Set the parent’s child 
pointer to root of 
unwanted node’s subtree 
(left or right).
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More complicated

___
__
__
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Binary Search Tree - Deletion

Delete a node in a BST:

Case 3:

To delete a node 

that has 2 subtrees 8

3 11

1 5 9 14

6 101215

7 13

Replace its value by its 

inorder successor (or 
predecessor):

8

3 12

1 5 9 14

6 101215

7 13

Delete the successor in turn:
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1 5 9 14

6 101215

7 13

8

3 12

1 5 9 14

6 101315

7

The inorder successor is the 

leftmost node of right subtree.
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Exercise: 

What is the result after the node containing 8 in the 

following tree is deleted?

8

3 19

1 5 14 20

17

15 18

Binary Search Tree - Deletion



Deletion

 Deleting a tree node is a complicated business. One 

way to minimize this complication is to use “Lazy Delete”. 

 Update the “count” information without deleting the 

corresponding tree node
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If a node’s count=0, 

then it means that the 

node has already 

been deleted.

Lazy Delete

Use traversal to lazy delete a value.

first, find the node using tree traversal

if the count field=0 then report “error, doesn’t exist”

else reduce the count field by one

15



Worst Case Analysis

The worst case running time for search in BST is:

The worst case running time for insertion in BST is:

The worst case running time for deletion in BST is:

What is the worst structure of BST?

What kind of BST is good?

What is the running time for good BST?

How to maintain good BST? 
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Other Trees

Balanced Binary Search Tree

AVL tree

Red-black tree

B tree 

B+ tree



AVL Tree
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AVL Tree

AVL tree was introduced in 1962 by Adelson-Velskii
and Landis.

Definition

An empty tree is an AVL tree.

If B is the nonempty binary tree with L and R as its left 
and right subtrees, then B is an AVL tree if and only if 

L and R are AVL trees, and

|hL –hR|<=1 where hL and hR are the heights of L and R 
subtrees, respectively.

Data Structures and Algorithms
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Height-

balance 

property



Balance factor

▪ The balance factor of a node in a binary tree is defined as 
the heights hL minus hR.

▪ AVL tree may have the following balance factor  for a node 
{-1, 0, 1}.

▪ If a node x has balance factor other than {-1,0,1},  then it is 
said to be unbalanced.

▪ If balance factor of any node is -1, then it is said to be right 
balanced, and if balance factor is 1, then it is said to be left 
balanced. 

▪ For balance factor 0, the tree is said to be completely 
balanced.

Data Structures and Algorithms
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Example

Data Structures and Algorithms
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AVL Search Tree

An empty binary search tree is an AVL search tree.

 If Bst is the non empty binary search tree with Lst 
and Rst as its left and right subtrees, then Bst is an 
AVL seartree if and only if 

Lst and Rst are AVL trees, and

|hLst –hRst|<=1 wherehLst and hRst are the heights of Lst and 
Rst subtrees, respectively.

 For AVL search tree to be balanced, the balance factor bf(x) 

of node x must be bf(x)= hLst –hRst ={-1,0,1}

Data Structures and Algorithms
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AVL tree

 Any binary search tree T that satisfies the height-balance 

property is said to be an AVL tree.



Data Structures and Algorithms
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Is it an AVL tree?
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Is it an AVL tree?
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Height of an AVL Tree

Consider n(h) to be the minimum number of nodes in an 

AVL tree of height h. 

 In the worst cast, the height of one of the subtree is h-1 and 

the height of the other subtree is h-2. Both are AVL tree.

n(h)=n(h-1)+n(h-2)+1

n(0)=1, n(1)=2

Height: O(log n)

Data Structures and Algorithms
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The height of an AVL tree storing n entries is O(logn).



Searching in an AVL search tree

Like binary search tree.

Function AVLsearch (R,K)

Step 1: checking, is empty?

Step 2: if k is equal to the value of the root node

Step 3: k is less than the key value of the root node, 
AVLsearch(R(lchild),K)

Step 4: k is greater than the key value of the root node, 
AVLsearch(R(rchild),K).

Data Structures and Algorithms
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Insertion in an AVL search tree

 If AVL search tree is empty

 If AVL search tree has only one node

 If AVL search tree has many nodes

Still balanced

Not balanced: left-right case, left-left case, right-left 

case, right-right case.

Data Structures and Algorithms
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We need to restore the balance of any portions of the tree that are adversely 

affected by the change.



Insertion in an AVL search tree

 Let P be the root of the unbalanced subtree, with R and L denoting 
the right and left children of P respectively.

 Right-Right case and Right-Left case:

 If the balance factor of P is -2 then the right subtree outweighs the 
left subtree of the given node, and the balance factor of the right 
child (R) must be checked. The left rotation with P as the root is 
necessary. 

 If the balance factor of R is -1 (or in case of deletion also 0), a 
single left rotation (with P as the root) is needed (Right-Right 
case). 

 If the balance factor of R is +1, two different rotations are 
needed. The first rotation is a right rotation with R as the root. The 
second is a left rotation with P as the root (Right-Left case). 

Data Structures and Algorithms
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Insertion in an AVL search tree

 Left-Left case and Left-Right case:

 If the balance factor of P is 2, then the left subtree 
outweighs the right subtree of the given node, and the 
balance factor of the left child (L) must be checked. The 
right rotation with P as the root is necessary. 

 If the balance factor of L is +1 (or in case of deletion also 0), a 
single right rotation (with P as the root) is needed (Left-Left case). 

 If the balance factor of L is -1, two different rotations are needed. 
The first rotation is a left rotation with L as the root. The second is 
a right rotation with P as the root (Left-Right case). 

Data Structures and Algorithms
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//upload.wikimedia.org/wikipedia/commons/f/f5/AVL_Tree_Rebalancing.svg


Data Structures and Algorithms
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 L-R

30, 20, 40,10, 25

 Insert 27

 L-L

30, 20, 40, 10, 25

 Insert 5

R-L

30, 20, 40, 35, 50

 Insert 32

R-R

30,20,40,35,45 

 Insert 50



Overall Scheme for insert(x)

Search for x in the tree; insert a new leaf for x (as in 
previous BST)

 If parent of x is not balanced, perform single or 
double rotation as appropriate

 How do we know the height of a subtree?

 Have a “height” attribute in each node

Set x = parent of x and repeat the above step until x 
= root



Deletion

▪ Do normal deletion for binary search tree

▪ Rebalancing (need to check all the ancestors of 

the affected node)

▪ Rather complicated



AVL drawback

extra storage/complexity for height fields

ugly delete code

Solution: Splay tree

Reference 

https://courses.cs.washington.edu/courses/cse326/01a

u/lectures/SplayTrees.ppt

https://courses.cs.washington.edu/courses/cse326/01au/lectures/SplayTrees.ppt
https://courses.cs.washington.edu/courses/cse326/01au/lectures/SplayTrees.ppt
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