
DET102 Data Structures

and Algorithms
Lecture 07: Binary Search Tree

Binary Search Tree

 It is a binary tree.

For each node v in this tree

all the nodes in its left subtree have smaller data than v

all the nodes in its right subtree have larger data than v

 If we traverse the tree in inorder, then all the data

are visited in increasing order.

2

3

What is the inorder traversal of the above binary search tree?

4

Is 80 in the above binary search tree?

5

Is 81 in the above binary search tree?

ADT of Binary Search Tree

Attributes of BST node

Data

Left child

Right child

Count (optional)

 Operations

 Create (initialize)

 Search (find)

 Insert

 Delete

 Traverse

 Copy

 Find the height

 Find the number of nodes

 Find the number of leaves.

6

We can inherit all of these operations from the binary tree.

Search

Algorithm TreeSearch(T, p, k):

if k == p.key() then

return p //successful search

else if k < p.key() and T.left(p) is not None then

return TreeSearch(T, T.left(p), k) //recur on left subtree

else if k > p.key() and T.right(p) is not None then

return TreeSearch(T, T.right(p), k) //recur on right subtree

return p //unsuccessful search

7

Search complexity8

Insertion

 Algorithm TreeInsert(T, k, v):

Input: A search key k to be associated with value v

p = TreeSearch(T,T.root(),k)

if k == p.key() then

Set p’s value to v

else if k < p.key() then

add node with item (k,v) as left child of p

else

add node with item (k,v) as right child of p

9

10

How to insert 81 in the above binary search tree?

11
Binary Search Tree - Deletion

Delete a node in a BST:

Case 1:

To delete a leaf

node

Case 2:

To delete a node that

has 1 subtree (left or

right)

Case 3:

To delete a node

that has 2 subtrees

8

3 11

1 5 9 14

6 10 12 15

7 13

•Set the parent
node’s child pointer
to NULL

8

3 11

1 5 9 14

6 101215

7 13

•Set the parent’s child
pointer to root of
unwanted node’s subtree
(left or right).

8

3 11

1 5 9 14

6 101215

7 13

More complicated

__
__

12

Binary Search Tree - Deletion

Delete a node in a BST:

Case 3:

To delete a node

that has 2 subtrees 8

3 11

1 5 9 14

6 101215

7 13

Replace its value by its

inorder successor (or
predecessor):

8

3 12

1 5 9 14

6 101215

7 13

Delete the successor in turn:

8

3 12

1 5 9 14

6 101215

7 13

8

3 12

1 5 9 14

6 101315

7

The inorder successor is the

leftmost node of right subtree.

13

Exercise:

What is the result after the node containing 8 in the

following tree is deleted?

8

3 19

1 5 14 20

17

15 18

Binary Search Tree - Deletion

Deletion

 Deleting a tree node is a complicated business. One

way to minimize this complication is to use “Lazy Delete”.

 Update the “count” information without deleting the

corresponding tree node

14

If a node’s count=0,

then it means that the

node has already

been deleted.

Lazy Delete

Use traversal to lazy delete a value.

first, find the node using tree traversal

if the count field=0 then report “error, doesn’t exist”

else reduce the count field by one

15

Worst Case Analysis

The worst case running time for search in BST is:

The worst case running time for insertion in BST is:

The worst case running time for deletion in BST is:

What is the worst structure of BST?

What kind of BST is good?

What is the running time for good BST?

How to maintain good BST?

16

Other Trees

Balanced Binary Search Tree

AVL tree

Red-black tree

B tree

B+ tree

AVL Tree
18

AVL Tree

AVL tree was introduced in 1962 by Adelson-Velskii
and Landis.

Definition

An empty tree is an AVL tree.

If B is the nonempty binary tree with L and R as its left
and right subtrees, then B is an AVL tree if and only if

L and R are AVL trees, and

|hL –hR|<=1 where hL and hR are the heights of L and R
subtrees, respectively.

Data Structures and Algorithms

19

Height-

balance

property

Balance factor

▪ The balance factor of a node in a binary tree is defined as
the heights hL minus hR.

▪ AVL tree may have the following balance factor for a node
{-1, 0, 1}.

▪ If a node x has balance factor other than {-1,0,1}, then it is
said to be unbalanced.

▪ If balance factor of any node is -1, then it is said to be right
balanced, and if balance factor is 1, then it is said to be left
balanced.

▪ For balance factor 0, the tree is said to be completely
balanced.

Data Structures and Algorithms

20

Example

Data Structures and Algorithms

21

AVL Search Tree

An empty binary search tree is an AVL search tree.

 If Bst is the non empty binary search tree with Lst
and Rst as its left and right subtrees, then Bst is an
AVL seartree if and only if

Lst and Rst are AVL trees, and

|hLst –hRst|<=1 wherehLst and hRst are the heights of Lst and
Rst subtrees, respectively.

 For AVL search tree to be balanced, the balance factor bf(x)

of node x must be bf(x)= hLst –hRst ={-1,0,1}

Data Structures and Algorithms

22

AVL tree

 Any binary search tree T that satisfies the height-balance

property is said to be an AVL tree.

Data Structures and Algorithms

24

Is it an AVL tree?

38

13
51

10

12

25 84

37

40

66 89

95

Data Structures and Algorithms

25

Is it an AVL tree?

38

13
84

10

12

25 89

37

51

6640 95

Height of an AVL Tree

Consider n(h) to be the minimum number of nodes in an

AVL tree of height h.

 In the worst cast, the height of one of the subtree is h-1 and

the height of the other subtree is h-2. Both are AVL tree.

n(h)=n(h-1)+n(h-2)+1

n(0)=1, n(1)=2

Height: O(log n)

Data Structures and Algorithms

26

The height of an AVL tree storing n entries is O(logn).

Searching in an AVL search tree

Like binary search tree.

Function AVLsearch (R,K)

Step 1: checking, is empty?

Step 2: if k is equal to the value of the root node

Step 3: k is less than the key value of the root node,
AVLsearch(R(lchild),K)

Step 4: k is greater than the key value of the root node,
AVLsearch(R(rchild),K).

Data Structures and Algorithms

27

Insertion in an AVL search tree

 If AVL search tree is empty

 If AVL search tree has only one node

 If AVL search tree has many nodes

Still balanced

Not balanced: left-right case, left-left case, right-left

case, right-right case.

Data Structures and Algorithms

28

We need to restore the balance of any portions of the tree that are adversely

affected by the change.

Insertion in an AVL search tree

 Let P be the root of the unbalanced subtree, with R and L denoting
the right and left children of P respectively.

 Right-Right case and Right-Left case:

 If the balance factor of P is -2 then the right subtree outweighs the
left subtree of the given node, and the balance factor of the right
child (R) must be checked. The left rotation with P as the root is
necessary.

 If the balance factor of R is -1 (or in case of deletion also 0), a
single left rotation (with P as the root) is needed (Right-Right
case).

 If the balance factor of R is +1, two different rotations are
needed. The first rotation is a right rotation with R as the root. The
second is a left rotation with P as the root (Right-Left case).

Data Structures and Algorithms

29

Insertion in an AVL search tree

 Left-Left case and Left-Right case:

 If the balance factor of P is 2, then the left subtree
outweighs the right subtree of the given node, and the
balance factor of the left child (L) must be checked. The
right rotation with P as the root is necessary.

 If the balance factor of L is +1 (or in case of deletion also 0), a
single right rotation (with P as the root) is needed (Left-Left case).

 If the balance factor of L is -1, two different rotations are needed.
The first rotation is a left rotation with L as the root. The second is
a right rotation with P as the root (Left-Right case).

Data Structures and Algorithms

30

Data Structures and Algorithms

31

//upload.wikimedia.org/wikipedia/commons/f/f5/AVL_Tree_Rebalancing.svg

Data Structures and Algorithms

32
 L-R

30, 20, 40,10, 25

 Insert 27

 L-L

30, 20, 40, 10, 25

 Insert 5

R-L

30, 20, 40, 35, 50

 Insert 32

R-R

30,20,40,35,45

 Insert 50

Overall Scheme for insert(x)

Search for x in the tree; insert a new leaf for x (as in
previous BST)

 If parent of x is not balanced, perform single or
double rotation as appropriate

 How do we know the height of a subtree?

 Have a “height” attribute in each node

Set x = parent of x and repeat the above step until x
= root

Deletion

▪ Do normal deletion for binary search tree

▪ Rebalancing (need to check all the ancestors of

the affected node)

▪ Rather complicated

AVL drawback

extra storage/complexity for height fields

ugly delete code

Solution: Splay tree

Reference

https://courses.cs.washington.edu/courses/cse326/01a

u/lectures/SplayTrees.ppt

https://courses.cs.washington.edu/courses/cse326/01au/lectures/SplayTrees.ppt
https://courses.cs.washington.edu/courses/cse326/01au/lectures/SplayTrees.ppt

	投影片 1: DET102 Data Structures and Algorithms
	投影片 2: Binary Search Tree
	投影片 3
	投影片 4
	投影片 5
	投影片 6: ADT of Binary Search Tree
	投影片 7: Search
	投影片 8: Search complexity
	投影片 9: Insertion
	投影片 10
	投影片 11: Binary Search Tree - Deletion
	投影片 12: Binary Search Tree - Deletion
	投影片 13: Binary Search Tree - Deletion
	投影片 14: Deletion
	投影片 15: Lazy Delete
	投影片 16: Worst Case Analysis
	投影片 17: Other Trees
	投影片 18: AVL Tree
	投影片 19: AVL Tree
	投影片 20: Balance factor
	投影片 21: Example
	投影片 22: AVL Search Tree
	投影片 23: AVL tree
	投影片 24: Is it an AVL tree?
	投影片 25: Is it an AVL tree?
	投影片 26: Height of an AVL Tree
	投影片 27: Searching in an AVL search tree
	投影片 28: Insertion in an AVL search tree
	投影片 29: Insertion in an AVL search tree
	投影片 30: Insertion in an AVL search tree
	投影片 31
	投影片 32
	投影片 33: Overall Scheme for insert(x)
	投影片 34: Deletion
	投影片 35: AVL drawback

