
4. FLOW CONTROL - LOOP
VICTOR LEE

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

ITERATION

LOOP

• Beside sequential execution and branch execution (if statement),

looping is another common flow control in programming.

• When the execution enters a loop, it will execute a block of code

repeatedly until the exit loop condition is met.

• Each repetition is called an iteration.

EXAMPLE: COUNTER

• A count-down program

counter=10
while counter>0:

print(counter)
counter-=1

print("Time's up")

counter
greater
than 0?

Start

Yes

No

End

print
”Time's

up"

set counter to 10

Reduce counter by 1

print
counter

What is the value of counter after the while loop?

LOOP

• In general, a program loop consists of:
• Loop initialization (pre-loop)

• Loop body

• Exit condition
• Post loop statements (stepping towards exit condition)

counter
greater
than 0?

Start

Yes

No

End

print "time's
up"

set counter to 10

Reduce counter by 1

print
counter

Loop initialization

Exit condition

Loop body

Post loop
statement

TYPES OF LOOP

• while loop

• for loop

WHILE LOOP

• Loop until the given condition (logical expression) is no longer true
• If the value of the logical expression is non-zero (true), the indented

statements (code block) will be executed, otherwise, the loop terminates
without executing the code block

• After the code block is executed, the logical expression will be tested again

while logical_expression:
⇥statement
⇥statement Code block

WHILE LOOP

• In the countdown program, the loop terminates
when counter is zero or negative.
• counter gets smaller in each iteration, so

eventually it reaches 0

• In some other loops, it may not be obvious.
• When n = 3, it prints 3, 10, 5, 16, 8, 4, 2

• However, there is NO obvious proof that the loop
terminates for all positive values of n
(https://en.wikipedia.org/wiki/Collatz_conjecture)

counter=10
while counter>0:

print(counter)
counter-=1

print("Time's up")

n = 3
while n != 1:

print(n)
if n%2 == 0: # n is even

n = n / 2
else: # n is odd

n = n*3 + 1

https://en.wikipedia.org/wiki/Collatz_conjecture

EXAMPLE: DETERMINE A NUMBER IS A PRIME OR NOT

3 3

7
8

46
11

8

15

DETERMINE A NUMBER IS A PRIME OR NOT

• Input: a number, n

• Output: True or False

• Process: divide n by 2, 3, 4, 5, , n/2

https://en.wikipedia.org/wiki/Prime_number

THE PROGRAM

n=int(input())
d=2;
isPrime=True

while d<n/2:
if n%d==0:

isPrime=False
d+=1

if isPrime:
print(str(n)+" is a prime number")

else:
print(str(n)+" is NOT a prime number")

BETTER VERSION (STOP LOOPING WHEN IT IS NOT A PRIME)
n=int(input())
d=2;
isPrime=True

while d<n/2:
if n%d==0:

isPrime=False
break;

d+=1

if isPrime:
print(str(n)+" is a prime number")

else:
print(str(n)+" is NOT a prime number")

Do Things Right vs Do the Right Things?

Did you see any bug 🐜 in this program?

CONTROL THE LOOP

• break
• Jump out of the loop that contains the break statement.

• Transfer control to the statement right after the loop.

• continue
• Skip the rest of the code inside the loop that contains the continue

statement for the current iteration only.

CONTINUE VS. BREAK

break

while

continue

false

true

EXAMPLES USING
THE COUNTDOWN
PROGRAM break

while

continue

false

true

• Countdown until '5' is hit versus countdown but skip '5'

counter=10
while counter>0:

print(counter)
counter-=1

print("Time's up")

EXAMPLE: FIND THE SQUARE ROOT OF A NUMBER

• Input: a number and an estimate, e.g., number = 4, estimate = 3

• Output: (best estimate of) the square root of the number

• Process: use Newton’s method to compute a better estimate with the
following formula

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒!"# =
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒$%& +)𝑛𝑢𝑚𝑏𝑒𝑟

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒$%&
2

EXAMPLE: FIND THE SQUARE ROOT OF A NUMBER

Use a loop to repeat applying the
Newton's method to compute a
better estimate until there is NO

further improvement, i.e., the new
estimate equals the old estimate.

THE PROGRAM
number = 4
estimate_old = 3
while True:

print(estimate_old)
estimate_new = (estimate_old + number / estimate_old) / 2
if estimate_new == estimate_old:

break
estimate_old = estimate_new

FOR LOOP
• Designed to step through the item in sequence object such as a list of numbers
• Each item in the sequence object is assigned to target at each iteration
• The loop stops when all the items in the sequence object are visited
• Unlike while loop, which loops until the given condition is no longer true, for loop

executes the code block a fixed number of times

for target in object:
⇥statement
⇥statement Code block

BUILT-IN FUNCTION: RANGE

• Python provides a function range to generate a list of numbers
• range(stop): generates a sequence of integers starting from 0 to (stop – 1),

• range(5) = [0, 1, 2, 3, 4]

• range(start, stop): generates a sequence of integers starting from (start) to
(stop – 1)
• range(2, 5) = [2, 3, 4]

• range(start, stop, step): generates a sequence of integers, starting from
(start) to (stop - 1), each different by step
• range (2, 8, 2) = [2, 4, 6]

for i in range(8):
print(i)

print("end of 1st loop")

for i in range(2, 8):
print(i)

print("end of 2nd loop")

for i in range(2, 8, 2):
print(i)

print("end of 3rd loop")

REWRITE THE COUNTDOWN PROGRAM USING
FOR LOOP

• Hint:
• step in function range can be negative

counter=10
while counter>0:

print(counter)
counter-=1

print("Time's up")

MORE EXAMPLE

• For loop can be used to step through a string.

• Stretch a string using a for loop!

programming à p r o g r a m m i n g

Reminder: Using print(i, end=' ')
can replace the newline character with space

ELSE STATEMENT IN LOOP

• In Python, else blocks may append to the while loop
or for loop. The else blocks will not be executed only if
the loop is terminated by break keyword

EXAMPLE

• Don't output "Done" only if the string is not completely stretched.

NESTED LOOP

• In some problems, we need more than one layer of looping to solve a problem

• Example: find all the prime numbers between 1 to 100

NESTED FOR-LOOP

for i in range(3):
print("Outer for:")
for j in range(2):

print("Inner for:", end=" ")
print("i="+str(i)+", j="+str(j))

The outer loop is executed 3 times
For each iteration of the outer loop,
the inner loop is executed 2 times

Outer for:
Inner for: i=0, j=0
Inner for: i=0, j=1

Outer for:
Inner for: i=1, j=0
Inner for: i=1, j=1

Outer for:
Inner for: i=2, j=0
Inner for: i=2, j=1

0

6

2

39

4

1

8

11

5

10

7

i

j

NOW, YOU SHOULD KNOW HOW TO
PRINT A RIGHT-ANGLED TRIANGLE

SUMMARY
• In Python, repeating task could be expressed with

• while

• for

• break, continue and else can be applied to both while and for loop

• A complete looping structure may consist of
• Loop initialization
• Loop body
• Exit condition
• Post loop statements

• Nested loop is a loop with more than one layer

